Smooth Particle Applied Mechanics

Carol G. Hoover Wm G. Hoover

Ruby Valley, Nevada, USA

Lectures presented in Mexico City, Mexico January 2007

SPAM: A Novel and Simple Method for Solving the Continuum Equations

- > SPAM Theory
 - 1. Continuum Mechanics (PDEs)
 - 2. Numerical Solution Methods
 - a) Finite Element Method
 - b) Particle Method (Motivation)
 - 3. SPAM Interpolation & Gradients
 - 4. SPAM ODEs
 - 5. Runge-Kutta Time Integration
 - 6. Molecular Dynamics Analogs
 - 7. Mesh Generation & Boundary Conditions
 - 8. Maladies and Cures
- SPAM Results
 - 9. Free Expansion
 - 10. Parallel Techniques
 - 11. Collapsing Fluid Column
 - 12. Rayleigh-Bénard Flow
 - 13. Research problems
 - a) Tension Test
 - b) Ball Plate Problem

1. Continuum Theory: Microscopic *versus* Macroscopic Material Descriptions

Microscopic Description

Atomistic length & time scales

t ~ ps-ms (vibrational frequencies)

Follow atomic motion with

ordinary differential equations

Specify force laws for atoms

Macroscopic Description

Laboratory length & time scales

L~cm or meters

t ~ ms or seconds

Material flow or solid deformation satisfy partial differential equations

Specify constitutive relations for the materials

For a pdf file, go to www.williamhoover.info

1. Continuum Theory: Continuity Equation - Conservation Law for Mass

Lagrangian description follows the motion of material points:

$$\begin{aligned} x_{\text{right}} &\to x_{\text{right}} + vdt + \frac{dx}{2} (\partial v / \partial x)_t dt \\ x_{\text{left}} &\to x_{\text{left}} + vdt - \frac{dx}{2} (\partial v / \partial x)_t dt \\ dx(0) &\to dx(0) [1 + (\partial v / \partial x)_t dt] = dx(dt) \\ \frac{dx(dt) - dx(0)}{dt dx(0)} &\to \frac{d(\ln dx)}{dt} = -\frac{d\ln \rho}{dt} = \frac{\partial v}{\partial x} \end{aligned}$$

1. Continuum Theory: Lagrangian Equations, Pressure, Heat Flux

$$\begin{split} \dot{\rho} &= -\rho \nabla \cdot \mathbf{v} \\ \rho \dot{\mathbf{v}} &= -\nabla \cdot \mathbf{P} \\ \rho \dot{\mathbf{e}} &= -\nabla \mathbf{v} : \mathbf{P} - \nabla \cdot \mathbf{Q} \\ \text{with} \\ \mathbf{P} &= \mathbf{P}(\rho, \mathbf{e}, ?) ; \mathbf{Q} = \mathbf{Q}(\rho, \mathbf{e}, ?) \,. \end{split}$$

1. Continuum Theory Equilibrium Fluid Constitutive Equations

Mechanical equation of state (adiabatic and isothermal):

$$P = B_{o} \left(\frac{\rho^{3}}{\rho_{o}^{3}} - \frac{\rho^{2}}{\rho_{o}^{2}} \right)$$

Thermal equation of state and Mechanical equation of state:

E = NDkT/2; PV = NkT =
$$\frac{2}{D}$$
E

Heat capacity and compressibility:

$$dE/dT_{VorP} > 0$$
; $-1/V(\partial V/\partial P)_{TorS} > 0$

Van der Waals':

$$P = \frac{NkT}{V - Nb} - \frac{N^2a}{V^2}; E = \frac{DNkT}{2} - \frac{N^2a}{V}$$

1. Continuum Theory Nonequilibrium Constitutive Relations

- > Nonequilibrium dissipation: viscosity, conductivity, plasticity, ...
- > Fourier's law:

$$\mathbf{Q} = -\kappa \nabla \mathbf{T}$$
.

➤ Newton's formulation of shear stress → symmetrized stress tensor :

$$\sigma_{yy} = 0$$
 $\epsilon_{yy} = \Delta H/H$

$$\sigma = \sigma_{eq} \mathbf{I} + \lambda \mathbf{I} \nabla \cdot \mathbf{v} + \eta [\nabla \mathbf{v} + \nabla \mathbf{v}^{t}]$$

$$\eta_v = \eta + \lambda \ \ \text{in 2d} \, ; \eta_v = \frac{2}{3} \eta + \lambda \ \ \text{in 3d} \, .$$

$$E = \sigma_{xx} / \ \epsilon_{xx} \ ; \ \nu = - \ \epsilon_{yy} / \ \epsilon_{xx}$$

Use von Mises shear stress condition for plasticity :

$$(\sigma_{xx}^2 - \sigma_{yy}^2)^2 + 4\sigma_{xy}^2 \le Y^2 \text{ in 2d.}$$

2. a) Numerical Solution Methods Finite-Elements (DYNA3D and ParaDyn)

Use space-filling volumes to approximate the continuum:

> 8-Node brick has *isoparametric* velocity interpolation for strain rates:

 \blacktriangleright 4-Node shell elements are *two*-dimensional. They have a thickness δ and various underlying through-the-thickness integration schemes.

$$v(x,y) = a_1 + a_2 x + a_3 y + a_4 xy$$

➤ Calculate pressure, energy, stress by integrating over elements (for example, nodal strain/strain rates, element integration → stresses)

Lin, DYNA3D, UCRL-MA-107254 & Hoover, *et alii*, ParaDyn, UCRL-MA-140943 from Methods Development Group, Lawrence Livermore National Laboratory.

Two Example Finite-Element Calculations

2. b) Numerical Solution Methods Particle Methods – Motivation & Example

History

Smooth particles used for astrophysics problems: Gingold, Lucy, and Monaghan - 1977
Smooth particles applied to fluids and solids (~1990)

Motivation

Fluids and solids satisfy the *same* motion equations
No element integration
No mesh tangling for flow problems
Material failure is simple with Lagrangian particles
Applications in *many* fields (heat conduction, electricity & magnetism, fluid structure interaction, fragmentation, ...)

Simplify! Simplify! Simplify! (Thoreau)

High Pressure Die Casting Experiment/Simulation

Ha, Cleary, Alguine & Nguyen@http://www.cmis.csiro.au/cfd/sph/

3. Spatial Interpolation and Gradients Particles of Finite Extent Represent the Continuum.

Particles with an extent h represent a continuum. The particle weight function, w, as well as its first two spatial derivatives are continuous.

—— Lucy's w Monaghan's w

3. Spatial Interpolation and Gradients Monaghan and Lucy weight functions in 2 dimensions

$$W_{Lucy} (r < h) = (5/9\pi h^2)[1+3(r/h)][1-(r/h)]^3$$

w is normalized and w, w', w" vanish at r = h = 3.

$$\rightarrow w_n \propto [1 + n(r/h)][1 - (r/h)]^n$$

$$\begin{split} w_{Monaghan} &= (40/7\pi h^2)[1-6(r/h)^2+6(r/h)^3] \quad for \ 0 < \frac{r}{h} < \frac{1}{2} \\ w_{Monaghan} &= (80/7\pi h^2)[1-(r/h)]^3 \quad for \ \frac{1}{2} < \frac{r}{h} < 1 \end{split}$$

3. Spatial Interpolation and Gradients Density interpolation converges with ~ 20 neighbors

$$\rho_{i} = \sum_{i} w(|r_{i} - r_{j}|); |r_{i} - r_{j}| \leq h.$$

- > Good estimate for particle smoothing length comes from the summed up densities at regular lattice sites.
- > 2D square and triangular lattices with

$$\label{eq:h-sum} h \geq 3,$$
 lead to errors less than 1% for both weight functions .

Continuum variables & derivatives (at any point in space) are particle sums.

4. Spatial Interpolation and Gradients Interpolation for Variables/Gradients Use Particle Sums

Continuum variables & gradients :

$$r, v, e, P_{xx}, P_{xy}, P_{yy}, Q_x, Q_y, \nabla v, \nabla T, \nabla \cdot Q, \nabla \cdot P$$
.

Use weighted sums of particle variables for interpolation :

$$\rho f(r) = \sum_{j} f_{j} w(|r - r_{j}|); \quad \rho_{r} = \sum_{j} w(r - r_{j});$$

$$\nabla (\rho f)_{r} = \sum_{j} f_{j} \nabla_{r} w(|r - r_{j}|).$$

> Other powers or functions of density can be used, e.g.,

$$f(r) = \sum_{j} (f/\rho)_{j} w(|r-r_{j}|);$$

$$f(r)/\rho = \sum_{j} (f/\rho^{2})_{j} w(|r-r_{j}|).$$

4. SPAM versions of the ODEs Spatial interpolation → Ordinary Differential Equations

$$\dot{\rho}_{i} = \sum_{j} (\mathbf{v}_{i} - \mathbf{v}_{j}) \cdot \nabla \mathbf{w}_{ij} \text{ or } \rho_{i} = \sum_{j} \mathbf{w}_{ij}$$
;

$$\dot{\boldsymbol{v}}_{i} = -\sum_{j} [(\boldsymbol{P}/\boldsymbol{\rho}^{2})_{i} + (\boldsymbol{P}/\boldsymbol{\rho}^{2})_{j}] \cdot \nabla_{i} \boldsymbol{w}_{ij} ;$$

$$\begin{split} \dot{e}_{i} &= -\sum_{j} \left[(P/\rho^{2})_{i} + (P/\rho^{2})_{j} \right] : \frac{1}{2} (v_{i} - v_{j}) \nabla_{i} W_{ij} \\ &- \sum_{i} \left[(Q/\rho^{2})_{i} + (Q/\rho^{2})_{j} \right] \cdot \nabla_{i} W_{ij} . \end{split}$$

Time integration with 4th Order Runge-Kutta.

5. Runge-Kutta Time Integration (Fourth Order)

$$\dot{\mathbf{r}}_{i} = \mathbf{v}; \ \dot{\mathbf{v}}_{i} = -\sum_{i} [(\mathbf{P}/\rho^{2})_{i} + (\mathbf{P}/\rho^{2})_{j}] \cdot \nabla_{i} \mathbf{w}_{ij}.$$

Compute r,v by averaging 4 values of derivatives $t = \{0, dt/2, dt\}$:

$$r(dt) = r(0) + \frac{dt}{6}(v_1 + 2v_2 + 2v_3 + v_4);$$

$$V(dt) = V(0) + \frac{dt}{6}(a_1 + 2a_2 + 2a_3 + a_4).$$

$$\begin{split} &r_1 = r(0)\,;\;\; \dot{r}_1 = v_1 = v(0)\,;\;\; \dot{v}_1 = a_1(r_1)\,;\\ &r_2(\frac{dt}{2}) = r_1 + \frac{dt}{2}\,v_1\,;\;\; v_2(\frac{dt}{2}) = v_1 + \frac{dt}{2}\,a_1\,;\;\; a_2 = \dot{v}_2\,;\\ &r_3(\frac{dt}{2}) = r_1 + \frac{dt}{2}\,v_2\,;\;\; v_3(\frac{dt}{2}) = v_1 + \frac{dt}{2}\,a_2\,;\;\; a_3 = \dot{v}_3;\\ &r_4(dt) = r_1 + v_3dt\,;\;\; v_4(dt) = v_1 + a_3dt\,. \end{split}$$

6. Molecular Dynamics Analogs Trajectory Isomophisms

> Two interesting cases of trajectory isomorphisms occur with SPAM and molecular dynamics.

Lucy fluid For
$$P=\rho^2/2$$
 trajectories are the same if $w_{ij} \text{ spam} \to \Phi_{ij} \text{ md}$. Embedded- For $P=\rho^3-\rho_0\rho^2$ trajectories are the same if atom fluid
$$\Phi=\sum_i\frac{1}{2}(\frac{\rho_i}{\rho_0}-1)^2 \ .$$

- > Lucy fluid is used for the free expansion problem .
- Embedded atom can be used for structural relaxation and the collapsing water column.

7. Mesh Generation & Boundary Conditions Meshes for Irregular Shapes and Lattices

> Use viscous relaxation techniques from molecular dynamics.

- ➤ Test lattice structures for stability → Use density curvature potential.
- > Select surface treatment using surface tension or $\sum_{j} (\nabla \rho)^2$ potential.

7. Mesh Generation & Boundary Conditions Free, Periodic, Rigid & Mirror Boundaries

8. Maladies and Cures Lattices with e(ρ) are typically unstable!

Two-dimensional MD lattices with the usual pair potentials are stable.

SPAM/MD lattices with the following density-dependent internal/potential energy are typically NOT stable for any simple two dimensional lattice.

$$\mathbf{e}_{j} \equiv \frac{1}{2} (\rho_{j} - \rho_{0})^{2} \longrightarrow \mathbf{P} = \rho^{2} (\partial \mathbf{e} / \partial \rho) = \rho^{2} (\rho - \rho_{0})$$

$$\Phi_{\rho} \equiv \sum_{j} (\rho_{j} - \rho_{0})^{2}; \rho = \sum_{j} \mathbf{w}_{ij}$$

These lattices do not have any shear resistance and melt:

Particle sum estimates are misleading: $G \approx \nabla^2 e(\rho) \approx \frac{90}{7\pi h^4} \neq 0$;

Evaluation of the elastic constants: $G = C_{44} = 0!$

Hoover et ux, Physical Review E 73, 01672 (2006).

Density-gradient potentials provide surface tension. An invariant curvature potential provides elastic shear strength, G > 0.

8. Maladies and Cures Invariant Curvature Potential Cures Lattice Instability

Particle trajectories in a two-dimensional hexagonal lattice. Initial particle displacements were chosen randomly with zero sum. Lattice is unstable (left) and is stabilized (right) by adding the invariant curvature potential.

$$\Phi = (\rho_{xx} - \rho_{yy})^2 + 4(\rho_{xy})^2;$$

$$\rho_{xx} = \partial^2 \rho I \partial x^2 \ , \\ \rho_{yy} = \partial^2 \rho I \partial y^2 \ , \\ \rho_{xy} = \partial^2 \rho I \partial x \partial y \ .$$

8. Maladies and Cures String Phases Are Cured with Core Potentials

A relaxed periodic structure with an embedded atom equation of state, using Lucy's weight function with h=3.5. The cure for the string formation is to add a core potential so that particles cannot get too close.

8. Maladies and Cures Tensile Instability

➤ Kinetic energy growth in an isotropic solid under uniform tension .

The kinetic energy of a single particle moving slowly ($\sim 10^{-8}$ or smaller) will increase exponentially at a time longer than the inverse Einstein frequency.

> Three useful cures:

- 1. Add von Neumann-Richtmyer artificial viscosity;
- 2. Introduce a repulsive core potential;
- 3. Modify the relationship between r and v (Monaghan):

$$\dot{\mathbf{r}} = \mathbf{V} \rightarrow \dot{\mathbf{r}} = \mathbf{V}_{i} + \sum_{j} (\mathbf{V}_{j} - \mathbf{V}_{i}) \frac{\mathbf{W}_{ij}}{\rho_{ij}};$$

$$\rho_{ij}=\sqrt{\rho_i\rho_j} \text{ or } \rho_{ij}=\frac{1}{2}(\rho_i+\rho_j)$$
 .

Swegle, Hicks, Attaway, Journal of Computational Physics 116, 123-134 (1995).

9. SPAM Results: Free Expansion of 16,384 particles:

 τ is the time relative to the sound traversal time . Light regions are above the average and dark regions are below the average .

 $V_0 = 1/4V_f$, Lucy fluid with h = 6.

Hoover, Posch, Physical Review E 59, 1770-1776 (1999). Hoover, Posch, Castillo, et ux, Journal of Statistical Physics, 100, Nos. 1/2, (2000).

10. Parallel Techniques for Fluids and Solids Eulerian Grid of Particle-Cells → Processors

- > Two forms of parallel are "shared memory" and "message-passing.
- > Must use message-passing for large problems .
- > Message-passing is more efficient, works for larger problems, but is much more difficult to program.

Message-passing technique Four-processor parallel computer

10. Parallel Techniques Efficiency, Scalability & Message-Passing

> Communication time reduces parallel efficiency

$$\mathbf{S} = \mathbf{\tau_1} / \mathbf{\tau_N} = \mathbf{N} \mathbf{\eta} \leq \mathbf{N} = \mathbf{N} \mathbf{\eta}_{\mathsf{ideal}}$$

Message-passing involves detailed lists tracking cells/particles in processors.

10. Parallel Techniques Create Subdomains from Optimized Cuts of Graphs

➢ Goal: Domain split into subdomains. Subdomain → processor.

➤ Method: Convert domain → weighted graph :

cells ⇒ vertices

cell connectivity ⇒ lines

Optimized cuts of graphs are partitions (subdomains).

Method by Karypis and Kumar + free software :

http://www.cs.umn.edu/~metis/

Particles in dx ~ h

Graph with connected cells

Vertex weights ∞ processor work time Line weights ∞ communication time

10. Parallel Techniques Example: Dynamically Partitioned Free Expansion

Repartition at any time during the calculation when there is a load imbalance.

10. Parallel Techniques

Example: Dynamically Partitioning Crushed Sheet

This complex surface folding leads to arbitrary "self contact". This is a hard problem on single processor computers!!

10. Parallel Techniques Example: Partitioned "Nut-Bolt" Mesh and Interface

- Treat the surfaces as a separate partition;
- For many surfaces, distribute them among several processors.
- Surface partition is computed only once for this problem.

11. Collapsing water column with gravity N = 640, 2560, 10,240 particles

11.Collapsing water column with gravity Tensile regions – SPAM and Finite Elements

640 particles

2560 particles

10,240 particles

WxH = 80x64 elements dy = 2dx = 1

Relaxation

Cavitation model: $P > P_c \rightarrow P = P_c$

Collapse

12. Rayleigh-Bénard Flow (Gravity & T gradient) Finite-Difference (left) & Smooth Particles (right)

Rolls form for $R_c = \frac{gL^4(dlnT/dy)}{\upsilon D_T}$ & 5000 smooth particles

Kum, Hoover, & Posch, PRE 52, 4899-4908 (1995).

13. a) Tension Test with Particles Pair Φ MD, core Φ , density-gradient Φ & strength

> External forces applied to the interior of a tension specimen;

> Initially tapered bar .

Three tension-test particle simulations :

Pair-potential MD

SPAM + core potential

SPAM-like MD: core + $\sum (\nabla \rho)^2$ + strength

13 a) Tension Test with DYNA3D

Finite-Element Simulation of Tension Test

A tapered bar is created with elements reduced in height by 10% from the end of the bar to the middle of the bar. A time dependent load is applied to the ends of the bar.

Time = 32

$$\varepsilon_{\rm p}$$
 = .05

Time = 48

$$\varepsilon_{\rm p}$$
 = .075

Time = 64

$$\varepsilon_{\rm p}$$
 = .100

Plastic flow begins at $\varepsilon = \delta L/L = .01$

13 b) Ball-Plate Fragmentation Ball-Plate Penetration with Particles

-70 < x < +70; v = 1, 2, 4, 8

Pair potential MD

-100 < x < +100; v = 1/4, 1/2, 1, 2

MD + embedded-atom & strength

-60 < x < +60; t = 4, 12, 20

SPAM

13 b) Ball-Plate Fragmentation Ball-plate Penetration with Finite Elements

$$V_0=1/4$$
; $\varepsilon_f = (1.0, 2.0)$

$$\varepsilon_{\rm p} < \varepsilon_{\rm f} = 1.0, \, {\rm v_0} = 1/4$$

$$\varepsilon_{\rm p} < \varepsilon_{\rm f} = 2.0, \, {\rm v}_{\rm 0} = 1/4$$

$$V_0 = 1/2$$
; $\epsilon_f = 1.0$

$$\varepsilon_{\rm p} < \varepsilon_{\rm f} = 1.0, \, {\rm v_0} = 1/2$$

For the lower velocity (left) the ball bounces back, but leaves a permanent deformation. For the higher velocity the ball breaks through the plate.

Conclusion – SPAM Is a Transparent, Pedagogical Particle Method for Simulating Continuum Dynamics

> SPAM is useful for modeling continuum mechanics

Algorithm is transparent to program & easier to debug; Algorithm avoids mesh tangling that stops mesh-based calculations; Rezoning is easy.

Various deficiencies have been cured

Density-gradient potential for lattice surfaces; String phases cured with core potentials; Density-curvature potential for strength.