Theory of Hamiltonian Thermostats for Molecular Dynamics Simulations

Wm G Hoover & C G Hoover Great Basin College, Nevada http://williamhoover.info

- 1. Molecular Dynamics Simulations.
- 2. Why Thermostats are Needed.
- Four Example ∠ and ℋ Thermostats:
 Gauss-Rescaling and Nosé-Hoover;
 Configurational and Kinetic.
- 4. Problems for \mathcal{L} and \mathcal{H} Mechanics.

Overview of California and Nevada

Ruby Valley

Nonequilibrium Molecular Dynamics

Wm G Hoover & Carol G Hoover UCDavis, LLNL, and Ruby Valley NV

Ruby Valley Neighbors

Local Ruby Valley Industry

Theory of Hamiltonian Thermostats for Molecular Dynamics Simulations

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

1. Molecular Dynamics Simulations

Molecular Dynamics Simulations

 Equations of Motion are either first-order or second-order ordinary differential equations :

$$\{\dot{\mathbf{q}},\dot{\mathbf{p}}\}\$$
or $\{\dot{\mathbf{q}}\}$

- Periodic Boundary Conditions are the simplest, and have been applied to both shear flows and heat flows.
- Fourth-order Runge-Kutta is the simplest solution algorithm.

Periodic Solid-Phase Shear

Four-Chamber Periodic Heat Flow

Thermostatted Metal Cutting

Lennard-Jones Crystal

Embedded-Atom (Metal)

Molecular Dynamics Simulations

 Temperature and Pressure are typically expressed in terms of momenta and forces, at, and away from, equilibrium:

$$\begin{split} &E=K(p)+\Phi(q);\\ &PV=\sum_{i< j}Fr+\sum_{i}pp/m;\\ &kT(p)=< p^2/2m> or\ kT_c(q)=< F^2/\nabla^2H>. \end{split}$$

 Configurational Temperature T_c is both old (Landau-Lifshitz) and "new" (Rugh).

Theory of Hamiltonian Thermostats for Molecular Dynamics Simulations

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

2. The Need for NEMD Thermostats

Molecular Dynamics Simulations

- Nonequilibrium simulations typically generate irreversible heat, proportional to the squares of the velocity or temperature gradients.
- To remove this heat Thermostats are required.
 How can we find appropriate thermostats?
- We will consider here four thermostat types :
 - 1. "Velocity scaling" [Woodcock, Ashurst]
 - 2. "Nose-Hoover" [Dettmann → Morriss]
 - 3. "Configurational \mathcal{L} and \mathcal{H} " [Landau-Lifshitz]
 - 4. "Constrained \mathcal{L} and \mathcal{H} " [Hoover \leftarrow Leete]

Heat Transfer *via*Two Thermostatted Boundaries

Shuichi Nosé Keio University Yokohama 1987

Shūichi Nosé Keio University Yokohama 1987

Heat Conduction in 2D \$\phi^4\$ Slab

$$\Phi_{\text{Newton}} = \sum_{\text{sites}} \delta^4 / 4 + \sum_{\text{pairs}} (|\mathbf{r}| - 1)^2 / 2.$$

Hoover, Aoki, Hoover, and De Groot Physica D (2004)

Four COLD Particles & Four HOT Particles

Theory of Hamiltonian Thermostats for Molecular Dynamics Simulations

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

3. Four Example Thermostats

3A. The Isokinetic Thermostat

- Velocity rescaling: $p_0 = p[K_0/K]^{1/2}$.
- Continuous rescaling: dp/dt = $F \zeta p$, with $\zeta = \sum F \cdot p / \sum (p^2/m) \rightarrow dK/dt = 0$.
- Dettmann-Morris Hamiltonian : $\mathcal{H}(q,p) = K(p)e^{+\Phi/2K_0} K_0e^{-\Phi/2K_0} = 0 !$

All three approaches [1971, 1980, 1996] are equivalent!

Isokinetic $\mathcal{H}(q,p)$ Details

$$\mathcal{H}(q,p) = K(p)e^{+\Phi/2K_0} - K_0e^{-\Phi/2K_0} = 0 \ !$$
 This implies that $K/K_0 = e^{-\Phi/K_0}$. Compute Hamiltonian motion equations :

- $mdq/dt = pe^{+\Phi/2K_0}$; $dp/dt = Fe^{-\Phi/2K_0}$;
 - giving the familiar isokinetic equations
- $md^2q/dt^2 = F \zeta p$; $\zeta = [\Sigma F \cdot dq/dt/2K_0]$.

3A. Isokinetic Thermostat

- The Isokinetic thermostat preserves Gibbs' configurational distribution:
- $f(q,t) \sim e^{-\Phi/kT} \rightarrow d\ln f/dt = -(d\Phi/dt)/kT = \sum Fp/kT$.
- Alternatively, from the isokinetic dynamics and Liouville's Theorem :

$$dlnf/dt = \Sigma[\partial \dot{q} / \partial q + \partial \dot{p} / \partial p] = \Sigma \varsigma$$

• The two approaches agree with the result of Gauss' $<F_c^2>$ Principle $\rightarrow \zeta = \Sigma Fp/\Sigma p^2/m$.

3B. Nosé-Hoover Thermostat

 Carl Dettmann (Lyon, in 1996) discovered the vanishing Nosé-Hoover Hamiltonian

```
\mathcal{H}(q,p) = [K(p)/s] + s[\Phi + \zeta^2\tau^2/2 + \#kTlns] = 0 !
Familiar equations of motion result :
\{ dq/dt = p/m ; dp/dt = F - \zeta p \} ; \text{ where}
d\zeta/dt = [(K/K_0) - 1]/\tau^2 .
```

Now Liouville's Theorem gives the full

$$f(q,p,t) \sim e^{-\mathcal{H}/kT} \rightarrow dlnf/dt = \sum \zeta_{Nosé-Hoover}$$
.

With Fujiwara-sensei in 1990 @ Keio

ELSEVIER

Free pdf file available at http://williamhoover.info

3C. Configurational Thermostat

 The Configurational Temperature* follows from a canonical-ensemble integration by parts:

$$\begin{split} kT \int & \nabla^2 \Phi e^{-\Phi/kT} dq = \int (\nabla \Phi)^2 e^{-\Phi/kT} dq \rightarrow \\ kT_c = & < F^2 > / < \nabla^2 \Phi > \end{split}$$

* [Landau & Lifshitz' (1938 or 1958) Equation 33.14]

3C. Configurational Thermostat

The Configurational Temperature (or even several different temperatures $\{T_c\}$) can be imposed with a constrained Lagrangian :

$$\mathcal{L}(q,dq/dt) = K(dq/dt) - \Phi + \lambda(T_c - T_0).$$

Two time differentiations \rightarrow d²T_c/dt², taking care to choose T_c and dT_c/dt wisely, give λ . Then both T_c and the total energy, E = K + Φ , are constants of the motion.

3D. Hoover-Leete* Thermostat

The Hoover-Leete Kinetic Temperature comes from Goldstein's mechanics using either a Lagrangian or a Hamiltonian approach:

$$\mathcal{L}(q,v = dq/dt) = K(v) - \Phi(q) + \lambda [K(v) - K_0].$$

$$\mathcal{H}(q,p) = \sum p \cdot v - \mathcal{L}(q,v), \text{ which gives}$$

$$\mathcal{H}(q,p) = [4K(p)K_0]^{1/2} + \Phi(q) - K_0.$$

In both these cases it is evident that two or more temperatures can be included.

* [Tom Leete's Master's Thesis, 1979, U WV]

Theory of Hamiltonian Thermostats for Molecular Dynamics Simulations

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

4. Problems with the Lagrangian or Hamiltonian Thermostat Approach

4. Problems for the Theory

The Gaussian Isokinetic and Nosé-Hoover Hamiltonians both use the trick $\mathcal{H}=0$. There is no way to include two temperatures with such an approach. Instead, the dynamical equations have to be adopted. Both these dynamic approaches give Second-Law MultiFractal phase-space distributions.

The Configurational and Hoover-Leete Kinetic Lagrangians and Hamiltonians both can include more than one temperature, but both have *two* constants of the motion. Accordingly, *neither* gives **fractals**.

Next time we will consider Computational Results .

Rogues' Gallery of Thermostaters

Results with Hamiltonian Thermostats in Molecular Dynamics Simulations

Wm G Hoover & C G Hoover

Great Basin College, Nevada

http://williamhoover.info

- 1. Four Thermostat Types.
- 2. Periodic Heat Flow Problem.
- 3. Aoki-Kusnezov \$\phi^4\$ Model System .
- 4. Continuum Solution of the Problem.
- 5. Gauss & Nosé-Hoover Results.
- 6. Hoover-Leete & Landau-Lifshitz Results.
- 7. Summary and Suggestions.

Results using Hamiltonian Thermostats in Molecular Dynamics Simulations

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

1. Four Thermostat Types

We considered Four Thermostats

Two came from an ad hoc friction idea:

$$dq/dt = p/m$$
; $dp/dt = F - \zeta p$,

Where ζ is either Isokinetic or Nosé-Hoover.

Two came from Lagrangians:

$$\mathcal{L}_{HL}(q,v) = K(v) - \Phi + \lambda [K(v) - K_0]$$

$$\mathcal{L}_{LL}(q,v) = K(v) - \Phi + \lambda [T(q) - T_0].$$

Results using Hamiltonian Thermostats in Molecular Dynamics Simulations

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

2. Periodic Heat Flow Problem

Four Chamber Periodic Problem

2. Periodic Heat Flow Problem [HOT + Newton + COLD + Newton]

$$\Phi = \sum_{i < j} \kappa_{ij} \delta_{ij}^{2}/2 + \sum_{i} \kappa_{i} \delta_{i}^{4}/4 ,$$
Plus *control* using HOT and COLD Thermostats .

Aoki and Kusnezov have determined a 1-D heat conductivity for $\kappa_{ij} = \kappa_i = 1$:

$$\kappa_{\text{Heat}} \sim 3 \text{T}^{-4/3}$$

Dimitri Kusnezov & Kenichiro Aoki

Colorado

Tokyo

Heat Conduction in 2D \$\phi^4\$ Slab

$$\Phi_{\text{Newton}} = \sum_{\text{sites}} \delta^4 / 4 + \sum_{\text{pairs}} (|\mathbf{r}| - 1)^2 / 2.$$

Hoover, Aoki, Hoover, and De Groot Physica D (2004)

Four COLD Particles + Four HOT Particles

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

3. Aoki-Kusnezov ϕ^4 Model System

$$\Phi \text{Newton} = \sum_{\text{sites}} \delta^4/4 + \sum_{\text{pairs}} (|\mathbf{r}| - 1)^2/2.$$

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

4. The Continuum Solution

Solving the Periodic Heat Flow Problem[HOT + Newton + COLD + Newton]

$$\dot{\mathbf{T}} = \nabla[(3/\mathbf{T}^{4/3})\nabla\mathbf{T}] \pm \alpha\mathbf{T}$$

We can solve this Heat Flow Problem with Fourth-order Runge-Kutta integration on a one-dimensional mesh.

Finite-Difference Temperature

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

5. Gauss & Nosé-Hoover Thermostats

Gauss & Nosé-Hoover Profiles : Kinetic & Configurational T(x)

HOT and **COLD** Heat Fluxes

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

6. Hoover-Leete Thermostat Landau-Lifshitz Thermostat

Hoover-Leete & Landau-Lifshitz Kinetic & Configurational T(x).

Characteristics of the Hoover-Leete & Landau-Lifshitz "Nonequilibria"

Though the local T(q) or T(p) can be constrained, no fluxes result.

T(p) constrained $\rightarrow T(q)$ constant; T(q) constrained $\rightarrow T(p)$ constant.

Characteristics of the Hoover-Leete & Landau-Lifshitz "Nonequilibria"

Phase Volume is Conserved, in Violation of the Second Law.

Total Energy is Fixed while some Temperatures are also, in Violation of Thermodynamics.

Generic Nonequilibrium Phase Space Flow

Continuous Orbit→**Multifractals**

Dimensionality of Skiing Goose: 2.0 or 1.77

W G Hoover & C G Hoover University of California & Great Basin College, Nevada

7. Summary & Suggestions

7. Summary and Suggestions

- 1. *All* useful single-T Thermostats *can* be related to Hamiltonian Mechanics.
- 2. Hamiltonian Thermostats fix *both* the Energy and the Temperature!
- 3. Hamiltonian Thermostats work, but cannot provide Heat Flow. Why Not?
- 4. Fractal distributions provide a clue; Hamiltonians → phase conservation.