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Physical Basis and Assumptions

1. Kinetic Theory - Temperature

2. Particle Dynamics - Pressure

3. Runge-Kutta > Solutions

4 F,+F;+F.+Fy >
Nonequilibrium States

Some Nonequilibrium state properties :
{Vp, Vv, Ve, VT, Ve P, Ve(}.



Analysis from Kinetic Theory

Ildeal Gas Thermometer

Temperature
Is just the

comoving
Kinetic
Energy .




ldeal-Gas Temperature
from Kinetic Theory

dv/dt o. - T'v
dK/dt o + I (3kT/2) — K(v) ]

Temperature is just the

comoving kinetic energy .




Pressure is Momentum Flux

Gibbs’ Statistical Mechanics, e LA o
and Newton’s Dynamics, give ’
the same virial expression .

e AVDIKE - go-HikTgnd P = —(CA/0V)t
p=mi=F= PV =2.(rF); + Z(pp/m);




Pressure is Momentum Flux

PXXV =< le (XZF/r)ij + Zl(mXX)l >

Flux in x direction intersecting
the element oy from particle pairs:
X::0y
P¢8y = ) Fi'
L,L,
Probability of a particle with x-

velocity component intersecting
the element oy during time ot:

P otoy = OO my

xLy



Molecular Dynamics Algorithms

Equations of Motion are either first-order or
second-order ordinary differential equations based
on the ideas of Newton, Lagrange, and Hamilton .
Key concepts are conservation and constraints .

4, Pj Or 1d;

«—Fc=—cp—>

i%

mi=mv=FK, + g +FK- +Fp



Rogues’ Gallery of Thermostaters




2. Molecular Dynamics Algorithms

The Fourth-Order Runge-Kutta is the
Simplest and most flexible algorithm .

Nonequilibrium Flows can be induced with
Boundary, Constraint, or Driving Forces .

mi =mv =F, +Fg +F- +Fp

[ Thermostats, Barostats, Strain Rates ]



Runge-Kutta Errors are Small
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Eight-particle Harmonic Chain
[ it has an analytic solution . ]

le = K[Xi+1 — Xi — d] + K[Xi_l — Xi + d]

— Xl :Xi+1 _2Xi +Xi—1 —> 0 :2Sin(k/2)

Errors in the Total Energy are shown for
At = 0.01, 0.02, 0.04, 0.08, 0.16, 0.32.



2. Molecular Dynamics Simulations

Nonequilibrium Flows can be induced
By using Spemal Initial Conditions .
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Typical Work Station Simulation with N = 10,000
Uniaxial Expansion after 10% Compression

Molecular Dynamics Fracture
b(r)=(2-r")° -2(2-r")*



3. Goals of the Work

The Past :

Gibbs’ and Boltzmann’s Statistical Mechanics
Green and Kubo’s 1950s Transport Theory

The Present:
The Second Law of Thermodynamics
Eulerian and Lagrangian Continuum Mechanics
Flow, Fracture, and Failure

The Future :

Quantum Dynamics




3. '
Fourier, Newton, and Fick

Q=—x«xVT

A Gk

[Peq AV e vII —n[VV +Vv']

J=—-DVp



3. Second Law of
Thermodynamics

Boltzmann: Entropy Increases (Dilute Gases) .
Kelvin: Work to Heat is ok. Not the reverse !
Clausius: Entropy Increases !

Loschmidt: But the Equations are Reversible !
Poincaré: But the Initial Conditions Recur!



3. Eulerian and Lagrangian
Continuum Mechanics

R 250;:1‘
< - co,;nﬂmm-wmm : e e
D, ey Needs: Initial Conditions ,
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i teonear3i0EPA Boundary Conditions,

Constitutive Equations,
and an Algorithm .

W00




4. Examples > Conclusions

Free Expansion
- Entropy from Fluctuations .

Shockwave Structure and Viscosity
—> Scale, Nonlinearity, Even a sign error!

¢* Model for Heat Conductivity

- Thermostats, Fractals, Dimensionality Loss .

SPAM [Smooth Particle Applied Mechanics]

- Continuum Mechanics with Particles !



Free Expansion of 16,384 Particles

The Gibbs’ Paradox Entropy,
AS = Nkin4 ,
can be traced to fluctuations .




Comoving and Lab Frame Entropies




Navier-Stokes vs Molecular Dynamics

Navier-Stokes
Shockwidths

are too Narrow

for Strong Shocks
( Linear ) transport
Coefficients

are too Small! -

Weak Shocks
are the same.




50% Compression with

a Strong Shockwave
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['IG. 1. Snapshot of the 12 960-particle shock wave simulation

This shockwave has quite an
interesting temperature profile !



12,960-Particle Shock Profiles
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Flagrant Violation of Fourier’s Law !




Conductivity of a ¢* System

Travis/BragalJepps kT, =<(V,H)’>/<(V.H)>
Kinetic Theory kT =<(V,H)* >/ <(V;H)>

0.20

In two Dimensions
0.15 there can be a

Substantial *
0.10 Dimensionality Loss !

0 200 400

* Europhysics Letters (2002) ; Sg;,,c 2 minus infinity !



Heat Conduction in 2D ¢* Slab

Newon = ¥ & 14 + Y (r[-1)?/2.

sites

Hoover, Aoki,
Hoover, and
De Groot
Physica D
(2004)

Four COLD Particles + Four HOT Particles



¢* > Dimensionality Reduction

Thermostated Equations of Motion -

%=—%=+Zgi=—2ki=%>0:>

[f > wand ® —» 0]

®1 /®1 — }\«1

®2 /®2 — }\.1 + )\«2
Details follows from the : _
“Lyapunov Spectrum” B3 /@3 =Ar+Ay+Az
and imply the Second Law XX

Of Thermodynamics .

®# /®# — Zi)\'i



Lyapunov Spectrum for N=32

Symmetry Breaking, for a Lennard-Jones Fluid * .

Time-Reversible Dynamics
Dissipative, dS/dt > 0.
Zero Phase Volume
Multifractal Attractor
( with AD ~10)

Thermostated Color Conductivity
16 Particles Pushed to the Right
16 Particles Pushed to the Left.

* Posch and Hoover (1987) .



Generic Nonequilibrium Phase Space Flow
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SPAM - Continuum Mechanics

Particles can be used to solve Continuum Problems !

For Density p use Particle-centered weight functions .
The Equations of Motion mimic Molecular Dynamics .

p(r)=2mw,; =

Vi =—Z[(P/p%); +(P/p?);|e Viw;
fromv=-Ve(P/p)—(P/p*)eVp.
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5. Some Flies in the Ointment

Nonlinearity :
In strong shockwaves heat flows the “wrong” way .
In strong shockwaves the viscosity is increased .

The shockwave problem is well suited to investigation
because the boundary conditions are equilibrium states .

Rotation :

The evolution of stress (Jaumann stress) is a classic
Difficulty in Continuum Mechanics. There is an analog
In judging what “comoving” ( corotating ? ) means in
Nonequilibrium Molecular Dynamics’ shear flows .



5. Fracture, Failure, Damage

Reliable Formulations of Failure Needed* .
Energy, stress, plastic strain are usable .
Fluid & Solid models are easy to validate .

. I

* New Surfaces, Porosity, Texture, Shearbands, Ductile versus Brittle .




5. Quantum Dynamics

There is much to do, but with a few clues:
Hard spheres appear bigger, by A .

Thermodynamics in powers of h , which
led to the configurational T expression.

* Bernard Jancovici, Physical Review (1969) ;
Bhuduri, van Dijk, Srivastava, 13 July 2006 arXiv .



Some Useful Reference Books
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