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Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corresponding
local Lyapunov exponents has become available. Here we study the properties of these still unfamiliar
quantities for a simple model representing an harmonic oscillator coupled to a thermal gradient with
a two-stage thermostat, which leaves the system ergodic and fully time reversible. We explicitly
demonstrate how time-reversal invariance affects the perturbation vectors in tangent space and
the associated local Lyapunov exponents. We also find that the local covariant exponents vary
discontinuously along directions transverse to the phase flow.

I. INTRODUCTION

Recently, many concepts and methods of dynamical
systems theory have turned out to be very useful for
the characterization and understanding of physical sys-
tems in and out of thermodynamic equilibrium. For ex-
ample, for a class of stationary nonequilibrium systems,
the spectrum of Lyapunov exponents is a convenient tool
for studying the collapse of the phase-space probability
distribution onto fractal measures with an information
dimension smaller than the dimension of phase space.
In this case, stationarity is achieved with time-reversible
thermostats [1, 2]. Stationary nonequilibrium systems
with stochastic thermostats may be formulated along
similar lines [3].

The aim of this paper is to apply the hitherto rather
unfamiliar concept of covariant Lyapunov vectors and
their associated local Lyapunov exponents to a sim-
ple and pedagogical system in equilibrium and in non-
equilibrium stationary states to sharpen the intuition
for more demanding applications. The system studied
is a harmonic oscillator subjected to a two-stage chain of
Nosé-Hoover-type thermostats with a temperature which
varies with the position of the particle.

The paper is organized as follows: In the next sec-
tion we provide the basic theoretical concepts and def-
initions required for our numerical work. In particular,
the covariant vectors and their classical counterparts, the
Gram-Schmidt vectors, are introduced, and their dynam-
ical evolution is discussed. Section III is devoted to an al-
ternative differential-equation based method for the evo-
lution of orthonormal perturbation vectors, which may be
interpreted as continuous re-orthonormalization. In Sec-
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tion IV we specify the protocol for our numerical work,
both forward and backward in time. Our main example,
a doubly-thermostated oscillator in a space-dependent
thermal field, is treated in various subsections of Sec-
tion V. We conclude in Section VI with some remarks,
which also concern the stationary fluctuation theorem for
thermostated systems.

II. COVARIANT LYAPUNOV VECTORS AND

LOCAL LYAPUNOV EXPONENTS

If Γ(t) denotes the state of a dynamical system of di-
mension D, its evolution equations are given by

Γ̇ = F(Γ), (1)

where F is a (generally nonlinear) vector-valued function
of dimension D. An arbitrary perturbation vector δΓ(t)
in tangent space evolves according to the linearized equa-
tions

˙δΓ = J (Γ)δΓ, (2)

where the dynamical (Jacobian) matrix J is given by

J (Γ) =
∂F

∂Γ
.

The stability of a trajectory in a D-dimensional phase
space is determined by a set of D (global) Lyapunov ex-
ponents, which are the time-averaged logarithmic rates
of the growth or decay of the norm of some perturba-
tion vectors, which must be oriented ‘properly’ in tan-
gent space at the initial time. Formally, let Γ(0) denote
the state of the system at time 0, the state at time t is
given by Γ(t) = φt(Γ(0)), where the map φt : Γ → Γ
defines the flow in the phase space Γ. Similarly, if δΓ(0)
is a vector in the tangent space at the phase point Γ(0),
at time t it becomes δΓ(t) = Dφt|Γ(0) δΓ(0), where Dφt

defines the tangent flow. It is represented by a real but
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generally nonsymmetric D × D matrix. The multiplica-
tive ergodic theorem of Oseledec [4–6] asserts that there
exist ‘properly oriented’ and normalized vectors v

ℓ (Γ(0))
in tangent space at t = 0, which evolve according to

Dφt|Γ(0) v
ℓ (Γ(0)) = v

ℓ (Γ(t)) , (3)

and which generate the Lyapunov exponents on the way,

±λℓ = lim
t→±∞

1

|t|
ln

∥

∥ Dφt|Γ(0) v
ℓ (Γ(0))

∥

∥ (4)

for all ℓ ∈ {1, . . . , D}, both forward and backward in time
(for time-reversible systems). (Strictly speaking, this for-
mulation is only correct for nondegenerate exponents λℓ.
If two such exponents become identical, the respective
vectors must be replaced by a covariant subspace spanned
by the vectors. Since in our applications below, there is
no danger of misinterpretation, we avoid the additional
notational complexity. The case of degenerate exponents
is treated in detail in Ref. [7]). Because of the property
described by Eq. (3), the vectors v

ℓ are called covari-

ant. Loosely speaking, covariant vectors are co-moving
(co-rotating in particular) with the tangent flow. As will
be shown below, this property of co-rotation is respon-
sible for the fact that the evolution of their length in
the forward and backward directions of time (for time-
reversible systems) is intimately connected, a symmetry
not enjoyed by other perturbation vectors. For numeri-
cal reasons, it is still necessary to normalize the vectors
periodically at times tn ≡ nτ , such that Eq. (4) becomes

λℓ = lim
N→∞

1

Nτ

N
∑

n=1

ln
∥

∥Dφτ |Γn−1
v

ℓ(Γn−1)
∥

∥, (5)

where we use the abbreviated notation Γ(tn) ≡ Γn.
‖vℓ(Γn)‖ = 1 at the beginning of each interval of length
τ . Generally its norm differs from unity at the end of the
interval.

Up to very recently, no practical algorithm for the com-
putation of the covariant vectors was available. The clas-
sical algorithm for the computation of Lyapunov expo-
nents [8, 9] is based on the fact that almost all volume
elements of dimension d ≤ D in tangent space (with
the exception of elements of measure zero) asymptoti-
cally evolve with an exponential rate, which is equal to
the sum of the first d Lyapunov exponents. Such a d-
dimensional subspace may be spanned by d orthonormal
vectors, which are constructed by the Gram-Schmidt re-
orthonormalization procedure and, therefore, are referred
to as Gram-Schmidt (GS) vectors g

ℓ(Γ(t)). The evolu-
tion during the time interval τ = tn − tn−1,

Dφτ |Γn−1
g

ℓ (Γn−1) ≡ ḡ
ℓ (Γn) , (6)

generates a set of non-orthonormal vectors ,
{ḡℓ (Γn) , ℓ = 1, · · · , D}, which after Gram-Schmidt

re-orthonormalization [10, 11],

g
1 (Γn) =

ḡ
1 (Γn)

∥

∥ḡ
1 (Γn)

∥

∥

,

g
ℓ (Γn) =

ḡ
ℓ (Γn) −

∑ℓ−1
k=1

(

ḡ
ℓ (Γn) · gk (Γn)

)

g
k (Γn)

∥

∥ḡ
ℓ (Γn) −

∑ℓ−1
k=1

(

ḡ
ℓ (Γn) · gk (Γn)

)

gk (Γn)
∥

∥

,

(where ℓ consecutively assumes the values 1, · · · , D) be-
come the orthonormal starting vectors for the next inter-
val. The vectors g

ℓ are not covariant, which means that,
in general, the vectors are not mapped by the linearized
dynamics into the GS vectors at the forward images of
the initial phase-space point [12]. As a consequence, they
are also not invariant with respect to the time-reversed
dynamics. The Lyapunov exponents are computed from
the normalization factors,

λ1 = lim
N→∞

1

Nτ

N
∑

n=1

ln
∥

∥ḡ
1 (Γn)

∥

∥,

λℓ = lim
N→∞

1

Nτ

N
∑

n=1

ln
∥

∥ḡ
ℓ (Γn)

−

ℓ−1
∑

k=1

(

ḡ
ℓ (Γn) · gk (Γn)

)

g
k (Γn)

∥

∥ (7)

for ℓ = 2, · · · , D.
Recently, a reasonably fast algorithm for the compu-

tation of covariant Lyapunov vectors was presented by
Ginelli et al. [12], which first requires the construction
of the Gram-Schmidt vectors by a forward integration in
time. In a second step, this stored information is used to
obtain the covariant vectors by a backward iteration in
time. For details of this algorithm we refer to their pa-
per [12] and to our previous work [7]. Here we make use
of this algorithm. An alternative method based on for-
ward and backward singular vectors has been proposed
by Wolfe et al. [13], and was subsequently applied by
Romero et al. to Hamiltonian systems with many de-
grees of freedom [14].

A local Lyapunov exponent characterizes the expan-
sion, or shrinkage, of a particular tangent vector during
a (short) time interval τ . From Eqs. (5) and (7) local
exponents for the covariant and Gram-Schmidt vectors
are obtained for a time tn ≡ nτ at the phase point Γn:

Λcov
ℓ (tn) =

1

τ
ln

∥

∥Dφτ |Γn−1
v

ℓ(Γn−1)
∥

∥, (8)

for ℓ = 1, · · · , D, and

ΛGS
1 (tn) =

1

τ
ln

∥

∥ḡ
1 (Γn)

∥

∥,

ΛGS
ℓ (tn) =

1

τ
ln

∥

∥ḡ
ℓ (Γn)

−

ℓ−1
∑

k=1

(

ḡ
ℓ (Γn) · gk (Γn)

)

g
k (Γn)

∥

∥, (9)
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for ℓ = 2, · · · , D.
Since the spaces

v
1 ⊕ · · · ⊕ v

ℓ = g
1 ⊕ · · · ⊕ g

ℓ (10)

are covariant subspaces of the tangent space for all ℓ, we
have v

ℓ(t) ∈ g
1(t)⊕ · · · ⊕ g

ℓ(t). If βℓℓ(t) denotes the an-
gle between the respective covariant and Gram-Schmidt
vectors v

ℓ(t) and g
ℓ(t) at the specified time, the compo-

nent of the normalized vector v
ℓ(tn−1) in the direction

of g
ℓ(tn−1) is given by cosβℓℓ(tn−1). During τ , this vec-

tor component grows by a factor exp{ΛGS
ℓ τ}, whereas

the norm of the vector itself grows by exp{Λcov
ℓ τ}. At

the end of the interval, equating the vector components
of v

ℓ(tn) in the new direction of the re-orthonormalized
vector g

ℓ(tn), one obtains

ΛGS
ℓ (tn) = Λcov

ℓ (tn) +
1

τ
ln

cosβℓℓ(tn)

cosβℓℓ(tn−1)
, (11)

ℓ = 1, · · · , D. This relates the local exponents for the GS
and covariant vectors.

If we consider the limit τ → 0 implying continuous
re-orthonormalization of the g

ℓ and normalization of the
v

ℓ, Eq. (11) becomes

ΛGS
ℓ (t) = Λcov

ℓ (t) − tan βℓℓ(t)
dβℓℓ

dt
.

This is most easily achieved with a matrix of Lagrange
multipliers constraining the vectors to unit length and
enforcing orthogonality of the g

ℓ [15–17]. We shall return
to this point in the following section.

For time-continuous systems, these relations are gen-
eral and are not restricted to any particular model.

The global exponents are the time averages of the local
exponents over a long trajectory tracing out the whole
ergodic phase-space component, and are the same for the
covariant and Gram-Schmidt cases,

λℓ = lim
N→∞

1

N

N
∑

n=1

Λcov
ℓ (tn) = lim

N→∞

1

N

N
∑

n=1

ΛGS
ℓ (tn).

Whereas the global Lyapunov exponents do not depend
on the particular metric and the choice of the coordinate
system, the local exponents do. For particular applica-
tions of the local exponents this must be kept in mind.

The system we consider here are invariant with re-
spect to time reversal. This property leaves the equa-
tions of motion in phase and tangent space unchanged if
the signs of all momentum-like variables and of time are
reversed, but leaving all position variables unchanged.
This implies that there exists a smooth isometry I of
phase space, such that Iφt = φ−tI. In practice, an in-
tegration of the equations of motion backward in time is
carried out with reversed momentum-like variables and
a positive time step. After reaching the endpoint, the
signs of all momentum-like variables need to be reversed
again and the time variable properly adjusted. Alterna-
tively, and even more easily, the integration of the motion

equations may proceed without changing the sign of the
momentum-like variables but with a negative time step.
There is also no sign change after reaching the end point
in this case. A comparison of both methods yields iden-
tical results. Where necessary, we indicate the forward
and backward directions of time by upper indexes (+)
and (−), respectively. If this index is omitted, the for-
ward direction is implied.

We have mentioned already that the classical al-
gorithm invoking Gram-Schmidt re-orthonormalization
carefully keeps track of the time evolution of d-
dimensional volume elements, δVd, for any d ≤ D, which
proceeds according to [2, 18]

d ln δVd(t)

dt
=

d
∑

ℓ=1

ΛGS
ℓ (t).

If the total phase volume is conserved as for symplectic
systems, the following sum rule for the Gram-Schmidt
local exponents holds at all times:

D
∑

ℓ=1

ΛGS
ℓ (t) = 0. (12)

In this symplectic case we can even say more. For each
positive local GS exponent there is a local negative GS
exponent such that their pair sum vanishes [19],

(+)ΛGS
ℓ (t) = −(+)ΛGS

D+1−ℓ(t), (13)

(−)ΛGS
ℓ (t) = −(−)ΛGS

D+1−ℓ(t). (14)

As indicated, such a symplectic local pairing symmetry
exists both forward and backward in time. But, gener-
ally, the GS local exponents do not show the symmetry
with respect to time-reversal invariance. Thus,

(−)ΛGS
ℓ (t) 6= −(+)ΛGS

D+1−ℓ(t). (15)

No such symmetries exist for non-symplectic systems.
Examples are provided below.

The situation is very different for the covariant local
Lyapunov exponents. In their case, the vectors are still
re-normalized, but the angles between them remain un-
changed, which effectively destroys all information con-
cerning the d-dimensional volume elements. Thus, no
symmetries analogous to Eqs. (13) and (14) exist. In-
stead, the re-normalized covariant vectors faithfully pre-
serve the time-reversal symmetry of the equations of mo-
tion, which is reflected by

(−)Λcov
ℓ (t) = −(+)Λcov

D+1−ℓ(t) for ℓ = 1, · · · , D, (16)

regardless, whether the system is symplectic or not. This
means that an expanding co-moving direction is con-
verted into a collapsing co-moving direction by an ap-
plication of the time-reversal operation. Of course, the
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forward and backward local exponents in Eq. (16) refer
to the same phase space point Γ(t).

These symmetry properties may be considered the
main conceptual differences between the Gram-Schmidt
and covariant viewpoints.

Before leaving this section, a short remark concern-
ing the commonly-used term “time-dependent exponent”
seems in order. Primarily, this quantity is a function of
the phase point and should only be called a “local” expo-
nent. Its value may be different whether the phase point
is reached from the past, forward in time (+), or from
the future, backward in time (−).

III. DIFFERENTIAL APPROACH TO LOCAL

LYAPUNOV EXPONENTS

Equation (9) precisely reflects the numerical procedure
for the computation of local GS exponents for finite time
intervals τ . But it is also possible to obtain a differential
version for τ → 0. Goldhirsch et al. [15] and Posch et

al. [16] independently derived a full set of differential
equations for the Gram-Schmidt vectors g

ℓ,

ġ
1 = J g

1 − R11 g
1, (17)

ġ
ℓ = J g

ℓ − Rℓℓ g
ℓ −

ℓ−1
∑

m=1

(Rℓm + Rmℓ) g
m, (18)

where in the last equation ℓ = 2, · · · , D. We have demon-
strated [16, 17] that the matrix elements

Rℓm (Γ(t)) = (gℓ)TJ g
m (19)

may be understood as Lagrange multipliers enforcing the
orthonormalization constraints g

ℓ · g
m = δℓm (equal to

unity for ℓ = m, and zero otherwise). Here T means
transposition. Most importantly, the diagonal elements
are the local Gram-Schmidt exponents:

ΛGS
ℓ (Γ(t)) ≡ Rℓℓ(Γ(t)) = (gℓ)TJ g

ℓ. (20)

This expression nicely underlines the local nature of the
exponents.

We have verified for the doubly-thermostated heat con-
duction model discussed in Sec. V below that the direct
integration of the Eqs. (17,18) provide local GS expo-
nents according to Eq. (20), which agree extremely well
with the results obtained from a direct application of the
GS algorithm, Eq. (9), for a reasonably-small time inter-
val τ . This agreement also persists for the time-reversed
dynamics.

IV. NUMERICAL CONSIDERATIONS

In this section we remark on a few aspects of our im-
plementation of the algorithm for the computation of the

covariant Lyapunov vectors, which we apply in the fol-
lowing sections. Reduced units are used for the vari-
ous models treated below. For convenience, we specify
already here the adopted values (in reduced units) for
some time parameters: tω = 6 × 104, tα = 5 × 104,
and t0 = 100. Their meaning is explained below. For
the integration of the equations of motion, a 4th-order
Runge-Kutta algorithm with a time step dt = 0.001 is
used. This time step is chosen such that the trajectory
is correct to double-precision accuracy. For the interval
between successive Gram-Schmidt re-orthonormalization
steps – respective covariant vector normalizations – we
choose τ = 10dt = 0.01. This number is a (very conser-
vative) compromise between the achieved reduction in
storage requirements as outlined below, and the preci-
sion of integration forward and backward over the same
interval. The time t0 is chosen such that in the inter-
val −t0 ≤ t ≤ t0 accurate Gram-Schmidt and covariant
Lyapunov vectors are available.

The simulations are carried out with the following pro-
tocol:
Phase 1 (forward integration from −tω to +tω):
Starting with arbitrary initial conditions at a time −tω
and using a positive integration time step dt > 0, the evo-
lution of the reference trajectory Γ(t) and of the full set of
Gram-Schmidt vectors is computed in the forward direc-
tion of time up to a time +tω. The reference trajectory
and the Gram-Schmidt vectors are stored for every 10
time steps, 10dt = τ , along the way. The Gram-Schmidt
vectors are used in phase 2 for the construction of the co-
variant vectors, and the reference trajectory is required in
phase 3 for the computation of the time-reversed Gram-

Schmidt vectors. The Lyapunov spectrum {(+)λGS} is
accumulated for times −tα ≤ t ≤ tω, for which the ori-
entations of the Gram-Schmidt vectors are fully relaxed.
Phase 2 (backward iteration from tω to −t0): Start-
ing at tω, the covariant vectors are computed by iter-
ating back to a time −t0. The details of this algo-
rithm are given in Ref. [7]. Since the forward GS-
vectors, stored during phase 1, are now used in reversed
order, the consecutive order of the covariant vectors
· · · , vℓ(tn), vℓ(tn−1), · · · has to be reversed for the com-
putation of the corresponding local exponent,

(+)Λcov
ℓ (tn) =

1

τ
ln

‖vℓ(tn)‖

‖vℓ(tn−1)‖
,

or, alternatively, the sign of the local exponents must
be reversed. The time averaging for the global Lyapunov
spectrum {(+)λcov

ℓ } is carried out for times tα ≥ t ≥ −t0.
The following two phases are only required for the com-

putation of the local time-reversed Gram-Schmidt and
covariant exponents.
Phase 3 (backward integration from tω to −tω):
With arbitrary initial conditions at time tω, the Gram-
Schmidt tangent space dynamics is followed backward in
time up to −tω. To counteract the Lyapunov instabil-
ity, it is essential for this computation to use the same

reference trajectory stored in phase 1, where the sign of
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the momentum-like variables ( p, z, and x for the doubly-
thermostated oscillator) is left unchanged, but with the
time step reversed to −0.001. For an accurate computa-
tion of the backward GS vectors, the reference trajectory
at every integration step is required. Since in phase 1
this information was stored for only every 10th step (to
save computer storage), the forward reference trajectory
is piece-wise re-computed with stored phase-space points
as initial conditions. The backward Gram-Schmidt vec-
tors are again stored for every 10th time step replacing
the forward vectors of phase 1. If time is reversed, the
stable directions become unstable and vice versa. The
Lyapunov spectrum {(−)λGS

ℓ } is accumulated in the in-
terval tα ≥ t ≥ −tω.
Phase 4 (forward iteration from −tω to +t0): Anal-
ogous to phase 2, in this final stage the covariant Lya-
punov vectors for the reversed time direction are com-
puted with the help of the time-reversed Gram-Schmidt
vectors from phase 3. The respective Lyapunov spectrum
{(−)λcov

ℓ } is accumulated for times −tα ≤ t ≤ t0.
It may be noticed that in the interval −t0 ≤ t ≤ +t0 all

local properties are available with the Gram-Schmidt and
covariant vectors fully relaxed both forward and back-
ward in time. Therefore, the detailed analysis of local
(time-dependent) Lyapunov exponents in the following
sections is carried out in this regime.

V. DOUBLY-THERMOSTATED OSCILLATOR

A. Description of the model

Here we consider a simple model which already has
many ingredients in common with much more involved
physical systems. It exhibits chaotic equilibrium and
stationary nonequilibrium states and collapses onto a
limit cycle for very strong driving. It consists of a one-
dimensional harmonic oscillator, which is coupled to two
consecutive stages of Nosé-Hoover thermostats with a
space-dependent temperature T (q). The equilibrium ver-
sion of this model was first considered by Martyna, Klein
and Tuckerman [20]. Its nonequilibrium properties were
consecutively studied by us in some detail [21, 22], but
without considering covariant vectors. This paper is also
intended to augment this work correspondingly.

The equations of motion, expanded with two thermo-
stat variables z and x, are [21, 22]

q̇ = p,

ṗ = −q − zp,

ż = p2 − T (q) − zx,

ẋ = z2 − T (q),

where the position dependent temperature is given by

T (q) = 1 + ε tanh(q).

The control parameter ε coincides with the temperature
gradient at q = 0. These equations are written in the
most simple reduced form with all arbitrary parameters
of the model set equal to unity. The system is not sym-
plectic. On average, the oscillator picks up energy from
the thermostat whenever it is in a region of high temper-
ature (q > 0), and releases it again in low-temperature
regions (q < 0).

B. Global properties

For a typical non-equilibrium state, (ε = 0.25), the
global Lyapunov spectrum was computed by four inde-
pendent methods, applying the protocol outlined in Sec.
IV:

Phase 1 : GS exponents in forward direction of time,

{(+)λGS
ℓ } = {0.0531, 0.00001,−0.0344,−0.0867},

Phase 2 : covariant exponents in forward direction of
time
{(+)λcov

ℓ } = {0.0536, 0.00001,−0.0351,−0.0862},

Phase 3 : GS exponents in backward direction of time

{(−)λGS
ℓ } = {0.0867, 0.0344, 0.00003,−0.0531},

Phase 4 : covariant exponents in backward direction of
time
{(−)λcov

ℓ } = {0.0871, 0.0337, 0.000001,−0.0525}.

The last digit of each number is rounded accordingly.
Considering the smallness of the exponents and the
rather involved numerical procedures, the agreement be-
tween the independently-determined global spectra is
very satisfactory. A comparison of the forward and back-
ward dynamics reveals the theoretically expected symme-
try for the global Lyapunov exponents [5, 23],

(−)λℓ = −(+)λD+1−ℓ for ℓ = 1, · · · , D. (21)

If the temperature gradient ε is varied over a wide
range, significant changes of the spectrum become evi-
dent. This is shown in the top panel of Fig. 1. There
exist a number of distinct regimes with different qualita-
tive behavior.

For ε . 0.18, the spectrum changes but little with
ε, and the Kaplan-Yorke dimension is only weakly re-
duced with respect to the full phase-space dimension, as
is shown in the bottom panel of Fig. 1. The dissipation
due to the weak heat current influences the appearance
of the chaotic phase-space trajectory very little. An ex-
ample of a projection of such a trajectory onto the qpz-
subspace is provided in the top panel of Fig. 3.

For 0.18 . ε < 0.26, the trajectory is more and more
attracted to a weakly unstable periodic orbit (see the
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FIG. 1: (Color online) Temperature-gradient dependence of
all four Lyapunov exponents (top panel) and of the Kaplan-
Yorke dimension (bottom panel) for the doubly-thermostated
oscillator. For ε > εc = 0.26312, the trajectory collapses onto
a limit cycle.

bottom panel of Fig. 3), which for εc ≈ 0.26312 turns
into a stable limit cycle as shown in the top panel of
Fig. 4. The nature of this transition may be established
by considering the Floquet multipliers µℓ, ℓ = 1, · · · , 4
for the fixed points of the Poincaré map, defined by q =
0, for ε ≥ εc ≈ 0.26312. Whereas µ1 = 1 and µ4 <
0, a single mutiplier µ2 crosses the unit circle on the
real axis at the point A corresponding to εc in Fig. 2.
Such a behavior is characteristic of a period doubling
bifurcation [24], where, possibly, the chaotic attractor
disappears in a boundary crisis bifurcation. This point
will be studied separately [25]. Increasing ε further, the
Floquet multipliers µ2,3 vary as indicated by the arrows
and become complex conjugate to each other for ε ≈
0.26319 (point B in Fig. 2).

For ε ≈ 0.417, there is another transition changing
the two-loop limit cycle into a single-loop orbit. This
is illustrated in the bottom panel of Fig. 4 and will be
studied separately [25].

-0.1
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Im
( 
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Re( µ2,3 )
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A
B

FIG. 2: (Color online) Floquet multipliers µ2 and µ3 in the
complex plain for ε ≥ 0.26312. UC denotes the unit circle,
and A is the bifurcation point. The multipliers are complex
conjugate to each other for ε > 0.26319 as indicated by B.

C. Local Lyapunov exponents

In Fig. 5 we apply Eq. (11) to the doubly-thermo-
stated oscillator in a stationary chaotic state, ε = 0.25.
For ℓ = 1 the GS and covariant local exponents are iden-
tical and are not shown. The case ℓ = 2 is treated in
the figure. The dashed green line denotes the covariant
local exponent, the smooth red line is for the local GS-
exponents, which is directly obtained from the simula-
tion invoking Gram-Schmidt re-orthonormalization. The

time interval τ is 0.01. The blue points for ΛGS
ℓ (t) are

computed with Eq. (11), where the covariant exponent
Λcov

ℓ (t) and the angle βℓℓ(t) are taken from the simula-
tion. The agreement is convincing. Similar results are
also obtained for ℓ = 3 and 4 (not shown).

In the bottom panel of Fig. 6 we demonstrate, for ℓ =
2, the general time-reversal symmetry for the local (time
dependent) covariant exponents (see Eq. (16)) which also
gives rise to the symmetry of the global (time-averaged)
exponents already encountered in Eq. (21). For ℓ = 1
the symmetry is also fully obeyed but not shown.

As emphasized already in Eq. (15), the local Gram-
Schmidt exponents generally do not have this symme-
try. This is explicitly shown in the top panel of Fig.
6. See also Ref. [22], where the same observation was
made. Only the subspaces in Eq. (10) spanned by con-
secutive Gram-Schmidt vectors have a simple dynamical
interpretation, but not the GS-vectors themselves. The
orthonormal GS-vectors are oriented such that for the
tangent space, tangent to the phase flow at the phase

point Γ(t), the subspaces (−)
g

1
(t) ⊕ · · · ⊕(−)

g
ℓ, with

ℓ ∈ {1, · · · , D}, are the most unstable subspaces of di-
mension ℓ going from time t to −∞ (i.e. the most stable
subspaces of dimension ℓ in the future). Although time
reversal converts a most stable subspace of dimension ℓ
into the most unstable subspace with the same dimen-
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FIG. 3: (Color online) Projection of a short chaotic trajec-
tory for ε = 0.10 (top) and ε = 0.25 (bottom) onto the qpz-
subspace.

sion, and vice versa, there is no obvious correlation of

the instantaneous Lyapunov exponents (−)ΛGS
ℓ (t) and

(+)ΛGS
D+1−ℓ(t) for ℓ = 1, · · · , D.

It is interesting to follow the time dependence of the
covariant local exponents, or more correctly expressed,
their variation for consecutive state points along the
phase-space trajectory (see Fig. 7). One observes that
the order of the exponents fluctuates and may even be
totally reversed with Λcov

1 (t) being most negative and
Λcov

4 (t) most positive. Also the number of stable and
unstable directions changes along the trajectory. This
indicates that the system is far from being hyperbolic.
We address this point more closely in the following sub-
section.

D. Hyperbolicity

We infer from Eq. (11) that the difference between
the local covariant and Gram-Schmidt exponents stems
from the fact that the angle between the respective vec-
tors deviates significantly from zero and varies with time.
But also the angles between covariant vectors, αij(t) ≡
arccos[(vi · v

j)/|vi||vj |] significantly change with time.

-2
-1

 0 -2
-1

 0
 1

-2

 0

z

ε = 0.28

q
p

z

-1
 0 -2

-1
 0

 1

-2

 0

z

ε = 0.45

q
p

z

FIG. 4: (Color online) Projection of the limit cycle for ε =
0.28 (top) and ε = 0.45 (bottom) onto the qpz-subspace.

This is demonstrated in the bottom panel of Fig. 8 for
the same nonequilibrium state (ε = 0.25) of the doubly-
thermostated oscillator discussed previously. There is an
intermittent tendency of any two pairs of vectors to get
parallel or antiparallel to each other. Using an explicit
expression for the angle α between the unstable manifold
span{v1} and the stable manifold span{v3, v4} [26], the
probability distribution of α is shown in the top panel of
Fig. 8. Since this probability is finite for arbitrarily small
α, the doubly-thermostated oscillator is not hyperbolic.

As was mentioned before, the associated local covari-
ant exponents are out of order for most of the time as in
Fig. 7. If Pi denotes the probability for Λcov

i to be out
of order with respect to any of the other exponents, one
finds for the doubly-thermostated oscillator (ε = 0.25)
{P1, · · · , P4} = {0.650, 0.813, 0.840, 0.645}. This clearly
demonstrates the strong entanglement between the co-
variant vectors. If the local exponents are time averaged
along the trajectory for time intervals ∆, the analogous

probabilities P
∆

i for the time-averaged exponents Λcov
i

∆

scale according to P
∆

i ∝ ∆−γi with γi > 0 for large-
enough ∆. This shows that the domination of the Os-
eledec splitting is violated for finite times.

Such a behavior is in contrast to the covariant dynam-
ics of hard-disk systems, for which the covariant vectors



8
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ε = 0.25

FIG. 5: (Color online) Time dependence of the local Lya-
punov exponents Λ2(t) in the forward direction of time for the
doubly-thermostated oscillator with ǫ = 0.25. The smooth
red curve denotes Gram-Schmidt exponents, directly obtained
with a re-orthonormalization procedure, the blue points are
computed with Eq. (11), using the covariant time-dependent
exponents Λcov

ℓ (also shown as green dashed line) and the
angles βℓℓ as input. For clarity, only every 20th point is de-
picted.

tend to avoid becoming parallel or antiparallel [7]. Thus,
whereas the hard-disk system is hyperbolic, the doubly-
thermostated oscillator is not.

E. Singularities of the local Lyapunov exponents

In the direction of the flow, the local Lyapunov ex-
ponents clearly are smooth functions of the time and,
hence, of the phase-space position along the trajectory,
see Fig. 5. But transverse to the flow this need not be the
case. Indeed, for the periodic Lorentz gas it was noted
by Gaspard [27, 28] that the local stretching factors are
discontinuous transverse to the flow. Since this model in-
volves hard elastic collisions of point particles with space-
fixed scatterers, the observed discontinuity might still be
thought to be a consequence of the discontinuous na-
ture of the flow. However, Dellago and Hoover showed
[29] that this is not the case. They found a discontinu-

ous local exponent ΛGS
1 along a path transverse to the

flow even for a time-continuous Hamiltonian system, a
chaotic pendulum on a spring. Of course, their result
also applies to Λcov

1 for that model. Here we provide
evidence for the doubly-thermostated oscillator in equi-
librium (ε = 0) that all local covariant exponents are
discontinuous along directions transverse to the flow.

For this simulation we slightly modify the protocol of
Section IV.
Phase 0: Starting at a phase point Γs at time zero,
the reference trajectory is followed backward in time to
−tω = −60, 000 and is periodically stored for intervals τ
along the way.

-2.0

-1.0

0.0

1.0

2.0

3.0

-10 -5  0  5  10

Λ
ℓ

G
S (t

)

t

(+)Λ3
GS(t) (−)Λ2

GS(t)

ε = 0.25

-2.0

-1.0

0.0

1.0

2.0

3.0

-10 -5  0  5  10

Λ
ℓ

co
v (t

) 

t

(+)Λ3
cov(t)

(−)Λ2
cov(t)

ε = 0.25

FIG. 6: (Color online) Doubly-thermostated oscillator for
ǫ = 0.25. Top panel: The Gram-Schmidt local Lyapunov
exponents do not display time-reversal symmetry. Bottom
panel: Display of time-reversal symmetry by the covariant lo-
cal exponents, (+)Λcov

ℓ = −
(−)Λcov

D+1−ℓ for ℓ = 2, Analogous
curves are obtained for the other ℓ, but are not shown.

Phase 1: The next phase is identical to phase 1 of Sec-
tion IV with one essential difference: For −tω ≤ t ≤ 0,
the previously-stored reference trajectory is now used in
the forward direction of time for the computation of the
Gram-Schmidt vectors, which assures that the trajectory
precisely arrives at Γs at time zero in spite of the inher-
ent Lyapunov instability. For 0 ≤ t ≤ tω the simulation
proceeds as in phase 1 of Section IV.
Phase 2: This is identical to phase 2 of Section IV and
provides us with the covariant vectors and the respective
local exponents in the interval −t0 < t < t0 and at the
time t = 0 in particular, when the state coincides with
the selected phase point Γs.

The whole procedure is repeated for starting points
Γs ≡ Γ0+s×(0, 0, 1, 0) on a straight line parallel to the z-
axis, which is parametrized by s. This line is transversal
to the flow, as may be inferred from Fig. 3.

As an example, we plot in the top panel of Fig. 9 the
local covariant exponent Λcov

4 (t) as a function of time
for 26 initial points Γs separated by ∆s = 2 × 10−3. It
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FIG. 7: (Color online) Doubly-thermostated oscillator with
ǫ = 0.25: Time dependence of all four local covariant Lya-
punov exponents.

should be noted that the scale on the t axis, converted
into distances along the trajectory, is about 200 times
coarser than that on the s axis. The ragged (red) line for
t = 0, which connects the local exponents for the selected
initial states Γs, is shown with much higher resolution
∆s = 1×10−4. This curve for Λcov

4 (t) is also reproduced
in the bottom panel of Fig. 9 together with an analo-
gous result for Λcov

1 (t). Both curves exhibit singularities
on many scales showing singular fractal character. There
are no obvious correlations between the two curves. The
singularities are due to bifurcations in the past history of
the trajectory. In view of Fig. 3, such a bifurcation may
be visualized, for example, by a transition of the trajec-
tory from the neighborhood of an unstable periodic orbit
to the neighborhood of another with a different number
of loops.

One may raise the question (as has been done by one
of the referees), how reliable the curves in Fig. 9 are in
view of the chaotic nature of the flow and problems of
shadowing due to the finite computational accuracy. An
increase of the Runge-Kutta integration time step dt by
a factor of four has no noticeable effect (less than 0.1%)
in Fig. 9, which also proved completely insensitive to a
reduction of the relaxation time tω of the algorithm by
a factor of two and of an increase of the time τ between
successive re-orthonormalization steps by the same fac-
tor. This robustness, however, does not apply to the lo-
cal exponents Λcov

2 and Λcov
3 (not shown), which belong

to the two-dimensional central manifold for this equilib-
rium system. The respective covariant vectors span this
subspace, but their precise orientations and their local
exponents are affected by details of the algorithm and do
not have direct physical significance.

For nonequilibrium stationary states the singular char-
acter of the local exponents in transverse directions is
expected to be even more pronounced, since even the
phase-space probability density becomes a multifractal
object [1, 16]. For the covariant exponent this cannot

0.0

0.4

0.8

1.2

1.6

2.0

π/2π/4 0

π
(α

)

α

ε = 0.25

0.0

1.0

2.0

3.0

 0  10  20  30

α i
j

t

i,j = 1,2
1,3
1,4
2,3
2,4
3,4

FIG. 8: (Color online) Doubly-thermostated oscillator with
ǫ = 0.25. Top panel: Probability distributions for the angle
α between the one-dimensional unstable manifold spanned
by v1 and the two-dimensional stable manifold spanned by
v3 and v4. Bottom panel: Time evolution of the angles αij

between the various covariant vectors v
i and v

j .

be shown with the present algorithm. The reason is
that during the time-reversed simulation in phase 0, the
phase volumes collapse yielding negative Lyapunov ex-
ponent sums. Since in phase 1 this trajectory is followed
in the opposite direction, the respective phase volumes
expand providing a positive sum of Lyapunov exponents,
but only up to time zero. For positive times the refer-
ence trajectory is calculated anew from the motion equa-
tions, again yielding contracting phase volumes. Thus,
the character of the flow changes at t = 0 and the Gram-
Schmidt vectors at first are non-relaxed and point into
wrong directions for positive times. Since these vectors
are required for the computation of covariant vectors at
and near zero time, the algorithm cannot be used to ob-
tain the covariant vectors and respective local exponents
at a pre-determined point Γs in phase space. For equilib-
rium states this restriction does not apply and the local
exponents may be computed for pre-specified phase-space
points.
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FIG. 9: (Color online) Covariant local Lyapunov exponent,
Λcov

4 , for the doubly-thermostated oscillator in equilibrium.
Top panel: Time dependence along trajectories, which, for
t = 0, are at the specified initial points Γs introduced in the
main text. These phase points lie on a straight line transverse
to the flow, and s specifies the precise position. The variation
of the local exponent along this straight line is shown as a
ragged red curve. Bottom panel: The ragged red curve with
label i = 4 is a magnified view of the respective line of the up-
per panel, representing the variation of Λcov

4 along a straight
line transverse to the flow in the phase space. The blue line
labelled i = 1 is an analogous curve for Λcov

1 .

VI. CONCLUDING REMARKS

For the doubly-thermostated oscillator in a nonequilib-
rium stationary state, there is a single vanishing global
exponent, λ2, due to the time-translation invariance of
the equations of motion. The corresponding covariant
vector, v

2(t), needs to be parallel (or antiparallel) to the

phase-space velocity Γ̇(t) ≡ {q̇(t), ṗ(t), ż(t), ẋ(t)}. We
have verified in our simulation that this is indeed the
case. The remaining vectors v

1, v
3 and v

4 are oriented
with angles fluctuating between 0 and π with respect to
Γ̇(t). The Gram-Schmidt vectors behave very differently.
Whereas the vector g

1 is identical to v
1, the vector g

2

is not parallel to Γ̇(t). Instead, the vectors g
3 and g

4

are perpendicular to Γ̇(t) as expected in view of the co-

variant subspaces of Eq. (10). These observations serve
as convenient consistency checks for the numerical pro-
cedure.

One of the remarkable features of the covariant local
Lyapunov exponents Λcov(Γ(t)) is their singular behav-
ior transverse to the phase flow, whereas they are ab-
solutely continuous in the direction of the flow. Fig.
9 provides an illuminating example. The singularities
are consequences of bifurcations in the past history. For
time-reversible systems, this statement also applies to bi-
furcations in the future. Still, the local exponents are
point functions in the phase space in the sense that one
always gets the same value at the state point in ques-
tion, as long as the trajectory has been followed from
far enough in the past (future) and has experienced the
same history. Due to the uniqueness of the solutions of
differential equations there is only this path to the state
point in question. The global exponents, however, are
time averages of the local exponents along an (ergodic)
trajectory.

We also applied the foregoing treatment to a number
of simple Hamiltonian systems, including the non-chaotic
scaled harmonic oscillator [30, 31] (for which the local GS
and covariant exponents may be computed analytically
[25]) and the Hénon-Heiles system [32–34]. In all cases
the expected symmetry properties of the local covariant
exponents were recovered.

A final remark concerns the doubly-thermostated
driven oscillator again. In a driven system (in our case a
single particle in a non-homogenous thermal field) heat
and, hence, entropy is generated, which needs to be com-
pensated by a negative entropy production in the ther-
mostat to achieve a stationary state. The excess heat is
transferred from the system to the thermostat (by the
positive friction zp > 0), where it disappears. It follows
from the thermostated motion equations in Sec. VA that
the external entropy production (of the reservoir) is given
by

Ṡ/k ≡
∂

∂Γ
· Γ̇ = z + x,

where k is the Boltzmann constant. In the non-
equilibrium situation, a full time average 〈z + x〉 is nec-
essarily positive. However, we have verified by simula-
tion that finite time averages of this quantity numerically
obey the steady-state fluctuation theorem originally dis-
covered by Evans, Cohen and Morriss [35]. This theorem
was given a firm theoretical basis by Gallavotti and Co-
hen [36, 37], by invoking the so-called ‘chaotic hypothe-
sis’ for Anosov-like systems. Although our system is not
Anosov-like, it still obeys the theorem.
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