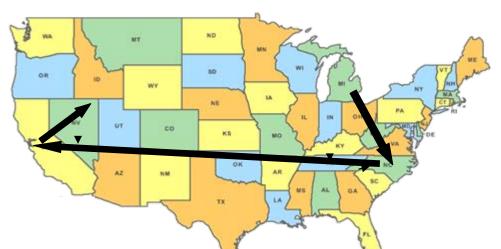
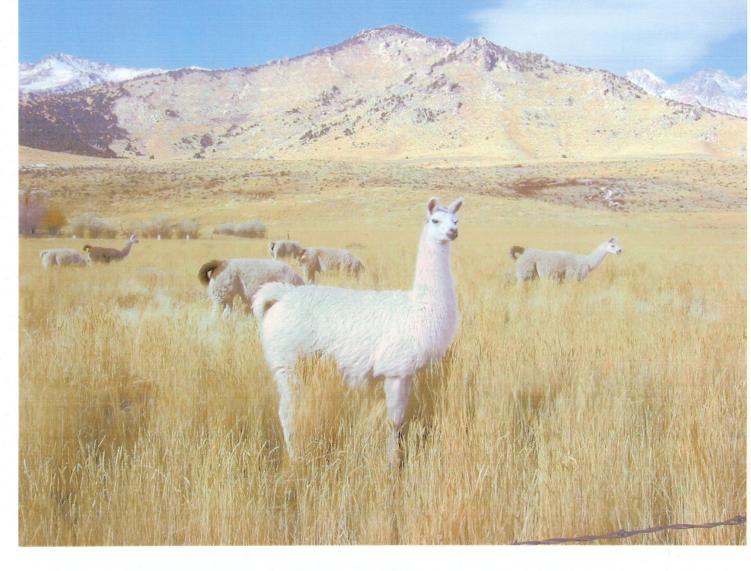
Squares, Cubes, Disks, Spheres

Wm G Hoover & Carol G Hoover [no longer at UCDavis & LLNL!]



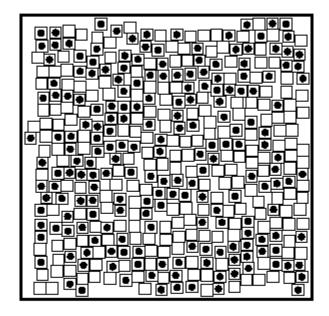
Ruby Valley Research Institute Highway Contract 60, Box 601 Ruby Valley 89833 Nevada USA

Ruby Valley Neighbors



Local Ruby Valley Industry

Hard Parallel Squares N = 400; V = 600



 $\phi(\mathbf{x},\mathbf{y}) = \phi(\mathbf{x}) \phi(\mathbf{y})$

so that

F(x,y) = F(x) or F(y)

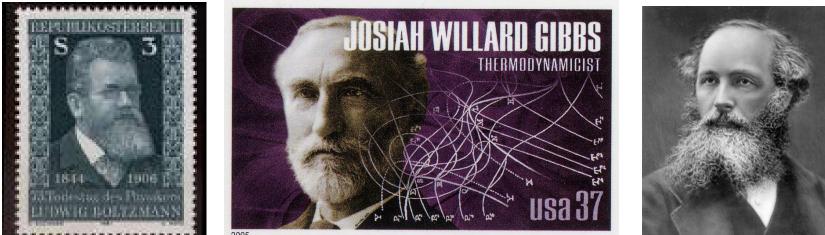
Squares, Cubes, Disks, and Spheres (1950s-2009) William G. Hoover and Carol G. Hoover Ruby Valley, Nevada, USA

- **1. Statistical Mechanics for Hard Squares/Cubes**
- 2. Low-Density Virial Equation of State
- 3. High-Density Free Volumes and Cell Models
- 4. Single-Speed Molecular Dynamics
- 5. Results versus Virial Series and Cell Models
- 6. Melting and the "Region of Confusion"
- 7. Entropy from Single-Occupancy Dynamics
- 8. Conclusions and Future Work

Statistical Mechanics Pioneers

Maxwell+Boltzmann \rightarrow Kinetic Theory, Temperature, and the Virial Theorem

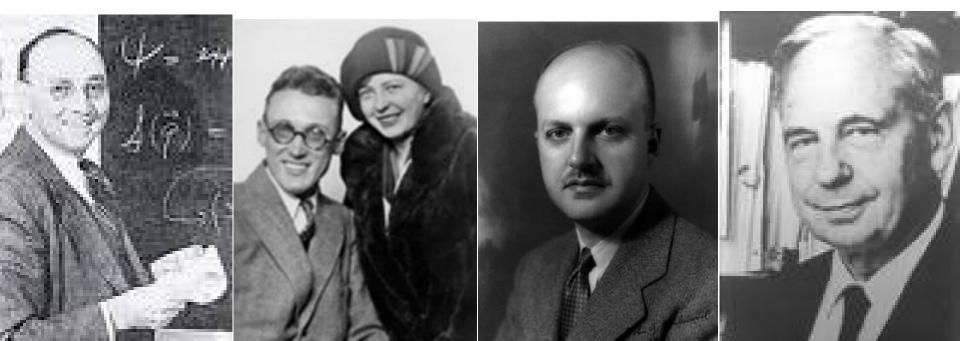
Gibbs → Statistical Mechanics, Partition Functions, and Distribution Functions



2005

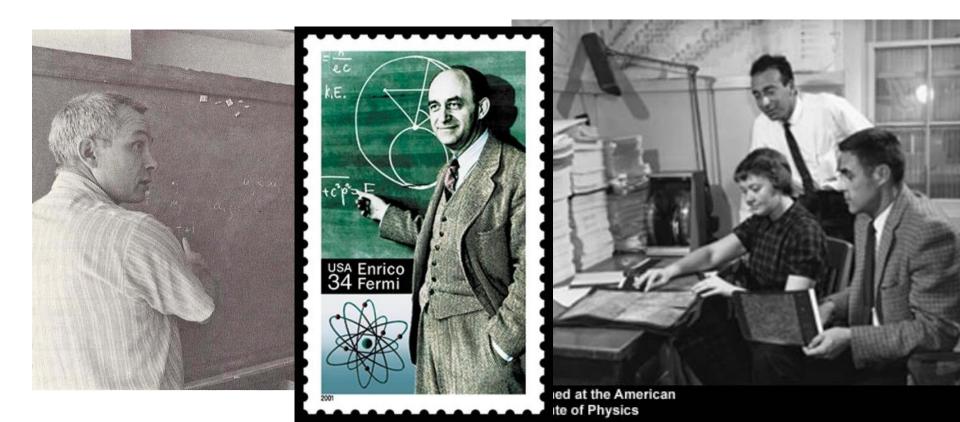
Virial Series and Cell Theories

- Mayers \rightarrow Virial Series from Gibbs' Q_N
- Eyring+Hirschfelder → Cell Models
- Kirkwood \rightarrow Single-Occupancy Q_N



Numerical Statistical Mechanics

- Wood+Jacobsen → Monte Carlo
- Alder+Wainwright → Molecular Dynamics



Squares, Cubes, Disks, and Spheres (1950s-2009) William G. Hoover and Carol G. Hoover Ruby Valley, Nevada, USA

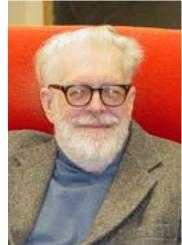
- 1956: Zwanzig corrects Geilikmann's work
- **1961: Hoover & De Rocco correct Zwanzig's**
- 1972: Frisch & Carlier find van der Waals
- 1972: Ree & Ree do not find van der Waals
- **1987: Woodcock studies percolation**
- 2005: Clisby & McCoy generate B₈ B₁₀
- 2009: Present Work (Single Speed MD)

1956 → Zwanzig's Idea

Use parallel hard cubes (or squares) to bound the properties of spheres (or disks).

PV/NkT = 1 + B₂ ρ + **B**₃ ρ ² + **B**₄ ρ ³ + **B**₅ ρ ⁴ + . . .

Where PV/NkT comes from $\partial \ln Q_N / \partial \ln V$



Mayers' Recipe \rightarrow B₂, B₃, B₄ ... B_N

$$B_{2}=-\frac{1}{2} \iiint_{-\infty}^{\infty} [\exp(-\phi_{12}/kT)-I] dx_{2} dy_{2} dz_{2} \equiv -\frac{1}{2} \int [\infty-\sigma] d\vec{r_{2}};$$

$$B_{3}=-\frac{1}{3} \iint [\bigwedge] d\vec{r_{2}} d\vec{r_{3}};$$

$$B_{4}=-\frac{1}{8} \iiint [3] + 6 \swarrow + 6 \swarrow + 10 \oiint + 60 \oiint + 30 \oiint + 30 \oiint + 30 \oiint + 10 \oiint + 15 \oiint + 10 \oiint + 60 \oiint + 30 \oiint + 30 \oiint + 30 \oiint + 10 \oiint + 15 \oiint + 10 \oiint + 10 \oiint + 60 \oiint + 30 \oiint + 30 \oiint + 10 \oiint + 10$$

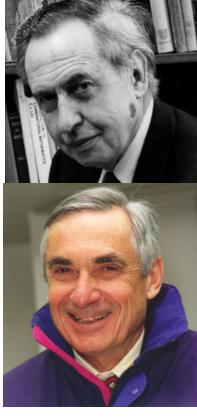
Ford & Uhlenbeck Catalog the Mayers' Diagrams through B₇

B₄ requires 3 integrals
B₅ requires 10 integrals
B₆ requires 56 integrals
B₇ requires 468 integrals

B_N requires 2^{N(N-1)/2}/N!

The integrals involve products of the Mayers' f-functions,

 $f = e^{-\phi/kT} - 1$



Scanned at the America Institute of Physics

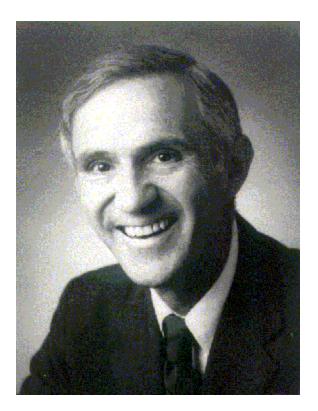
Evaluation is Easy for Cubes

Hoover & De Rocco calculated integrals: Both B_6 and B_7 are Negative for Cubes!

PV/NkT = 1 + 4ρ + **9**ρ² + **11.333**ρ³ + **3.160**ρ⁴ - **18.880**ρ⁵ - **43.503**ρ⁶

$$\approx \frac{[1+1.459\rho + 2.288\rho^2 + 0.915\rho^3]}{[1-2.541\rho + 3.450\rho^2 - 1.355\rho^3]}$$

[B₇ requires 468 integrals.]



Evaluation is Harder for Spheres Both B₆ and B₇ are Positive for Spheres! (Zwanzig's Idea was wrong.) Ree and Hoover's Simplification:

$$1 = e^{-\phi/kT} - (e^{-\phi/kT} - 1)$$

Made it possible to Compute B₁₀!

Number of Integrals Somewhat Reduced and Numerical Cancellation Greatly Reduced

$$B_{4} = -\frac{1}{8} \iiint [3\{ \mathcal{B} - 2 \mathcal{A} + \mathcal{A} \} + 6\{ \mathcal{A} - \mathcal{A} \} + \mathcal{A}] d\vec{r_{2}} d\vec{r_{3}} d\vec{r_{4}} = \\ = -\frac{1}{8} \iiint [-2 \mathcal{A} + 3 \mathcal{A}] d\vec{r_{2}} d\vec{r_{3}} d\vec{r_{4}};$$

$$B_{5} = -\frac{1}{30} \iiint [-6 \mathcal{A} + 45 \mathcal{A} - 60 \mathcal{A} + 10 \mathcal{A} + 12 \mathcal{A}] d\vec{r_{2}} d\vec{r_{3}} d\vec{r_{4}} d\vec{r_{5}}.$$

2006: Clisby/McCoy \rightarrow B₈ – B₁₀

Number of Integrals is now quite large:

B₁₀ requires 4,980,756 Monte Carlo integrals! [Instead of 9,743,542].

The Mayers' series appears to converge throughout the fluid phase with no convincing evidence for negative B_N for either hard disks or hard cubes and no sweeping generalizations.

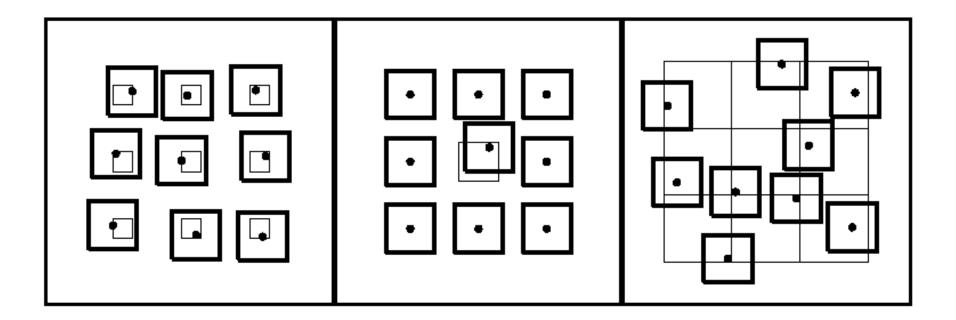
Free Volume & Cell Theories

- Because configurational properties are independent of mass why not look at a single very light "Wanderer" particle?
- Such a particle traces out a "Free Volume" in the "Cell" formed by its neighbors.

$$a_f \approx [(A/N)^{1/2} - 1]^2$$

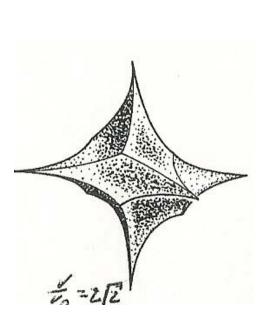
 $v_f \approx [(V/N)^{1/3} - 1]^3$

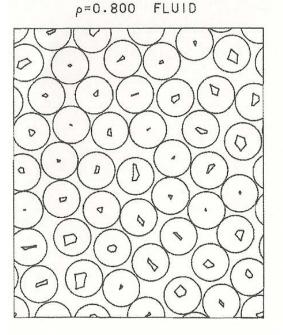
Three Useful Cell-Model Types:

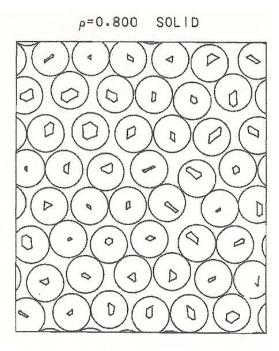


Consistent, Inconsistent, Single-Occupancy

What do Free Volumes Look Like?







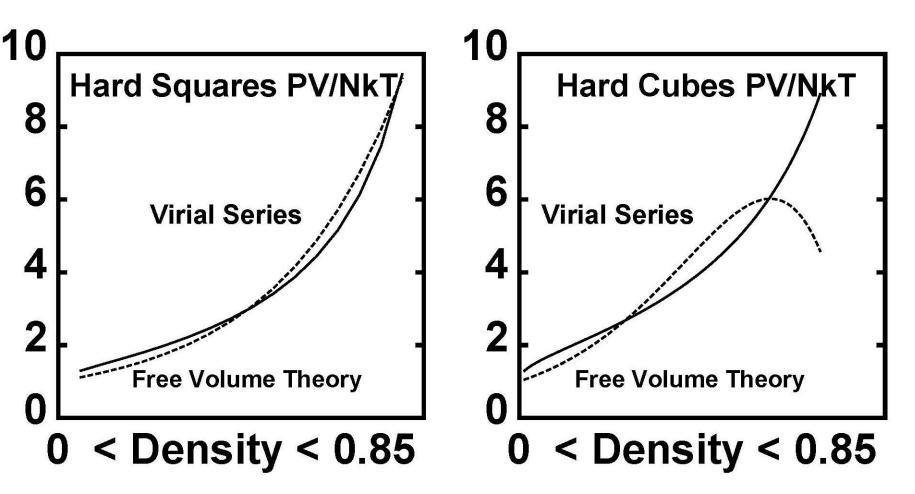
Hard Spheres J. Chem. Phys. (1951)

Hard Disks J. Chem. Phys. (1979)

Free-Volume Equation of State

- PV/NkT = $\partial \ln v_f / \partial \ln V = 1/[1 \rho^{1/D}]$ where D is the dimensionality of the system.
- This form follows from bounds on Q_N .
- Notice v_f is larger for solids than fluids!
- v_f has a percolation transition (extensive to intensive at the percolation density).

Two Theoretical Approaches to Pressure



Simplified Molecular Dynamics suggested by factorization of Q_N

Does Ergodicity Require Chaos, Mixing?

Pressure from Single-Speed Molecular Dynamics agrees well with pressure from Maxwell-Boltzmann Dynamics.

$$v = \{ \pm 1, \pm 1, \pm 1 \}$$

Perfect agreement with Woodcock (1987)

Single Speed Molecular Dynamics 10 10 Hard Cubes **Hard Squares** 8 8 PV/NkT for N = 400 PV/NkT for N = 216 6 6 Virial Series **Virial Series** 4 4 Free Volume Free Volume 2 2 0 < Density < 0.85 0 < Density < 0.85

Hard Cube Pressure from Collision Rate

$PV/NkT = 1 + B_2 \rho(\Gamma/\Gamma_0)$ $= 1 + \Sigma < r \cdot F >/DNkT$

Compute Γ_0 the Hard Way:

Relative speeds of $4^{1/2}$ **or** $8^{1/2}$ **or** $12^{1/2}$

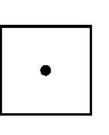
with complicated cross-sections

Compute Γ₀ the Easy Way: Relative velocity of -2 with simple cross-sections (same result, of course!)

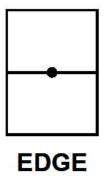
Simple versus Complicated

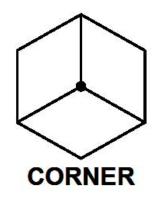
Cube Cross Sections the Hard Way

The Easy Way: Add Face Contributions, x + y + z



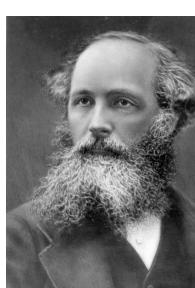
FACE



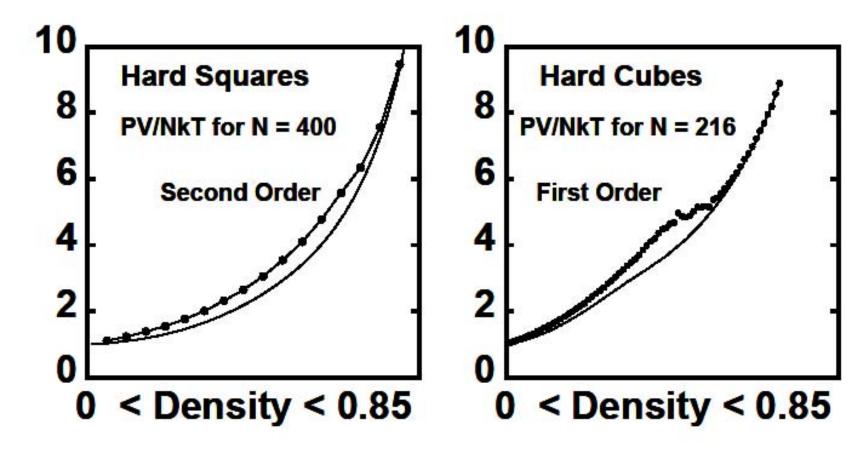


Pressure from Collision Rate

Hard Parallel Cubes make a good thermometer!



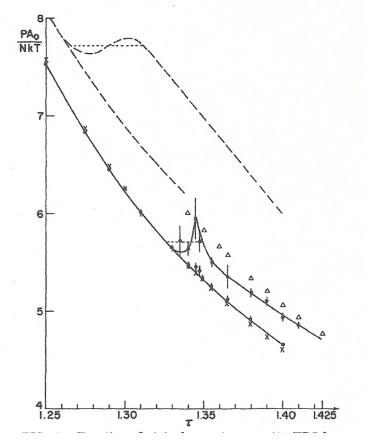
Fluid and Solid Molecular Dynamics

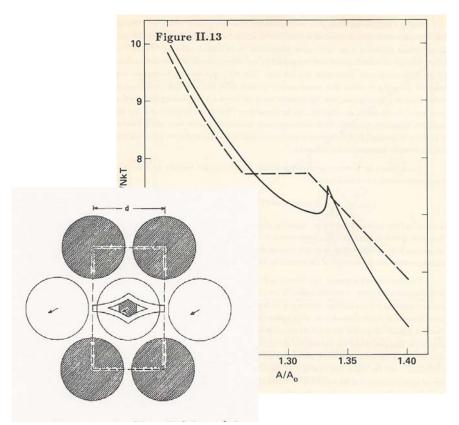


Mayer's Virial Series and the Free Volume Theory are good

But what about Wood's (and Frisch's) "Region of Confusion"???

Melting, van der Waals' Loops





Carlier & Frisch 400 Squares (1972)

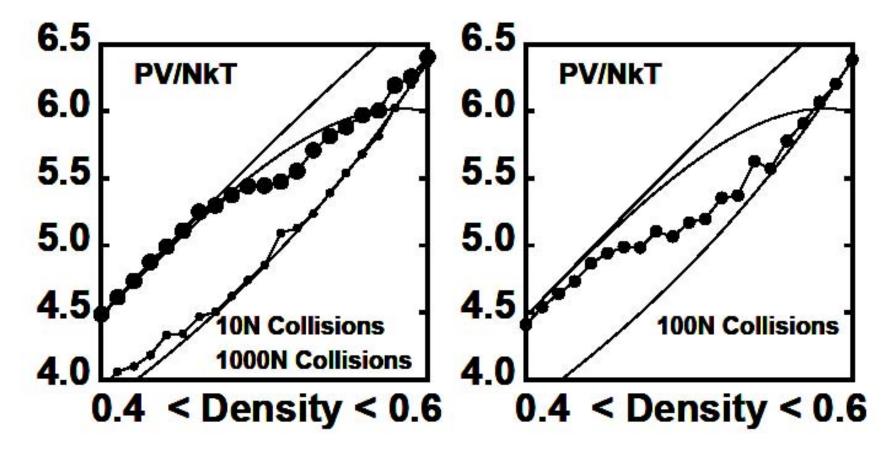
Hoover, Alder, Wainwright 2 and 870 Disks (1963)

The Usual Melting Theories

- Elastic Shear Constant Vanishes (Born) Dislocations Proliferate (Kosterlitz) Vibrational Amplitude Grows (Lindemann)
- None of them is really foolproof.
- Solution #1: Get More Data!
- Solution #2: Use Kirkwood's Single-Occupancy Entropy!

Solution #1: Get More Data

512 Cubes, Fluid Phase

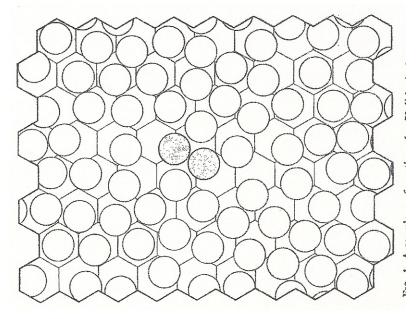


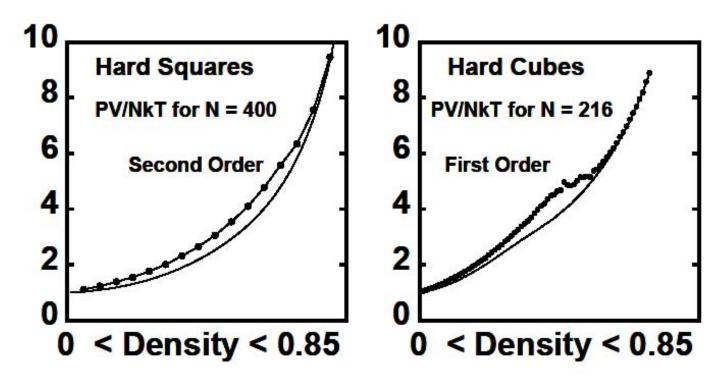
#2: Single Occupancy Dynamics

- Particles occupy individual cells.
- Solid Phase goes Smoothly to (V/N)^N.
- Disks and Spheres (1967).

```
G = E + PV - TS
```

```
\Delta S/Nk = -\int (PV/NkT)dln\rho
```

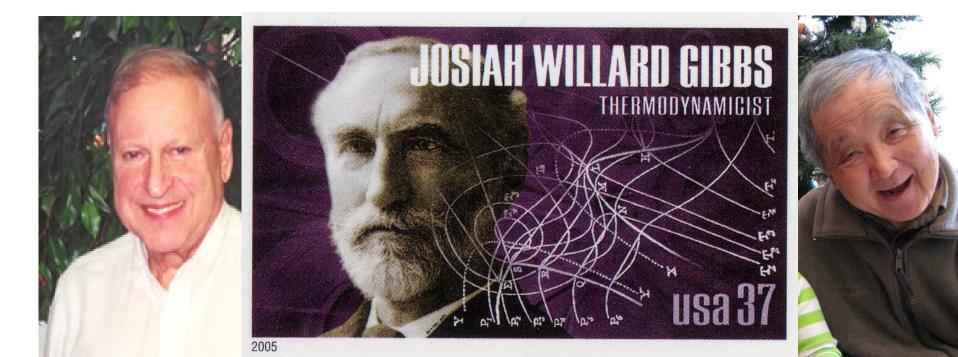




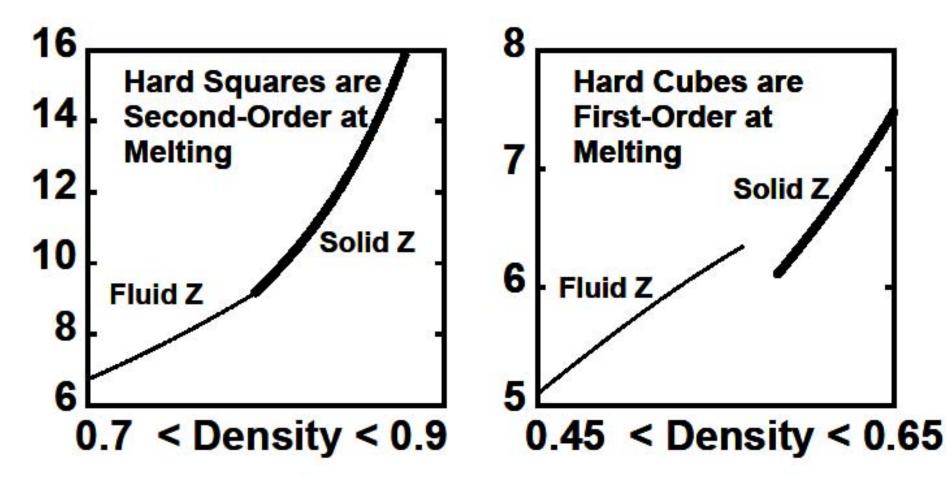
The difference in Areas is necessarily $\Delta S = NkT$.

Lower Curves are Single-Speed Single-Occupancy Data

Single Occupancy Results Squares have a Second-Order Transition. Cubes have a First-Order Transition. Free Volume Theory is good for Solids.

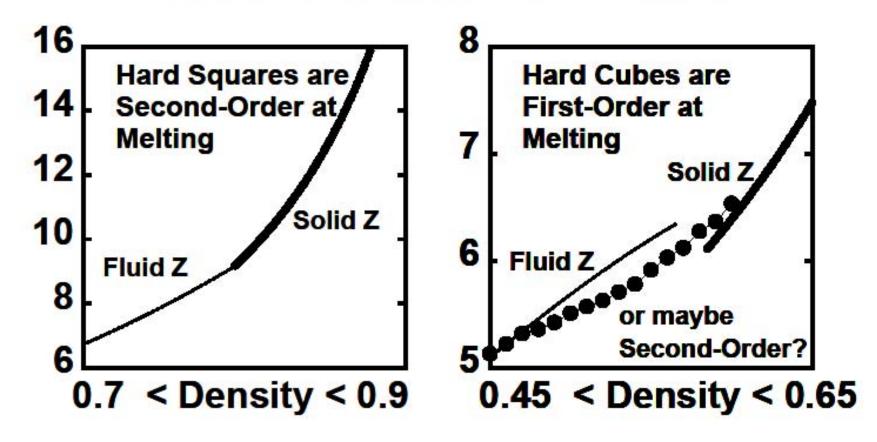


Conclusions from Our Work #1



Single Speed Dynamics Works!

Conclusions from Our Work #2



More Data are Always Handy!

Conclusions & Things to do

- Melting Transitions for Squares and Cubes resemble those of Disks and Spheres. Single Occupancy is good!
- Bifurcations and Lyapunov Instability should be investigated.
- B₈ through B₁₀ should be calculated.
 Shear Stress for Cubes should be used to characterize the Solid Phase.