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Abstract

The anisotropy of temperature is studied here in a strong two-dimensional shockwave, sim-

ulated with conventional molecular dynamics. Several forms of the kinetic temperature are

considered, corresponding to different choices for the local instantaneous stream velocity. A

local particle-based definition omitting any “self” contribution to the stream velocity gives the

best results. The configurational temperature is not useful for this shockwave problem. Config-

urational temperature is subject to a shear instability and can give local negative temperatures

in the vicinity of the shock front. The decay of sinusoidal shockfront perturbations shows that

strong two-dimensional planar shockwaves are stable to such perturbations.
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Keywords: Thermostats, Stress, Molecular Dynamics, Computational Methods, Smooth Particles

1



I. INTRODUCTION

Shockwaves are useful tools for the understanding of material behavior far from

equilibrium1–4. The high-pressure physicist Percy Bridgman played a key role in the

adaptation of experimental shockwave physics to the thermodynamic characterization

of materials at high pressure4. Because shockwaves join two purely equilibrium states,

shown to the left and right of the central shockwave in Figure 1, the experimental and

computational difficulties associated with imposing nonequilibrium boundary conditions

are absent.

Begin by assuming that the flow is both stationary and one-dimensional. Such a flow

gives conservation of the mass, momentum, and energy fluxes throughout the shockwave.

Thus the fluxes of mass, momentum, and energy,

ρu, Pxx + ρu2, ρu[e + (Pxx/ρ) + (u2/2)] + Qx ,

are constant throughout the system, even in the far-from-equilibrium states within the

shockwave. Here u is the flow velocity, the velocity in the x direction, the direction of

propagation. We use conventional notation here, ρ for density, P for the pressure tensor, e

for the internal energy per unit mass, and Qx for the component of heat flux in the shock

direction, x. It is important to recognize that both the pressure tensor and the heat flux

vector are measured in a local coordinate frame moving with the local fluid velocity u(x).

In a different “comoving frame”, this time moving with the shock velocity and centered

on the shockwave, cold material enters from the left, with speed us (the “shock speed”)

and hot material exits at the right, with speed us − up, where up is the “piston speed”.

Computer simulations of shockwaves, using molecular dynamics, have a history of more

than 50 years, dating back to the development of fast computers5–11. Increasingly so-

phisticated high-pressure shockwave experiments have been carried out since the Second

World War12.

In laboratory experiments it is convenient to measure the two speeds, us and up. These

two values, together with the initial “cold” values of the density, pressure, and energy,

make it possible to solve the three conservation equations for the “hot values” of ρ, Pxx,

and e. A linear relation between Pxx(x) and V (x) = 1/ρ, results when the mass flux

M ≡ ρu is substituted into the equation for momentum conservation:

Pxx(x) + M2/ρ(x) = Phot + (M2/ρhot) = Pcold + (M2/ρcold) .

2



Figure 1

us u  - us                p

Figure 1

us u  - us                p

Figure 1: A stationary one-dimensional shockwave. Cold material enters at the left with a speed

us, passes through the shockfront which separates the cold material from the hot, and exits at

the right with speed us − up. The cold-to-hot conversion process is irreversible and corresponds

to an overall entropy increase.

This nonequilibrium pressure-tensor relation is called the “Rayleigh Line”. The energy

conservation relation,

∆e = −(1/2)[Phot + Pcold]∆V ,

based on equating the work of compression to the gain in internal energy, is called the

“Shock Hugoniot Relation”. See Figure 2 for both. A recent comprehensive review of

shockwave physics can be found in Ref. 3.

Laboratory experiments based on this approach have detailed the equations of state for

many materials. Pressures in excess of 6TPa (sixty megabars) have been characterized12.

If a constitutive relation is assumed for the nonequilibrium anisotropic parts of the pres-

sure tensor and heat flux, the conservation relations give ordinary differential equations

for the shockwave profiles. With Newtonian viscosity and Fourier heat conduction the

resulting “Navier-Stokes” profiles have shockwidths on the order of the mean free path7,8.

Early theoretical analyses of shockwaves emphasized solutions of the Boltzmann equa-

tion. Mott-Smith’s approximate solution of that equation13, based on the weighted aver-

age of two equilibrium Maxwellian distributions, one hot and one cold, revealed a temper-

ature maximum (and a corresponding entropy maximum) at the shock center, for shocks

with a Mach number exceeding two. The Mach number is the ratio of the shock speed to

the sound speed. Twenty years later, molecular dynamics simulations showed shockwidths

of just a few atomic diameters.5–8 These narrow shockwaves agreed nicely with the predic-

tions of the Navier-Stokes equations for relatively weak shocks. At higher pressures there

is a tendency for the Navier-Stokes profiles to underestimate the shockwidth. Some of the

computer simulations have shown the temperature maximum at the shock front predicted

by Mott-Smith8,10. These temperature maxima are constitutive embarrassments — they
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Figure 2: Calculated Rayleigh Line and Shock Hugoniot relation for the simple repulsive van

der Waals’ equation described in the text. The Rayleigh line includes nonequilibrium states

within the shock while the Shock Hugoniot line is the locus of all equilibrium states accessible

by shocking the initial state.

imply a negative heat conductivity for a part of the shockwave profile.

Our interest here is twofold. We want to check on the stability of planar shock-

waves (the foregoing analysis assumes this stability) and we also want to characterize

the anisotropy of temperature in the shock. This latter topic is particularly interest-

ing now in view of the several definitions of temperature applied to molecular dynamics

simulations8,9,14–18. A configurational-temperature definition as well as several kinetic-

temperature definitions can all be applied to the shockwave problem.

The plan of the present work is as follows. Section II describes the material model

and computational setup of the simulations. Section III describes the computation of the

shock profiles and the analysis confirming their stability. Section IV compares the various

kinetic and configurational temperature definitions for a strong stable shockwave. Section

V details our conclusions.

II. SHOCKWAVE SIMULATION FOR A SIMPLE MODEL SYSTEM

We simulate the geometry of Figure 1 by introducing equally-spaced columns of cold

particles from a square lattice. The initial lattice moves to the right at speed us. The
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interior of the system is purely Newtonian, without any boundary, constraint, or driving

forces. Those particles coming within the range of the forces (σ = 1) of the righthand

boundary have their velocities set equal to us − up (the mean exit velocity) and are

discarded once they reach the boundary. This boundary condition, because it corresponds

to a diffusive heat sink at the exit, only affects the flow in the vicinity of that boundary.

We initially chose the speeds us = 2 and up = 1 to correspond to twofold compression.

The approximate thermal and mechanical equations of state,

e = (ρ/2) + T ; P = ρe .

together with the initial values,

ρcold = 1 ; Tcold = 0 ; Pcold = (1/2) ; ecold = (1/2) ,

give corresponding “hot” values. These two sets of thermodynamic data mutually satisfy

the Rayleigh Line and Shock Hugoniot Relation for twofold compression from the cold

state:

ρhot = 2 ; Thot = (1/4) ; Phot = (5/2) ; ehot = (5/4) .

The mass, momentum, and energy fluxes are 2, (9/2), and 6, respectively. For reasons

explained below it was necessary to modify these conditions slightly, using instead us =

2up = 1.75.

We considered a wide variety of system lengths and widths and found no significant

difference in the nature of the results. For convenience we show here results for a system

of length Lx = 200 and width Ly = 40. Because the density increases by a factor of two

in the center of the system the number of particles used in this case is about 12000. The

number varies during the simulation as new particles enter and old ones are discarded.

The total length of the run is one shock traversal time, 200/us, though the shock is

itself localized near the center of the system and in fact moves very little in our chosen

coordinate frame. In retrospect, the simulations could just as well have been carried out

with a much smaller Lx. Because we wished to study stability we felt it necessary to use

a relatively wide system.

For a two-dimensional classical model with a weak van der Waals’ repulsion the equa-

tion of state described above follows from the simple canonical partition function:

Z1/N ∝ V Te−ρ/2T ; PV/NkT = [∂ lnZ/∂ ln V ]T ; E/NkT = [∂ ln Z/∂ ln T ]V .
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Our original intent was to use the smooth repulsive pair potential19

φ = (10/πσ2)[1 − (r/σ)]3 for r < σ −→

〈Φ〉 ≃ (Nρ/2)

∫
V

φ(r)2πrdr = Nρ/2 .

for a sufficiently large σ (3 or so) that the simple equation of state was accurate. But for

large σ the shockwidth is also so large that detailed studies are impractical. In the end we

chose to set the range of the forces equal to unity, so that the initial pressure is actually

zero rather than 1/2. Nevertheless, the choice of us = 2 is still roughly compatible with

twofold compression. Equilibrium molecular dynamics simulations for σ = 1 give the

following solution to the conservation relations for twofold compression, from ρ0 = 1 to

ρ = 2 with us = 2up = 1.75:

ρu : 1.0 × 1.75 = 2.0 × 0.875 = 1.75 ;

P + ρu2 : 0.0 + 1.0 × 1.752 = 1.531 + 2.0 × 0.8752 = 3.062 ;

ρu[e+(P/ρ)+(u2/2)] = 1.75[0.0+0.0+1.531] = 1.75[0.383+0.766+0.383] = 1.75×1.531 .

We introduced a sinusoidal perturbation in the initial conditions by using twice as

many columns of particles (per unit length) to the right of a line near the center of the

system:

xshock = 6 sin(2πy/Ly) .

The time development of a system starting with this sinewave displacement perturbation

is shown in Figure 3. The panel corresponding to the time t = Dt shows that the decay

is underdamped, while the following panels show that the planar shockwave is stable.

Figure 4 illustrates the effect of the gradual underdamped flattening of the sinewave

perturbation on the density profile. The propagation of the wave is followed through five

shock traversal times of the observation window used in Figure 3.

The density profiles are computed with Lucy’s one-dimensional weighting function20,21

w1D(r < h) = (5/4h)[1 − 6(r/h)2 + 8(r/h)3 − 3(r/h)4] ; r < h = 3

−→

∫ +h

−h

w(r)dr ≡ 1 .

The density is computed by evaluating the expression

ρ(xk) =
∑

w1D
ik /Ly ; w1D

ik ≡ w1D(|xi − xk|) ,
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Figure 3
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Figure 3: Particle positions in the initial condition correspond to t = 0. Those to the left of the

sinewave boundary move to the right at speed us = 1.75 while those to the right travel at speed

us − up = us/2. Particle positions at five later equally-spaced times are shown too. The time

interval Dt = 40/us is 2000 timesteps. The 40 × 40 windows shown here would contain 1600

cold particles or 3200 hot particles at the cold and hot densities of 1.0 and 2.0.
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Figure 4: Density profiles at the same times as those illustrated in Figure 3. These one-

dimensional density profiles were computed with Lucy’s one-dimensional smooth-particle weight

function using h = 3 and the particle coordinates shown in Figure 3. Increasing time corresponds

to increasing line thickness as the shockwave moves slowly to the left.
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Figure 5: Density profiles exactly as in Figure 4, but with a reduced range, h = 2. The shockwave

moves slowly to the left. Note the wiggly structure, a consequence of choosing h too small..

for all combinations of Particle i and gridpoint k separated by no more than h = 3.

For comparison density profiles using a shorter range, h = 2, are shown in Figure 5.

These latter profiles exhibit a wiggly structure indicating a deterioration of the averaging

process.

Similar conclusions, using similar techniques, have been drawn by Robert J.Hardy and

his coworkers9,11, who were evidently unaware of Lucy and Monaghan’s work. In their

interesting analysis of a two-dimensional shockwave, Root, Robert J. Hardy, and Swan-

son use a weight function like Lucy’s, but with square (rather than circular) symmetry

and with only a single vanishing derivative at its maximum range11. They discuss the

ambiguities of determining temperature away from equilibrium and rightly conclude that

the range of the spatial weight function needs careful consideration. Robert J. Hardy9 re-

cently told us that his use of a spatial weighting function was motivated by a conversation

with Philippe Choquard.

The profiles we show in Figure 4 are typical, and show that the shockwidth rapidly

attains a value of about 3 particle diameters, and has no further tendency to change

as time goes on. A detailed study shows that the sinewave amplitude exhibits under-

damped oscillations on its way to planarity. Evidently, for this two-dimensional problem,

the one-dimensional shockwave structure is stable. In the next Section we consider the

temperature profiles for the stationary shockwave.
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III. CONFIGURATIONAL AND KINETIC TEMPERATURES IN THE

SHOCKWAVE

The kinetic and configurational contributions to temperature and pressure have been

discussed and explored in a variety of nonequilibrium contexts. Shockwaves, with sta-

tionary boundary conditions far from the shockfront, allow the anisotropy of the kinetic

temperature to be explored, analyzed, and characterized with purely Newtonian molecu-

lar dynamics. Kinetic-theory temperature is based on the notion of an equilibrium ideal

gas thermometer22–24. The temperature(s) measured by such a thermometer are given by

the second moments of the velocity distribution:

{kT K
xx, kT K

yy} = m{〈v2
x〉, 〈v

2
y〉}

where the velocities are measured in the comoving frame, the frame moving at the mean

velocity of the fluid.

A dilute Maxwell-Boltzmann gas of small hard parallel cubes undergoing impulsive

collisions with a large test particle provides an explicit model tensor thermometer for the

test-particle kinetic temperature24. The main difficulty associated with kinetic tempera-

ture lies in estimating the mean stream velocity, with respect to which thermal fluctuations

define kinetic temperature. In what follows we compare several such definitions, in an

effort to identify the best approach.

Configurational temperature is more complicated and lacks a definite microscopic me-

chanical model of a thermometer able to measure it. Configurational temperature is based

on linking two canonical-ensemble equilibrium averages, as was written down by Landau

and Lifshitz more than 50 years ago25:

{kTΦ
xx, kTΦ

yy} = {〈F 2
x 〉/〈∇

2
xH〉, 〈F 2

y 〉/〈∇
2
yH〉} .

H is the Hamiltonian governing particle motion. Unlike kinetic temperature this con-

figurational definition is independent of stream velocity. Its apparent dependence on

rotation19 is negligibly small for the (irrotational) shockwave problems considered here.

We apply both the kinetic and the configurational approaches to temperature measure-

ment here, considering individual degrees of freedom within a nominally one-dimensional

shockwave in two-dimensional plane geometry.

Although the notion of configurational temperature can be defended at equilibrium,

the shockwave problem indicates a serious deficiency in the concept. An isolated row or
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Figure 6: Particles with negative configurational temperatures are shown here, using the data

underlying Figs. 4 and 5. The material to the right of the shock is “hot”, with cold material

entering at the left. The smaller dots correspond to negative values of TΦ
xx and the larger ones

to negative TΦ
yy.

column of particles, all with the same y or x coordinate and interacting with repulsive

forces is clearly unstable to transverse perturbations. The symptom of this instability is

a negative “force constant”

(〈∇∇H〉)xx or yy < 0 .

The uncertain sign of ∇∇H explains the presence of wild fluctuations, and even negative

configurational temperatures, in the vicinity of the shockfront. See Fig. 6. This outlandish

behavior means that the configurational temperature is not a useful concept for such

problems.

Defining the kinetic temperature requires first of all an average velocity, about which

the thermal fluctuations can be computed. The velocity average can be a one-dimensional

sum over particles {i} sufficiently close to the gridpoint k:

u(xk) ≡
∑

i

w1D
ik vi/

∑
i

w1D
ik −→ T 1D .

Alternatively a local velocity can be defined at the location of each particle i by using a

two-dimensional Lucy’s weight function,

w2D(r < h) = (5/πh2)[1 − 6(r/h)2 + 8(r/h)3 − 3(r/h)4] ; r < h = 3 .

10



0.00

0.05

0.10

0.15

0.20

0.25

Figure 7

1D Grid-Based

 95     <     x     <     105

With Self v
h = 3

kT

Figure 7: Typical instantaneous temperature profiles, at t = 5Dt for the strong shockwave

described in the text. Local particle-based definitions of stream velocity give the two somewhat

lower temperature pairs, (TK
xx, TK

yy}. The grid-based definitions of TK
xx and TK

yy are indicated

with the heaviest lines. They both use a one-dimensional weight function. This definition gives

a strong temperature maximum for TK
xx. In all three cases the longitudinal temperature TK

xx

exceeds the transverse temperature TK
yy near the shock front. The temperatures obtained with

two-dimensional weights and including the “self” terms in the average velocity are indicated by

the dashed lines and are significantly lower than the rest throughout the hot fluid exiting the

shockwave. The “correct” hot temperature, far from the shock, is kT = 0.13, based on separate

equilibrium molecular dynamics simulations. The profiles shown here were all computed from

the instantaneous state of the system after a simulation time of 5Dt = 200/us.

−→

∫ h

0

2πrw(r)dr ≡ 1 ,

and summing over nearby particles {j}:

u(xi) ≡
∑

j

w2D
ij vj/

∑
j

w2D
ij −→ T 2D .

These latter two-body sums can either both include or both omit the “self” term with

i = j. Our numerical results support the intuition that it is best to omit both the self

terms17. We compute all three of these x and y temperature sets for the stationary

shockwave profile and plot the results in Figure 7 and 8.

The data show that in every case Txx exceeds Tyy in the leading edge of the shock
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Figure 8: Temperature profiles with the same data as in Figure 7, but with a reduced averaging

range, h = 2. Again, the temperatures including “self” contributions to the local velocity are

shown as dashed lines. Notice the sensitivity of the maximum in TK
xx to the range h. Far to the

right, the “correct” hot temperature, at equilibrium, away from the shock, is kT = 0.13, based

on separate equilibrium molecular dynamics simulations.

front. There is a brief time lag between the leading rise of the longitudinal temperature

Txx and the consequent rise of the transverse temperature Tyy. This is to be expected

from the nature of the shock process, which converts momentum in the x direction into

heat26,27. The Rayleigh line itself (see again Figure 2) shows the mechanical analog of

this anisotropy, with Pxx greatly exceeding Pyy. Note that the lower pressure in Figure 2,

the Hugoniot pressure, is a set of equilibrium values, (Pxx +Pyy)/2. It is noteworthy that

the height of the temperature maximum is sensitive to the definition of the local velocity.

Evidently a temperature based on the local velocity, near the particle in question, and

with a coarser averaging range h = 3, gives a smaller gradient and should accordingly

provide a much simpler modeling challenge.

IV. SUMMARY

This work shows that planar shockwaves are stable for a smooth repulsive potential

in a dense fluid. We also find that a mechanical instability makes the configurational

temperature quite useless for such problems. Our investigation of temperature definitions
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shows that relatively smooth instantaneous temperature profiles can be based on the

weight functions used in smooth particle applied mechanics. It is noteworthy that the

constitutive relations describing inhomogeneous nonequilibrium systems must necessarily

include an averaging recipe for the constitutive properties. The present work supports

the idea11 that the range of smooth averages should be at least a few particle diameters.

The better behavior of a particle-based temperature when the “self” terms are left out

is not magic. Consider the equilibrium case of a motionless fluid at kinetic temperature

T . The temperature of a particle in such a system should be measured in a motionless

frame. If the “self” velocity is included in determining the frame velocity an unnecessary

error will occur. Thus it is plausible that the “self” terms should be left out. The data

shown in Figs. 7 and 8 support this view.

The instantaneous particle-based velocity average provides a smoother gentler profile

which should be simpler to model. By using an elliptical weight function, much wider in

the y direction than the x, one could consider the grid-based temperature as a limiting

case. The somewhat smoother behavior of the particle-based temperature recommends

against taking this limit. The elliptical weight function would leave the divergent config-

urational temperature unchanged.
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