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1. Continuum Theory :
Microscopic versus Macroscopic Material Descriptions

Microscopic Description Macroscopic Description
Atomistic length & time scales Laboratory length & time scales
o
L~ A L ~ cm or meters
t ~ ps-ms (vibrational t ~ ms or seconds

frequencies)

Material flow or solid deformation
Follow atomic motion with > satisfy partial differential

ordinary 7 (ODYNAMICS i | equations
differential equations s - ~

& e
‘ g;)rtmiytalﬂonal Specify constitutive relations for
- atistica -
Specify force laws ~ Mechanics . the materials

for atoms
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1. Continuum Theory:
Continuity Equation - Conservation Law for Mass

Lagrangian description follows the motion of material points:

V(O)iett| dx(0) [V(O)right V(dt)ert| ~— dx(dt) V(dt)rignt

X(O0)seft X(O)rignt X(dt)iert X(dt)right

Xright = Xright + vdt + dTX(aVIaX)t dt

Xiett —> Xiett + VIt — ‘3'7"(av/ax)t dt

dx(0) — dx(0)[1+ (ov/ox), dt] = dx(dt)
dx(dt) - dx(0) _, d(indx) __dinp _ov
dtdx(0) dt dt ox




1.Continuum Theory:
Lagrangian Equations, Pressure, Heat Flux

p=-pPV-V

pv=-V-P

pe=-Vv:P-V-Q
with

P=P(p,e,?);Q=Q(p,e,?).




1. Continuum Theory
Equilibrium Fluid Constitutive Equations

Mechanical equation of state (adiabatic and isothermal):
2

P8, (7 -7

Thermal equation of state and Mechanical equation of state:

E =NDKT/2; PV=NkT=%E

Heat capacity and compressibility:

dE/dT, _>0; —1/V(@V/oP). >0

Van der Waals’ :

NKkT N’a DNKT N’a
P= —-——; E= —
V-Nb V 2 V



1. Continuum Theory
Nonequilibrium Constitutive Relations

» Nonequilibrium dissipation: viscosity, conductivity, plasticity, ...
» Fourier’s law:

Q=—-«VT.
> Newton’s formulation of shear stress > Oy =0
symmetrized stress tensor : > = AH/H
c=o 4MV-VAIVW W] e =
O H o,
L £ =ALIL

n,=n+A in2d;n =4n+A in3d.

E =Gxx'f Exx V= _‘EW" Exx
» Use von Mises shear stress condition for plasticity :

(6, —c,) +4c, <Y'in2d.



2. a) Numerical Solution Methods
Finite-Elements (DYNA3D and ParaDyn)

Use space-filling volumes to approximate the continuum:
» 8-Node brick has isoparametric velocity interpolation for strain rates:

8 7

4@6 v(x,y,z)=a +a,x+ay+a,z

1 2 +a5xy+a6yz+a7zx+a8xyz

» 4-Node shell elements are two-dimensional. They have a thickness 6
and various underlying through-the-thickness integration schemes.

4 3 _
SD v(x,y)=a +ax+a,y+a,xy

1 2

» Calculate pressure, energy, stress by integrating over elements (for
example, nodal strain/strain rates, element integration - stresses)

Lin, DYNA3D, UCRL-MA-107254 & Hoover, et alii, ParaDyn, UCRL-MA-140943
from Methods Development Group, Lawrence Livermore National Laboratory .
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2. b) Numerical Solution Methods
Particle Methods — Motivation & Example

History
Smooth particles used for astrophysics problems :
Gingold, Lucy, and Monaghan - 1977
Smooth particles applied to fluids and solids (~1990)

Motivation
Fluids and solids satisfy the same motion equations
No element integration
No mesh tangling for flow problems
Material failure is simple with Lagrangian particles
Applications in many fields (heat conduction, electricity &
magnetism, fluid structure interaction, fragmentation, ...)

Simplify! Simplify! Simplify!
(Thoreau)




High Pressure Die Casting Experiment/Simulation
Ha, Cleary, Alguine & Nguyen@http://www.cmis.csiro.au/cfd/sph/

Experiment

52000 SPAM particles




3. Spatial Interpolation and Gradients
Particles of Finite Extent Represent the Continuum .

Particles with an extent h represent a continuum.
The particle weight function, w, as well as its first two

spatial derivatives are continuous.
0.3 ,

Lucy’s w

0.1

........... Monaghan’s w




3. Spatial Interpolation and Gradients
Monaghan and Lucy weight functions in 2 dimensions

W Luey (r <h)=(5/9zh?)[1+3(r/h)][1-(r/h)]?

w is normalized and w, w', w” vanish atr = h = 3.
—> w_ o [1+n(r/h)][1-(r/h)]"

nan

1.0

2 2 3 r 1
wMonaghan = (40/77h”)[1-6(r/h)” +6(r/h)"] for0<ﬁ<§
_ (80/7rh® Y- (r/h for N+ <F <1

WMonaghan = ( nh™)[1-(r/h)]" for 2<h°<




3. Spatial Interpolation and Gradients
Density interpolation converges with ~ 20 neighbors

Zw(|r—r D5 In-r|<h.

» Good estimate for partlcle smoothing length comes from the
summed up densities at regular lattice sites .

> 2D square and triangular lattices with 1.025

h>3,
lead to errors less than 1% for both 1.015
weight functions . 0

> Continuum variables & derivatives 1009 ‘

(at any point in space) are particle

sums . 0.995 | |
1.8 2.8 3.8 4.8




4. Spatial Interpolation and Gradients
Interpolation for Variables/Gradients Use Particle Sums

» Continuum variables & gradients :
r,v,e, Pxx, ny, Pyy, Qx, Qy, Vv, VT, V- Q, V-P.

» Use weighted sums of particle variables for interpolation :

pf(r) =2 fw(lr-r); p, =2 w(r-r);
V(pf), = 2.fV w(lr-r ).

> Other powers or functions of density can be used, e. g.,

f(r) =3 (F/p),w(l T =1, ]);

fir)ip = X(F/p*)w(lr-r,]).



4. SPAM versions of the ODEs
Spatial interpolation - Ordinary Differential Equations

Py =2V, =V))-Vw, orp =3 w,;
J

J

v, ==X [(P/p") +(P/p*);]- VW, ;

& =-2[P/p°) +(P/p*)]: J(v,~V)Viw,
_Z[(lez)i +(le2)j] VW .

Time integration with 4t" Order Runge-Kutta .



5. Runge-Kutta Time Integration (Fourth Order)

f=v; v, =-YI[P/p’),+(P/p’)]-Vw,.

Compute r,v by averaging 4 values of derivatives t = {0, dt/2, dt} :
r(dt) =r(0) + (v, +2v, + 2v, +V,);

v(dt) = v(0) + 9t (a, + 2a, + 2a, +a,).

r,=r(0); r,=v,=v(0); v,=a,r);

rz(%) =T +%V1 : Vz(%) =Vy +%a1 ; A, =V, ;
(GH=r+9v,; v,(GH=v,+%a,; a, =v,;
r,(dt)=r, +v.dt; v, (dt)=v,+a,dt.




6. Molecular Dynamics Analogs
Trajectory Isomophisms

» Two interesting cases of trajectory isomorphisms
occur with SPAM and molecular dynamics .

Lucy fluid For P= p2 /2  trajectories are the same if
wjj spam — (Dij md.

Embedded- For P= p3 — p(,p2 trajectories are the same if
atom fluid

@ =35 ——1)

j 2

» Lucy fluid is used for the free expansion problem .
» Embedded atom can be used for structural relaxation
and the collapsing water column .



7. Mesh Generation & Boundary Conditions

Meshes for Irregular Shapes and Lattices

» Use viscous relaxation techniques from molecular dynamics .
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> Test lattice structures for stability > Use density curvature potential .

» Select surface treatment using surface tension or Z(Vp)2 potential .
j




7. Mesh Generation & Boundary Conditions

Free, Periodic, Rigid & Mirror Boundaries

Free

Periodic |

Rigid

Mirror




8. Maladies and Cures
Lattices with e(p) are typically unstable!

Two-dimensional MD lattices with the usual pair potentials are stable .

SPAM/MD lattices with the following density-dependent internal/potential
energy are typically NOT stable for any simple two dimensional lattice .

1 2
e, =5 (p;—p, ) — P =p?(de/dp)=p?(p-p,)
2,
(Dp EZ(pj_po) ,P=ZWij
J J
These lattices do not have any shear resistance and melt :

0 #0;

Particle sum estimates are misleading: G~ VZe(p) ~ 1
7nh

Evaluation of the elastic constants: G=C,, =0!

Hoover et ux, Physical Review E 73, 01672 (2006) .

Density-gradient potentials provide surface tension. An invariant
curvature potential provides elastic shear strength, G> 0.




8. Maladies and Cures
Invariant Curvature Potential Cures Lattice Instability
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Particle trajectories in a two-dimensional hexagonal lattice. Initial particle
displacements were chosen randomly with zero sum. Lattice is unstable
(left) and is stabilized (right) by adding the invariant curvature potential .

2,

(I) = ( pxx _pyy)2 +4(pxy) J

P =0°plox*,p,, =08°ploy*®,p,, =0°ploxdy.



8. Maladies and Cures
String Phases Are Cured with Core Potentials

A relaxed periodic structure with an embedded atom equation
of state, using Lucy’s weight function with h = 3.5. The cure for
the string formation is to add a core potential so that particles
cannot get too close .




8. Maladies and Cures
Tensile Instability

» Kinetic energy growth in an -10
isotropic solid under uniform tension. 45| g
In[K(time)]
The kinetic energy of a single particle <t /
moving slowly (~ 10-8 or smaller) will -25 .
increase exponentially at a time longer 30 .
than the inverse Einstein frequency . -

0<time<100
> Three useful cures :

1. Add von Neumann-Richtmyer artificial viscosity ;
2. Introduce a repulsive core potential ;
3. Modify the relationship between r and v (Monaghan) :

Wij
j Pi
Pij = +/PiP; OF P;; = *1z(pi +pj)'

Swegle, Hicks, Attaway, Journal of Computational Physics 116, 123-134 (1995) .

r=v-or=v,+>(v,-v,)




9. SPAM Results: Free Expansion of 16,384 particles:

T is the time relative to the sound traversal time . Light regions are above
the average and dark regions are below the average .

Particle motion

Density

Kinetic energy

Hoover, Posch, Physical Review E 59, 1770-1776 (1999) .
Hoover, Posch, Castillo, et ux, Journal of Statistical Physics, 100, Nos. 1/2, (2000) .



10. Parallel Techniques for Fluids and Solids
Eulerian Grid of Particle-Cells > Processors

» Two forms of parallel are “shared memory” and “message-passing .

» Must use message-passing for large problems .

» Message-passing is more efficient, works for larger problems, but
is much more difficult to program .

Message-passing technique Four-processor parallel computer

=) 1L




10. Parallel Techniques
Efficiency, Scalability & Message-Passing

> Communication time reduces parallel efficiency

s=1 /1, =Nn<N=Nn

ideal

- IBM

Meiko Dual
Processor

Speed

128 processors
-~

Log Processor Number

» Message-passing involves detailed lists tracking cells/particles
In processors .




10. Parallel Techniques
Create Subdomains from Optimized Cuts of Graphs

» Goal: Domain split into subdomains . Subdomain - processor.
» Method: Convert domain - weighted graph :

cells = vertices
cellconnectivity = lines

» Optimized cuts of graphs are partitions (subdomains) .

Method by Karypis and Kumar + free software :
http:/lwww.cs.umn.edu/~metis/

Particles Graph with
indx~h connected cells

Vertex weights oc processor work time
Line weights oc communication time




10. Parallel Techniques
Example: Dynamically Partitioned Free Expansion

Repartition at any time during the calculation when
there is a load imbalance .

25 <(Xx,y ) <+25




10. Parallel Techniques
Example: Dynamically Partitioning Crushed Sheet

This complex surface folding leads to arbitrary “self contact” .
This is a hard problem on single processor computers !!




10. Parallel Techniques
Example: Partitioned “Nut-Bolt” Mesh and Interface

* Treat the surfaces as The outer cylinder rotates

a separate partition ; around the inner cylinder. o
1w

+ For many surfaces, o -

distribute them among i -

several processors . : a
g B

« Surface partition is
computed only once
for this problem .




11. Collapsing water column with gravity
N = 640, 2560, 10,240 particles

640

2560

10,240

t10240 = 2to560 = 4540
Uses @,, D, e < Z(Vp)jz. , D
i

core "




11.Collapsing water column with gravity

Tensile regions — SPAM and Finite Elements

640 particles 2560 particles 10,240 particles
WxH = 80x64 elements
dy = 2dx = 1 r— Relaxation
t=0

Cavitation model :
P>P.,2>P=P,

Collapse




12. Rayleigh-Bénard Flow (Gravity & T gradient)
Finite-Difference (left) & Smooth Particles (right)

Velocity
\ Gravity
N\
Density §
Sty =0.5
Temperature
=——T=-15

4
Rolls form for R, = gL(dInT/dy) & 5000 smooth particles

vD;
Kum, Hoover, & Posch, PRE 52, 4899-4908 (1995) .




13. a) Tension Test with Particles
Pair ® MD, core @, density-gradient ® & strength

> External forces applied to the +1
interior of a tension specimen; ———=
» Initially tapered bar . F(x)/ oF (t)
0
» Three tension-test particle simulations : : 0<x/lL<1

-60 < X < +60 ; t = 620, 624, 628 .70 <x < +70 ; t = 375, 625, 875 .70 < x < +70 ; t = 10000, 15000, 20000

_ _ ] SPAM-like MD:
Pair-potential MD SPAM + core potential core + Z(VP)Z + strength
i



13 a) Tension Test with DYNA3D

Finite-Element Simulation of Tension Test

A tapered bar is created with elements reduced in height by 10% from the
end of the bar to the middle of the bar. A time dependent load is applied
to the ends of the bar.

&

Time = 32 Time =48 Time =64

e.=.05 €, = .075 €, = 100

Plastic flow begins at ¢ = 6L/L = .01




13 b) Ball-Plate Fragmentation
Ball-Plate Penetration with Particles

710<x<+70;v=1,2,4,8

Pair potential MD

-60<x<+60;t=4,12, 20

SPAM

-100 <x<+100;v=1/4,1/2,1,2

MD + embedded-atom & strength



13 b) Ball-Plate Fragmentation
Ball-plate Penetration with Finite Elements

V,=1/4 ; &, = (1.0, 2.0) Vo=1/2;5=1.0

Sp < &= 10, Vo = 1/4 e A A

HH

R
s

e, <& =1.0,vy,=1/2

e, <& =2.0,v,=1/4

For the lower velocity (left) the ball bounces back, but leaves a permanent
deformation . For the higher velocity the ball breaks through the plate .



Conclusion — SPAM Is a Transparent, Pedagogical
Particle Method for Simulating Continuum Dynamics

» SPAM is useful for modeling continuum mechanics

Algorithm is transparent to program & easier to debug ;
Algorithm avoids mesh tangling that stops mesh-based
calculations ;

Rezoning is easy .

» Various deficiencies have been cured

Density-gradient potential for lattice surfaces ;
String phases cured with core potentials ;
Density-curvature potential for strength .




