Nonequilibrium Statistical Mechanics The Facts and Fundamentals*

Wm G Hoover & Carol G Hoover Ruby Valley Research Institute, Nevada http://williamhoover.info

- 1. Physical Basis and Assumptions.
- 2. Numerical and Algorithmic Methods.
- 3. Goals of the Work.
- 4. Examples → Conclusions .
- 5. Remaining Problems.

* For Billy Todd @ Swinburne University

Overview of California and Nevada

Ruby Valley

Ruby Valley Neighbors

Local Ruby Valley Industry

Nonequilibrium Statistical Mechanics the Facts and Fundamental

Wm G Hoover & Carol G Hoover @ **Centre for Molecular Simulation** Swinburne University of Technology

1. Physical Basis and Assumptions

Physical Basis and Assumptions

- 1. Kinetic Theory → Temperature
- 2. Particle Dynamics → Pressure
- 3. Runge-Kutta → Solutions
- 4. $F_A + F_B + F_C + F_D \rightarrow$ Nonequilibrium States

Some Nonequilibrium state properties:

$$\{ \nabla \rho, \nabla v, \nabla e, \nabla T, \nabla \cdot P, \nabla \cdot Q \}.$$

Analysis from Kinetic Theory

Ideal Gas Thermometer

Temperature is just the comoving Kinetic Energy.

Ideal-Gas Temperature from Kinetic Theory

$$dv/dt \alpha - \Gamma v$$

 $dK/dt \alpha + \Gamma[(3kT/2) - K(v)]$

Temperature is just the comoving kinetic energy.

Pressure is Momentum Flux

Gibbs' Statistical Mechanics, and Newton's Dynamics, give the *same* virial expression.

$$e^{-A(V,T)/kT} \equiv \Sigma e^{-H/kT}$$
 and $P = -(\partial A/\partial V)_T$
 $\dot{p} = m\ddot{r} = F \Rightarrow PV = \Sigma_i (rF)_i + \Sigma (pp/m)_i$

Pressure is Momentum Flux

$$P_{xx}V = \langle \Sigma_{ij}(x^2F/r)_{ij} + \Sigma_i(m\dot{x}\dot{x})_i \rangle$$

$$P_{\phi} \delta y = \frac{x_{ij} \delta y}{L_x L_y} F_{ij}$$

Probability of a particle with x-velocity component intersecting the element δy during time δt :

$$P_K \delta t \delta y = \frac{\dot{x} \delta t \delta y}{L_x L_y} mv$$

Molecular Dynamics Algorithms

Equations of Motion are either first-order or second-order ordinary differential equations based on the ideas of Newton, Lagrange, and Hamilton. Key concepts are conservation and constraints.

$$\{\dot{q},\dot{p}\}$$
 or $\{\ddot{q}\}$

$$\leftarrow$$
 $\mathbf{F_C} = -\varsigma \mathbf{p} \rightarrow$

$$m\ddot{r} = m\dot{v} = F_A + F_B + F_C + F_D$$

Rogues' Gallery of Thermostaters

2. Molecular Dynamics Algorithms

The Fourth-Order Runge-Kutta is the Simplest and most flexible algorithm.

Nonequilibrium Flows can be induced with Boundary, Constraint, or Driving Forces.

$$m\ddot{r} = m\dot{v} = F_A + F_B + F_C + F_D$$

[Thermostats, Barostats, Strain Rates]

Runge-Kutta Errors are Small

Eight-particle Harmonic Chain [it has an analytic solution .]

$$m\ddot{x}_{i} = \kappa[x_{i+1} - x_{i} - d] + \kappa[x_{i-1} - x_{i} + d]$$

$$\Rightarrow \ddot{x}_{i} = x_{i+1} - 2x_{i} + x_{i-1} \Rightarrow \omega = 2\sin(k/2)$$

Errors in the Total Energy are shown for $\Delta t = 0.01, 0.02, 0.04, 0.08, 0.16, 0.32$.

2. Molecular Dynamics Simulations

Nonequilibrium Flows can be induced By using Special Initial Conditions.

Simulating Radiation Damage to Copper With ~500 Atoms.

Typical Work Station Simulation with N = 10,000 Uniaxial Expansion after 10% Compression

Molecular Dynamics Fracture $\phi(r) = (2 - r^2)^8 - 2(2 - r^2)^4$

3. Goals of the Work

The Past:

Gibbs' and Boltzmann's Statistical Mechanics Green and Kubo's 1950s Transport Theory

The Present:

The Second Law of Thermodynamics
Eulerian and Lagrangian Continuum Mechanics
Flow, Fracture, and Failure

The Future:

Quantum Dynamics

3. Fourier, Newton, and Fick

$$\mathbf{Q} = -\kappa \nabla \mathbf{T}$$

$$\mathbf{P} = [\mathbf{P}_{eq} - \lambda \nabla \bullet \mathbf{v}]\mathbf{I} - \eta[\nabla \mathbf{v} + \nabla \mathbf{v}^{t}]$$

$$\mathbf{J} = -\mathbf{D}\nabla \mathbf{\rho}$$

3. Second Law of Thermodynamics

VS

Boltzmann: Entropy Increases (Dilute Gases).

Kelvin: Work to Heat is ok. Not the reverse!

Clausius: Entropy Increases!

Loschmidt: But the Equations are Reversible!

Poincaré: But the Initial Conditions Recur!

3. Eulerian and Lagrangian Continuum Mechanics

Needs: Initial Conditions,
Boundary Conditions,
Constitutive Equations,
and an Algorithm.

$$\dot{\rho} = -\rho \nabla \bullet \mathbf{v}$$

$$\rho \dot{\mathbf{v}} = -\nabla \bullet \mathbf{P} \equiv \nabla \bullet \sigma$$

$$\rho \dot{\mathbf{e}} = -\nabla \mathbf{v} : \mathbf{P} - \nabla \bullet \mathbf{Q}$$

4. Examples → Conclusions

Free Expansion

→ Entropy from Fluctuations.

Shockwave Structure and Viscosity

→ Scale, Nonlinearity, Even a sign error!

φ⁴ Model for Heat Conductivity

→ Thermostats, Fractals, Dimensionality Loss.

SPAM [Smooth Particle Applied Mechanics]

→ Continuum Mechanics with Particles!

Free Expansion of 16,384 Particles

The Gibbs' Paradox Entropy,

△S = NkIn4,

can be traced to fluctuations.

Comoving and Lab Frame Entropies

Navier-Stokes vs Molecular Dynamics

Navier-Stokes
Shockwidths
are too Narrow
for Strong Shocks
(Linear) transport
Coefficients
are too Small!

50% Compression with a Strong Shockwave

FIG. 1. Snapshot of the 12 960-particle shock wave simulation

This shockwave has quite an interesting temperature profile!

12,960-Particle Shock Profiles

Flagrant Violation of Fourier's Law!

Conductivity of a \$\phi^4\$ System

Travis/Braga/Jepps $kT_{LL} \equiv <(\nabla_q H)^2 > / <(\nabla_q^2 H) >$ Kinetic Theory $kT_{IG} \equiv <(\nabla_p H)^2 > / <(\nabla_p^2 H) >$

In two Dimensions there can be a Substantial *
Dimensionality Loss!

* Europhysics Letters (2002); S_{Gibbs} → minus infinity!

Heat Conduction in 2D \$\phi^4\$ Slab

$$\Phi_{\text{Newton}} = \sum_{\text{sites}} \delta^4 / 4 + \sum_{\text{pairs}} (|\mathbf{r}| - 1)^2 / 2.$$

Hoover, Aoki, Hoover, and De Groot Physica D (2004)

Four COLD Particles + Four HOT Particles

φ⁴ → Dimensionality Reduction

Thermostated Equations of Motion →

$$\dot{f}_{f} = -\dot{\otimes}_{\otimes} = +\Sigma\varsigma_{i} = -\Sigma\lambda_{i} = \dot{S}_{k} > 0 \Rightarrow$$

 $[f \rightarrow \infty \text{ and } \otimes \rightarrow 0]!$

Details follows from the "Lyapunov Spectrum" and imply the Second Law Of Thermodynamics.

$$\dot{\otimes}_{1} / \otimes_{1} = \lambda_{1}$$

$$\dot{\otimes}_{2} / \otimes_{2} = \lambda_{1} + \lambda_{2}$$

$$\dot{\otimes}_{3} / \otimes_{3} = \lambda_{1} + \lambda_{2} + \lambda_{3}$$

$$\bullet \bullet \bullet$$

$$\dot{\otimes}_{\#} / \otimes_{\#} = \Sigma_{i} \lambda_{i}$$

Lyapunov Spectrum for N=32

Symmetry Breaking, for a Lennard-Jones Fluid * .

Time-Reversible Dynamics
Dissipative, dS/dt > 0.

Zero Phase Volume

Multifractal Attractor
(with △D ~ 10)

Thermostated Color Conductivity
16 Particles Pushed to the Right
16 Particles Pushed to the Left.

* Posch and Hoover (1987).

Generic Nonequilibrium Phase Space Flow

SPAM → Continuum Mechanics

Particles can be used to solve Continuum Problems! For Density ρ use Particle-centered weight functions. The Equations of Motion mimic Molecular Dynamics.

$$\begin{split} & \rho(r) = \Sigma_j m_j w_{rj} \Longrightarrow \\ & \dot{v}_i \equiv -\Sigma_j [(P/\rho^2)_i + (P/\rho^2)_j] \bullet \nabla_i w_{ij} \\ & \text{from } \dot{v} = -\nabla \bullet (P/\rho) - (P/\rho^2) \bullet \nabla \rho \;. \end{split}$$

Eulerian Continuum Mechanics Compared to SPAM [Particles]

5. Some Flies in the Ointment

Nonlinearity:

In strong shockwaves heat flows the "wrong" way . In strong shockwaves the viscosity is increased .

The shockwave problem is well suited to investigation because the boundary conditions are equilibrium states.

Rotation:

The evolution of stress (Jaumann stress) is a classic Difficulty in Continuum Mechanics. There is an analog In judging what "comoving" (corotating?) means in Nonequilibrium Molecular Dynamics' shear flows.

5. Fracture, Failure, Damage

Reliable Formulations of Failure Needed*. Energy, stress, plastic strain are usable. Fluid & Solid models are easy to validate.

^{*} New Surfaces, Porosity, Texture, Shearbands, Ductile versus Brittle.

5. Quantum Dynamics

There is much to do, but with a few clues: Hard spheres appear bigger, by λ .

Thermodynamics in powers of h, which led to the configurational T expression.

Transport is in fractional (!) powers of h * .

* Bernard Jancovici, Physical Review (1969); Bhuduri, van Dijk, Srivastava, 13 July 2006 arXiv.

Some Useful Reference Books

For a pdf file, go to www.williamhoover.info

For a comp copy, write hooverwilliam@yahoo.com