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At equilibrium Nosé’s 1984 revolutionary thermostat idea linked Newton’s mechanics with Gibbs’
statistical mechanics. His work expanded the scope of isothermal and isobaric simulations. Nosé-
Hoover dynamics has subsequently facilitated the simulation and detailed understanding of nonequi-
librium problems. The fractal phase-space distributions, and their close link to the Lyapunov spec-
trum, provide a novel explanation of irreversibility and a rich field for exploration.
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I. INTRODUCTION TO NOSE’S MECHANICS

In the simple-fluid molecular dynamics of the 1960s
and 1970s the usual Hamiltonian was the sum of the ki-
netic and pair-potential energies K and ®:
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By the early 1970s mnonequilibrium simulations were
emerging, and temperature control (as measured by ki-
netic energy) of dynamical simulations was being imple-
mented by ad hoc velocity scaling[1, 2].

In the 1980s temperature control underwent a qual-
itative change. Shuichi Nosé was responsible for it[3,
4]. He discovered a most unusual, even revolutionary,
temperature-dependent Hamiltonian for thermostatting
# degrees of freedom:
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His new Hamiltonian included the extra pair of conjugate
control variables (s,ps). Nosé preferred to interpret s as
a “time-scaling” (as opposed to “mass-scaling”) variable.
The new variable controlled the kinetic energy through
feedback. Nosé’s augmented (“extended-system”) Hamil-
tonian led directly to his new (in 1984) equations of mo-
tion:

His related “time-scaled” equations of motion contain the
extra factor s:
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These new “time-scaled” equations are as follows:

{i=Lp=sPlo)} ;
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Nosé proved that either set of equations, original or time-
scaled, generates the canonical distribution (assuming er-
godicity) for the (g,p") = (¢, p/s) variables provided that
the time averages are properly weighted. See his two
1984 papers|3, 4] and his 1991 review[5] for the details.

Nosé stated that his work was strongly influenced by
Hans Andersen’s 1980 work|[6] in which the pressure fluc-
tuations characterising an isobaric ensemble were imple-
mented by a deterministic feedback force controlling vol-
ume. Andersen’s idea of using an extended Hamilto-
nian to regulate the pressure had independently been
applied to the simulation of nonequilibrium bulk and
shear viscosities[7]. Nosé’s breakthrough was the impo-
sition of canonical temperature fluctuations implemented
by an extended-system feedback force controlling kinetic
energy.

II. NOSE AND NOSE-HOOVER MECHANICS

As Nosé pointed out in his 1984 papers his scaled equa-
tions of motion can be usefully rewritten by replacing
the scaled momentum with a new “real” momentum:
[(p/s) — p]. Here I indicate this new momentum by
p in the rewritten equations:
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After meeting Nosé in Paris in 1984 T wrote a paper|[§]
emphasizing both the importance of the scaled equations
of motion and the complete irrelevance of the scaling vari-
able s. The scaling variable can be completely ignored
by writing the remaining motion equations as follows:

{mi*=p=F({r}) - (mr = F(r) - (p} ;
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where 7 is a phenomenological relaxation time. The fric-
tion coefficient { o< ps, which can be either positive or
negative, obeys a feedback equation which controls the
kinetic energy K to make its time average equal to Kj.
Applications of the three simpler equations proliferated
and, on the strength of my 1985 paper, these equations
were called the “Nosé-Hoover” thermostat equations.
The earlier ad hoc thermostatting equations of Wood-
cock and Ashurst corresponded to the special “Gaussian
Isokinetic” case of Nosé’s equations:

(Mo(72—>0)—><<—><GaUSS_M> .

> (p*/m)

III. DETTMANN’S HAMILTONIAN FOR
NOSE-HOOVER DYNAMICS

About a dozen years after meeting Nosé-san in Paris,
prior to a CECAM meeting, I met Carl Dettmann in
Lyon, also at a CECAM gathering (July, 1996), another
happy coincidence. Carl’s background in transformations
for astrophysical applications made it possible for him
to answer my question: “Is there a Hamiltonian giving
Nosé’s scaled equations without the need for time scal-
ing?”. Carl had the answer early the very next day[9, 10]:
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In retrospect it seems surprising that it took so long
(a dozen years) for the Hamiltonian generating the Nosé-
Hoover equations to be discovered. Nosé had written the

equivalent Lagrangian in his second 1984 paper[4] but
not the Hamiltonian, with its essential value, zero.

Along with many others inspired by Nosé’s work I
had pursued this problem for years. Nosé’s Hamiltonian,
with the usual kinetic energy divided by s2 and the loga-
rithmic temperature-dependent potential for s, #k7T In s,
certainly suggests whole families of modified Hamilto-
nians for investigation[l11]. For instance, Winkler[12]
studied the consequences of dividing the momenta by
s? rather than s. Had he tried /s instead, he would
have discovered Dettmann’s result. Kusnezov, Bulgac,
and Bauer[13] generalized the scaling approach by includ-
ing arbitrary functions of {q, p} rather than just powers
of s. It is very interesting that the much simpler idea,
dividing/multiplying the kinetic/potential energy by s,
was undiscovered until July of 1996[9]. Once known it
was promptly rediscovered, about a year later, in connec-
tion with the development of symplectic “Nosé-Poincaré”
integrators[14].

The most mysterious feature of Nosé’s Hamiltonian
(and Dettmann’s) is the “time-scaling” (or mass-scaling)
variable “s”. The significance of s is not apparent. Evi-
dently it is dimensionless, like an angle, and its conjugate
(angular) momentum p; is proportional to the friction co-
efficient (. The mystery of s’ identity need not be solved,
as “s” soon disappears. In the final “Nosé-Hoover” form
of the motion equations, although they can be traced
back to Dettmann’s Hamiltonian, “s” does not appear
at all.

A less mysterious direct route (suggested by Brad Ho-
lian) to the same destination, the Nosé-Hoover equations,
begins with the somewhat ad hoc control equation—
which can be related to Gauss’ Principle of Least
Constraint[15] and to Hamilton’s Principle of Least
Action[16]:

mit = F({r}) — (mr,

together with the question: “What must the control vari-
able ¢ be in order to produce Gibbs’ canonical constant-
temperature phase-space distribution?” The answer is
the Nosé-Hoover recipe for (:

[

IV. DYNAMICS AWAY FROM EQUILIBRIUM

Generating canonical distributions directly from dy-
namics was a boon to the simulation activities that fol-
lowed Alder and Wainwright’s, and Fermi’s, and Vine-
yard’s lead in the 1950s and 1960s. All that was required
was to add the control force involving the friction coefli-
cient ¢ to the ordinary equations of motion derived from
HUsual'

Away from equilibrium Nosé’s Hamiltonian route to
the control equations hit a roadblock. There is no con-
sistent way (known to me) to introduce a second tem-
perature into the Hamiltonian. Finding a solution to



this problem remains a major challenge. By contrast,
the Nosé-Hoover dynamic approach can deal with any
number of temperatures. For any degree of freedom g¢;,
thermostatted to its own individual temperature 7;, the
equation of motion is as follows:

migi = Fi({a}) —miGi¢i 5 G = K l) - 1] /77
KT;
where 7; describes the rate at which ¢; interacts with its
thermostat at the temperature T;.

When Carol and I visited Japan in 1989-1990, we were
quick to take advantage of Nosé’s idea. Working with
Tony De Groot, back at Livermore, and with several
other colleagues, some in Japan, we simulated the plastic
indentation of silicon, pressing an indentor into a ther-
mostatted specimen, represented by more than a million
Stillinger-Weber silicon atoms[17, 18]. See Figure 1. In
order to clarify the new ideas associated with Nosé’s ther-
mostat, let us detail three further examples: (i) a parti-
cle in a constant external field, (ii) a harmonic oscillator,
with and without temperature gradient, and (iii) a two-
dimensional heat-conducting crystal.

V. FIELD-DRIVEN DISSIPATIVE MOTION

Perhaps the simplest pedagogical example[19] of Nosé
and Nosé-Hoover dynamics is the steady motion of a ther-
mostatted particle in a gravitational field, ¢ = —q. In the
absence of a thermostat the particle accelerates continu-
ously:
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By adding friction we would expect a stationary nonequi-
librium state. Nosé’s Hamiltonian for this problem adds
the new variables (s,ps) = (s,¢). The resulting motion
remains Hamiltonian, and the kinetic energy p?/2 in-
creases quadratically in time while ¢2/2 approaches zero:
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“Scaling the time”, multiplies the four rate equations
by s and results in a different solution, in which the ki-
netic energy p?/2 diverges exponentially with time while
4?/2 is constant:

These same equations of motion, with the same solution,
follow from Dettmann’s Hamiltonian (a nonequilibrium
Hamiltonian in this case):
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The equivalent “Nosé-Hoover” equations—just three
first-order equations, rather than four, as s is finally
absent—have a simpler finite and stationary solution, in
accord with our physical expectations:

§=1-¢: ¢=¢"~1—

(¢,4,¢) = (t,1,1),

The velocity reaches a stable stationary state, in which
gravitational energy is steadily converted to heat by the
Nosé-Hoover thermostat. We consider next a harmonic
oscillator, which illustrates the complexity which can be
associated with realistic nonequilibrium states.

VI. HARMONIC OSCILLATOR, AT AND AWAY
FROM EQUILIBRIUM

After first meeting Shuichi in Paris in 1984, I learned
more about his mechanics by studying the thermostat-
ted harmonic oscillator problem, first in Lausanne[8] and
then in Vienna, with Harald Posch and Franz Veseley[20].
In terms of the oscillator mass m, force constant x, ther-
mal energy mkT, and thermostat relaxation time 7 the
problem is a set of three coupled ordinary differential
equations:
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When expressed in terms of dimensionless “reduced”
variables, the equations depend upon a single dimension-
less parameter, the ratio of the oscillator period to the
relaxation time 7. In their simplest form, the reduced
thermostatted oscillator equations for ¢ and p are

Gg=p; p=—-q—Cp;

where the reduced friction coefficient ¢ is obtained from
any of three equivalent choices for the third differential
equation:
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These relatively simple equations for (¢, p, () surprised
us with their relatively complicated solutions with many
interesting special cases. Depending upon the initial con-
ditions, the trajectories made up not only an infinite
number of regular “tubes”, each surrounding a stable pe-
riodic orbit—but also an unstable chaotic sea, contain-
ing all the tubes, and filling up the rest of the phase



space. The union of all these complicated distributions
can be expressed as a simple three-dimensional Gaussian
distribution, the simple stationary solution of Liouville’s
probability density flow equation df/d¢ = 0 in the phase
space:
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The probability density of the friction coefficient ¢ here is
Gaussian too, just as is the distribution of the coordinate
g and the momentum p.

The thermostatted harmonic oscillator problem offers
striking evidence for the inefficiencies of time scaling.
Consider, as a typical example, the simple periodic or-
bit detailed in Figure 7 of Reference 20. Good energy
conservation for this orbit with the fourth-order Runge-
Kutta method requires dt = 0.0000001 for Nosé’s orig-
inal equations of motion and dt = 0.01 for the Nosé-
Hoover equations. A detailed investigation shows that
the time-scaling factor s is the culprit, leading to phase-
space speeds,

UPhase = \/(q)2 + (p)2 + (5)2 + (p5)2 )

exceeding Nosé-Hoover and Dettmann speeds by more
than four orders of magnitude! But even with the time-
scaling difficulty removed, the Nosé-Hoover oscillator still
lacks ergodicity.

By adding a second control variable £, controlling ei-
ther the fourth moment[21, 22] (p*) or ( itself[23], the
(g,p, ¢, &) phase-space distribution can be made ergodic
for the oscillator, without the contained complexity of
the infinite family of regular tube solutions. The “chain
of thermostats” approach[23], controlling ¢ with &,

G=p;p=—q-Cp; (=p"-T—-€; E=C-T,

describes a nonequilibrium problem if T' is made to de-
pend upon the coordinate q:

Ty=1+cetanh(q) — [Too=1—€; Thoo=1+4¢€].
Control of the fourth moment[22, 24] provides an al-
ternative set of equations:

i=p;p=—q—Cp—E&°;
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For small € nothing out of the ordinary occurs with ei-
ther approach. The phase-space distribution is close to
Gaussian in each of the four variables. But larger e
values, corresponding to larger temperature gradients,
dT/dxz < e, provide interesting phase-space projections.
Figure 2 shows five time exposures of an ergodic four-
dimensional trajectory[24] with e = 1, projected into

the two-dimensional ((,&) plane. The transformation
of a one-dimensional (g¢,p,(,€) trajectory into a 1.77
fractional-dimensional “fractal” projected (¢, €) distribu-
tion [ the “Skiing Goose” rather than a two-dimensional
Gaussian | is clearly visible in Figure 2.

This type of transformation, to a fractal distribu-
tion, is in fact typical of nonequilibrium systems treated
with Nosé-Hoover mechanics. Let us consider next a
many-body example[25], before turning to the more gen-
eral situation[26, 27], together with the implications for
nonequilibrium statistical mechanics.

VII. HEAT CONDUCTING CRYSTAL

“p” crystals[28, 29] are probably the simplest model
systems with ordinary Fourier conductivity in one, two,
or three dimensions. The ¢* particles interact with
nearest-neighbor Hooke’s-Law springs and are addition-
ally tethered to their lattice sites with a quartic poten-
tial. Figure 3 shows individual particle trajectories[25]
for a crystal with a single “hot” particle (upper right)
and a single “cold” one (lower left). The phase space,
with 32 coordinates, 32 momenta, and two friction co-
efficients (Cuor, (coLp) is 66-dimensional, impossible to
visualize directly. But the distribution is nevertheless
fractal. This can be shown by following the rate of ex-
pansion, in phase space, of a small element of volume,

® = I(dqdp) x d{uoTd{coLp:

dln®/dt = —Caor — {coLp = Z Ai(t) .

The 66 instantaneous Lyapunov exponents
{M(t), A2(t), ..., Nes(t)} give the rates of expan-
sion or contraction of particular infinitesimal
1—,2—,...,66—dimensional volumes in the 66-
dimensional phase space. The largest exponent

(when time-averaged), A1 = (A\1(t)), gives the average
rate at which two nearby trajectories separate. The
sum of the largest two exponents, A\; + A2, corresponds
to the rate at which an area defined by three nearby
trajectories, increases. For this example the first 53
exponents, whose sum describes the growth rate of a
53-dimensional phase-space volume, have a positive sum,
while adding on half the 54th exponent changes the sign
from positive to negative. See Figure 4 for the exponent
values. In geometric terms this vanishing exponent
sum means that the steady-state dimensionality of the
phase-space distribution is between 53 and 54 (actually
53.5 according to Kaplan and Yorke’s conjectured[24]
linear interpolation between the last positive and first
negative sums). The reduction in dimensionality of
AD = 66 — 53.5 = 12.5 describes the extreme rarity of
nonequilibrium states relative to equilibrium ones for
this system.



VIII. THE GENERAL SITUATION

Generally Nosé-Hoover mechanics makes it possible
to connect the time-rates-of-change of phase volume ®,
probability density f, and external entropy .S to the fric-
tion coefficients {(;(T;)} and to the time-averaged Lya-
punov spectrum {A; = (\;(¢))}, where the angular brack-
ets indicate a longtime average:

—(dIn®/dt) = +{dIn f/dt) =Y ((;) =
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The final inequality is the Second Law of Thermody-

namics. The chain of inequalities relates the loss of mi-

croscopic phase-space dimensionality to the macroscopic

rate of entropy production.

These connections between dynamics, thermodynam-
ics, and chaos theory appear to be quite general, but
are most easily established with Nosé-Hoover mechanics.
In an important independent development Jarzynski[30]
used the exact connection between phase volume and the
Nosé-Hoover friction coefficient ¢ to establish his free en-
ergy identity for nonequilibrium systems. This identity
relates the nonequilibrium finite-time work W (averaged
over an initial canonical ensemble) to the equilibrium
reversible-work Helmholtz free energy change :

<eW/kT> — o~ AA/KT
Although the practical utility of the identity is
limited[31], its pedagogical importance in linking equi-
librium and nonequilibrium processes[32] is a profound
and stimulating benefit of Nosé’s work.

The fractal nature of the nonequilibrium distribu-
tions, together with the time reversibility of the mo-
tion equations, also provides a physical interpretation of
irreversibility[33, 34]. Motion in the forward direction is
invariably less unstable than motion in the reverse direc-
tion;

Aforward = _)\backward —
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forward backward

Thus any uncertainty or perturbation to a trajectory, no
matter how small, will, when reversed, cause the trajec-
tory to choose the direction of increasing entropy with
overwhelming probability.

Nosé’s work not only made it possible to simulate sys-
tems at equilibrium. It also contributed, in an unex-
pected way, to a detailed understanding of systems far
from equilibrium. There remains much more to do. In
particular, the optimization of thermostats and the anal-
yses of reduced phase-space dimensionalities are fertile
research fields for the future. There is also considerable
activity in thermostatted integration algorithms, both at,
and away from, equilibrium[35-37].

IX. HISTORICAL REMARKS

Shuichi Nosé’s thermostat ideas were so novel in 1984
that it took me months to understand them. We first
met on a train platform at the Orly airport, in Paris. It
was fortunate for me that his suitcase bore a large la-
bel: “NOSE”. We talked on the train and arranged for a
long technical conversation on a bench in front of Notre
Dame. I had a list of twelve questions which had puzzled
me about his ideas [ mainly having to do with the signif-
icance of “s” ], and we went through them thoroughly.
That conversation changed the direction of my research
career. I had been working on nonequilibrium simula-
tions, but without the analytic tools provided by Nosé’s
fresh approach.

Nosé-san kindly invited me for a sabbatical year at
Keio University 1989-1990. A fringe benefit of this in-
vitation was my marriage to Carol, in preparation for
living together in Japan. My son Nathan’s family was
already established in Tokyo, where my first grandson,
Beau Chiyofuji Hoover, was born during a February bliz-
zard in 1992. Carol’s sister Sandi, her Mother Mabel, my
daughter Frannie’s family, and my own parents Edgar
and Mary also visited Japan and got acquainted with
Shuichi, his son Atsushi, and his wife Ibuki. We made
many other friends in Japan and are forever grateful to
Shuichi for his kindness and inspiration and to his family
and colleagues for the memories which he has left with
us.

Acknowledgments

This work began with a kind invitation from Hiroyuki
Hyuga to attend Nosé-san’s Memorial Meeting in Yoko-
hama. Harald Posch, Michel Cuendet, Carl Dettmann,
Ben Leimkuhler, and Stephen Bond kindly read the first
draft and made several useful comments. Michel em-
phasized the usefulness of Nosé’s work to establishing
Jarzynski’s identity.

The Symposium itself was satisfying and stimulating.
We renewed some old friendships and made new ones. It
was a pleasure to see many of Shuichi’s students carrying
on his tradition. Toshio and Naoe Kawai, Koichiro Shida,
and Taisuke and Satome Boku smoothed the way for our
travels, and Taisuke made it possible for Carol and me
to present our work to his colleagues at Tsukuba.

Carol’s travel was supported by the Academy of Ap-
plied Science (Concord, New Hampshire) through a grant
administered by Great Basin College (Elko, Nevada).
Kenji Yasuoka’s organizational help was greatly appre-
ciated.



[1] L. Woodcock, “Isothermal Molecular Dynamics Calcu-
lations for Liquid Salts”, Chemical Physics Letters 10,
257-261 (1971).

2] W. T. Ashurst and W. G. Hoover, “Dense Fluid
Shear Viscosity via Nonequilibrium Molecular Dynam-
ics”, Physical Review A 11, 658-678 (1975).

[3] S. Nosé, “A Molecular Dynamics Method for Simulations
in the Canonical Ensemble”, Molecular Physics 52, 255-
268 (1984).

[4] S. Nosé, “A Unified Formulation of the Constant Temper-
ature Molecular Dynamics Methods”, Journal of Chemi-
cal Physics 81, 511-519 (1984), Section IIB.

[6] S. Nosé, “Constant Temperature Molecular Dynamics
Methods”, Progress of Theoretical Physics Supplement
103 (Molecular Dynamics Simulations, S. Nosé, Editor),
1-46 (1991).

[6] H. C. Andersen, “Molecular Dynamics Simulations at
Constant Pressure and/or Temperature”, Journal of
Chemical Physics, 72, 2384-2393.(1980).

[7] W. G. Hoover, “Adiabatic Hamiltonian Deformation,
Linear Response Theory, and Nonequilibrium Molecular
Dynamics”, pages 373-380 in Systems Far From Equilib-
rium, Volume 132, Lecture Notes in Physics, H. Araki,
J. Ehlers, K. Hepp, R. Rippenhahn, H. A. Weidenmdiller,
and J. Zittartz, Editors (Springer-Verlag, New York,
1980). [Proceedings of the Sitges Conference on Statis-
tical Mechanics, June 1980, Sitges, Spain.]

[8] W. G. Hoover, “Canonical Dynamics: Equilibrium
Phase-Space Distributions”, Physical Review A 31, 1695-
1697 (1985).

[9] Wm. G. Hoover, “Mécanique de Nonéquilibre a la Cali-
fornienne”, Physica A 240, 1-11 (1997).

[10] C. P. Dettmann and G. P. Morriss, “Hamiltonian Refor-
mulation and Pairing of Lyapunov Exponents for Nosé-
Hoover Dynamics”, Physical Review E 55, 3693-3696
(1997).

[11] W. G. Hoover, “Generalization of Nosé’s Isothermal
Molecular Dynamics: NonHamiltonian Dynamics for the
Canonical Ensemble”, Physical Review A 40, 2814-2815
(1989).

[12] R. G. Winkler, “Extended-Phase-Space Isothermal
Molecular Dynamics: Canonical Harmonic Oscillator”,
Physical Review A 45, 2250-2255 (1992).

[13] D. Kusnezov, A. Bulgac and W. Bauer, “Canonical En-
sembles from Chaos”, Annals of Physics (New York) 204,
155-185 (1990).

[14] S. D. Bond, B. J. Leimkuhler, and B. B. Laird, “The
Nosé-Poincaré Method for Constant Temperature Molec-
ular Dynamics”, Journal of Computational Physics 151,
114-134 (1999).

[15] D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and
A. J. C. Ladd, “Nonequilibrium Molecular Dynamics via
Gauss’ Principle of Least Constraint”, Physical Review
A 28, 1016-1021 (1983).

[16] Wm. G. Hoover, “Time Reversibility in Nonequilibrium
Thermomechanics, Physica D 112, 225-240 (1998).

[17] W. G. Hoover, A. J. De Groot, C. G. Hoover, I. F. Stow-
ers, T. Kawai, B. L. Holian, T. Boku, S. Ihara, and J.
Belak, “Large-Scale Elastic-Plastic Indentation Simula-
tions via Nonequilibrium Molecular Dynamics”, Physical
Review A 42, 5844-5853 (1990).

[18] J. S. Kallman, W. G. Hoover, C. G. Hoover, A. J. De
Groot, S. M. Lee, and F. Wooten, “Molecular Dynamics
of Silicon Indentation”, Physical Review B 47, 7705-7709
(1993).

[19] W. G. Hoover, “Reversible Mechanics and Time’s Ar-
row”, Physical Review A 37, 252-257 (1988).

[20] H. A. Posch, W. G. Hoover, and F. J. Vesely, “Canonical
Dynamics of the Nosé Oscillator: Stability, Order, and
Chaos”, Physical Review A 33, 4253-4265 (1986).

[21] Wm. G. Hoover, Molecular Dynamics, Volume 258, Lec-
ture Notes in Physics, H. Araki, J. Ehlers, K. Hepp, R.
Rippenhahn, H. A. Weidenmiiller, and J. Zittartz, Edi-
tors (Springer-Verlag, New York, 1986). See page 30.

[22] Wm. G. Hoover and B. L. Holian, “Kinetic Moments
Method for the Canonical Ensemble Distribution”, Phys-
ical Letters A 211, 253-257 (1996).

[23] C. J. Martyna, M. L. Klein, and M. Tuckerman, “Nosé-
Hoover Chains—the Canonical Ensemble via Continuous
Dynamics”, Journal of Chemical Physics 97, 2635-2643
(1992).

[24] Wm. G. Hoover, C. G. Hoover, H. A. Posch, and J.
A. Codelli, “The Second Law of Thermodynamics and
MultiFractal Distribution Functions: Bin Counting, Pair
Correlations, and the [definite failure of the] Kaplan-
Yorke Conjecture”, Communications in Nonlinear Sci-
ence and Numerical Simulation (Available “online” 7
April 2005; to appear in print in 2006 or 2007).

[25] Wm. G. Hoover, H. A. Posch, K. Aoki, and D. Kusne-
zov, “Remarks on NonHamiltonian Statistical Mechan-
ics: Lyapunov Exponents and Phase-Space Dimensional-
ity Loss”, Europhysics Letters 60, 337-341 (2002).

[26] Wm. G. Hoover, Computational Statistical Mechanics
(Elsevier, New York, 1991).

[27] Wm. G. Hoover, Computer Simulation, Time Reversib-
lity, and Chaos (World Scientific Publishing, Singapore,
1999 and 2001).

[28] K. Aoki and D. Kusnezov, “Bulk Properties of Anhar-
monic Chains in Strong Thermal Gradients: Nonequi-
librium ‘¢*’ Theory”, Physics Letters A 265, 250-256
(2000).

[29] Wm. G. Hoover, K. Aoki, C. G. Hoover, and S. V. De
Groot, “Time-Reversible Deterministic Thermostats”,
Physica D 187, 253-267 (2004).

[30] C. Jarzynski, “Nonequilibrium Equality for Free En-
ergy Differences”, Physical Review Letters 78, 2690-2693
(1997).

[31] H. Oberhofer, C. Dellago, and P. L. Geisller, “Bi-
ased Sampling of Nonequilibrium Trajectories: Can Fast
Switching Simulations Outperform Convetional Free En-
ergy Calculation Methods?”, Journal of Physical Chem-
istry B 109 6902-6915 (2005).

[32] R. C. Lua and A. Y. Grosberg, “Practical Applicabil-
ity of the Jarzynski Relation in Statistical Mechanics: a
Pedagogical Example”, Journal of Physical Chemistry B
109 6805-6811 (2005).

[33] B. Moran, W. G. Hoover, and S. Bestiale, “Diffusion in a
Periodic Lorenz Gas”, Journal of Statistical Physics 48,
709-726 (1987).

[34] B. L. Holian, W. G. Hoover, and H. A. Posch, “Resolu-
tion of Loschmidt’s Paradox: the Origin of Irreversible
Behavior in Reversible Atomistic Dynamics”, Physical



Review Letters 59, 10-13 (1987).

B. L. Holian, A. J. De Groot, Wm. G. Hoover, and C.
G. Hoover, “Time-Reversible Equilibrium and Nonequi-
librium Isothermal-Isobaric Simulations with Centered-
Difference Stoermer Algorithms”, Physical Review A 41,
4552-4553 (1990).

S. Nosé, “An Improved Symplectic Integrator for Nosé-
Poincaré Thermostat”, Journal of the Physical Society of
Japan, 70, 75-77 (2001).

A. Samoletov, M. Chaplain,
“The Smoluchowski Thermostat”
http://arxiv.org/abs/physics/0412163).

and C. Dettmann,
(2006 preprint,

Figure 3: Trajectories in a 4 X 4-particle conducting
solid described with Nosé-Hoover thermostatted dynam-
ics. The upper right and lower left particles are respec-
tively “hot” and “cold”. See Reference [25] for details.

Figure 1: Indentation of a thermostatted Stillinger-
Weber silicon sample using a rigid indentor. See Refer-
ences [17] and [18] for details.

Figure 4: Equilibrium (dashes) and Nonequilibrium (plus
signs) Lyapunov Spectra for the 16-particle solid of Fig-
ure 3. The underlying information dimension of the mul-
tifractal nonequilibrium distribution function is 53.5. At
equilibrium the dimensionality is 66. See Reference [25]
for details.

Figure 2: The Skiing Goose: development of
a multifractal phase-space distribution from a one-
dimensional trajectory. The intervals between the plot-
ted trajectory points in this ((,€) projection are
{dt, 10dt,10%dt, 10°dt, 10*dt}, where dt is the fourth-
order Runge-Kutta timestep, 0.001. See Reference [24]
for details.
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