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Computational physics with particles
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Microscopic and macroscopic particle simulation techniques are useful introductions to
computational physics. These techniques make it possible to simulate complex problems in fluid and
solid mechanics, including laminar and turbulent flows, shockwaves, as well as fracture and failure
in solids. We illustrate several particle-based techniques with several examples. © 2008 American
Association of Physics Teachers.
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I. INTRODUCTION

Because mesh-based finite-element techniques involve
complex geometry and are prone to numerical instabilities,
simulations of material flows are simplest using particles.1–4

Particles move according to ordinary differential equations,
which are relatively simple to formulate and to solve. From
the atomistic viewpoint it is natural to use particles. Typical
atomistic particles attract one another at long range and repel
at short range. Gases, liquids, and solids can all be described
by particle models of this kind. This computational particle
description is called molecular dynamics, and originated
about 50 years ago at the Los Alamos, Livermore, and
Brookhaven National Laboratories.5–9 The computational re-
quirement is to solve the particle equations of motion,

mr̈ = mv̇ = Fatomistic + Fboundary + Fconstraints + Fdriving, �1�

where the boundary, constraint, and driving forces are used
to control the motion of the atoms.

A solution of these equations gives the history of the co-
ordinates r�t� and velocities v�t� which together give the
state of the system. Because the additional forces �boundary,
constraint, and driving� typically involve non-Hamiltonian
dissipation, the usual symplectic integrators appropriate to
Hamiltonian mechanics cannot be used for these problems.
Numerical solutions of the first-order �in �d /dt�� ordinary
differential equations of motion are most simply obtained by
applying the Runge-Kutta method. The fourth-order Runge-
Kutta method and its Fortran language implementation is
given in Ref. 2, Sec. 1.6 and can be freely downloaded.4 The
Fortran and the equivalent C language implementations can
be found in Ref. 3, Sec. 4.4. The full set of equations can
conveniently be thought of as a single first-order equation
describing the motion of a vector in the state space of the
system.

The World War II computers which first made solving
these equations possible were limited to just a few dozen
particles. With increasing computer speeds simulations with
millions or even billions of particles are possible today.7,8

Such particle simulations can be a powerful aid to under-
standing material behavior. Watching the atomistic details of
a melting crystal,10 the formation of convection rolls in a
heated fluid,11 the development of shockwaves12 and phase
interfaces13 provides a powerful incentive to understand
macroscopic behavior in terms of microscopic models. The
combination of computation with fast computer graphics
provides an exciting hands-on grasp of physics.

Microscopic particle simulations can most easily be re-
PY 007803AJP  

lated to the macroscopic descriptions of thermodynamics and
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hydrodynamics by using a particle description of macro-
scopic continuous matter. Continuum mechanics needs to be
used because the short time and distance scales of molecular
dynamics are too short and small for real-life problems. In
continuum mechanics, the density, velocity, and energy are
continuous functions of time and space.2,3 The evolution of
the continuous functions ��r , t�, v�r , t�, e�r , t� is described by
partial differential equations which include the gradients of
the pressure tensor P and the heat flux vector Q:

�̇ = − � � · v , �2a�

�v̇ = − � · P , �2b�

�ė = − �v:P − � · Q . �2c�

The colon notation used here—consider A :B as an
example—indicates a tensor sum of all the terms of the form
AijBij. There are four such terms for two-dimensional sys-
tems and nine for three-dimensional systems. A clever inter-
polation technique makes it possible to solve these con-
tinuum equations with a particle technique �smooth particle
applied mechanics which closely resembles molecular dy-
namics �see Sec. VIII�.

In the following we first consider two pedagogical one-
dimensional problems, one equilibrium and one nonequilib-
rium. Then we illustrate the microscopic and the macro-
scopic particle techniques for a two-dimensional problem,
the equilibration and collapse of a column of fluid exposed to
a gravitational field. We also describe other applications for
both fluids and solids. Although our example problems are
given for one- or two-dimensional systems, the same tech-
niques are easily applied in three dimensions. For references
to many problems of this kind see Ref. 4.

II. OVERVIEW OF MOLECULAR DYNAMICS

One of the first applications of molecular dynamics was
Vineyard’s 1959 simulations9 �see Fig. 1� of radiation dam-
age in crystalline metals. His goal was to model real materi-
als, such as copper, which were exposed to energetic radia-
tion. Most of the other work until about 1980 focused instead
on theoretical considerations, assessing the validity of statis-
tical mechanics by obtaining the equation of state14 and
transport coefficients15 from simple expressions for the tem-
perature, pressure, and energy, along with the nonequilibrium
currents described by Green and Kubo’s linear response
theory. By 1990 it was possible to simulate realistic systems
with one million atoms.16 Today simulations with many mil-

lions of atoms are routine and short simulations with billions 101

1© 2008 American Association of Physics Teachers
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�thousands of millions� of atoms have been done on large
scale weapons laboratory computers7,8 �see Fig. 2�.

Many problems today deal with systems away from equi-
librium. Corresponding algorithmic formulations of bound-
ary conditions such as prescribing the time dependence of
the motion or stress and temperature or heat flow are essen-
tial ingredients of simulations of such nonequilibrium
processes.17 In the 1980s control theory began to be used to
impose the kinetic temperature or pressure-tensor compo-
nents by computational feedback of which the thermostated
Nosé-Hoover equations of motion are an early example,18,19

mr̈i = mv̇i = Fi − �mvi �3a�

�̇ = ��
j=1

n

�mv j
2/kTkinetic� − 1�/n�2, �3b�

where n is the number of thermostated degrees of freedom.
The equations of motion include a control variable � and are
based on the kinetic theory definition of temperature in terms
of the particle momenta p,

dkTkinetic � 	mv2
 = 	p2/m
 . �d spatial dimensions� �4�

The kinetic temperature Tkinetic is the specified temperature
for n thermostated degrees of freedom and � is a relaxation
time, which can generally be chosen based on physical
grounds. The control variable � is the new aspect of the
equations of motion. Note that the long-time average of its

motion equation implies exact temperature control: 	�̇
=0
implies 	mv2
=kTkinetic. Here � controls the temperature. For

any stationary state the time-averaged time derivative 	�̇

necessarily vanishes. Analogous control variables have been
developed to control stress and heat flux.1,2

By using two or more temperatures heat flow can be simu-
lated, as we illustrate in Sec. IV. Thermostated equations of

Fig. 1. Illustration of copper atom trajectories in Vineyard’s 1959 simulation
of radiation damage. The atom initially at “A” received an energy of 40 eV.
Typical system size was 500 atoms �see Ref. 9�.
PY 007803AJP  

motion are required whenever it is necessary to extract the
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energy transferred associated with irreversible processes. The
temperature kTkinetic corresponds to the usual ideal gas ther-
mometer of classical thermodynamics. Michael Grünwald
and Christoph Dellago recently developed a clever imple-
mentation of the ideal gas thermometer,20 surrounding a ther-
mostated group of atoms by cells of ideal gas �a sufficiently
large number of atoms with a Maxwell-Boltzmann velocity
distribution� which interact only with the thermostated group
and not with each other. The definition of pressure for a finite
system, for example, a Lennard-Jones or embedded-atom
cluster is not clearcut, due to the absence of an unambiguous
definition of the volume.20

More recently Landau and Lifshitz’ expression for the
configurational temperature21 has been used. The expression

kTconfigurational = 	F2
/	�2H
 �5�

appeared first as Eq. �33.14� of the 1951 Russian edition of
their excellent text. Here H�q , p� is the Hamiltonian, from
which the equations of motion for the coordinates q and
momenta p can be derived. The definition Eq. �5� has been
used to impose a configurational temperature on selected
degrees of freedom. For a toy model of a single thermostated
oscillator �with all the parameters and Boltzmann’s constant
k set equal to unity� the Nosé-Hoover kinetic-thermostat

equations of motion, q̇= p, ṗ=−q−�p, and �̇= p2−Tkinetic, can
be converted to the configurational-thermostat equations of
motion,22,23

ṗ = − q , �6a�

q̇ = p − �q , �6b�

�̇ = � F2

�2H� − Tconfigurational = q2 − Tconfigurational, �6c�

by making the simple substitutions:

q,p,�,t,Tkinetic → − p,− q,− �,− t,Tconfigurational. �7�

Either of these equivalent sets of equations of motion has a
wide variety of solutions, some regular and some chaotic.24

Travis and Braga22 first published the equations of motion

Fig. 2. Contemporary simulation of shockwave deformation. Typical system
size was 30,000,000 atoms �see Refs. 7 and 8�.
in Eq. �6� for this configurational thermostat, though the 167
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same equations appeared a few years earlier in Owen Jepps’
unpublished Ph.D. thesis.23 For the usual anharmonic inter-
particle forces the configurational thermostat equations,
which involve both the nonlinear forces and their gradients,
are somewhat stiffer than the kinetic ones. Because kinetic
temperature has a simple physical interpretation, it seems
likely that kinetic temperature will prove to be more useful
than its configurational cousin. The usual reason advanced
for considering the configurational rather than the kinetic
temperature is that the system flow velocity might not be
known. �And the kinetic temperature has to be defined and
measured relative to that flow velocity.� But simple averag-
ing techniques, illustrated here for the free expansion prob-
lem in Sec. V, make this argument relatively weak.

The main limitations of molecular dynamics are the small
time scales, the small spatial scales, the uncertainty in for-
mulating the forces, and the use of classical mechanics. The
first two of these difficulties are insurmountable and moti-
vate the use of continuum mechanics for mesoscopic and
macroscopic problems �see Sec. VIII�.

III. THE SIMPLEST PROBLEM,
A ONE-DIMENSIONAL HARMONIC CHAIN

To develop a particle-based computer program, it is useful
to begin with a problem having a known analytic solution.
The simplest dynamics problem of this kind is a variant of
Fermi’s anharmonic chain studies.5 It is the Newtonian mo-
tion of a nearest-neighbor harmonic chain, in which the mo-
tion of the ith particle responds to forces linear in the relative
displacements of its neighbors:

mẍi = mv̇i = ��xi+1 − xi − d� + ��xi−1 − xi + d� . �8�

We choose units such the mass m, the force constant �, and
the equilibrium spacing of the springs d are all equal to unity.
The coupled set of linear ordinary differential equations be-
comes:

ẍi = xi+1 − 2xi + xi−1. �9�

The simplest choice for boundary conditions are time-
independent rigid boundaries, with

x1 = 1, xN = Nd = N, ẋ1 = 0, ẋN = 0, �10�

or time-independent periodic boundaries, with ẍ1=xN−N
−2x1+x2 and ẍN=x1+N−2xN+xN−1 replacing the accelera-
tions ẍ1 and ẍN for particles 1 and N.

The initial conditions for the chain can be chosen to cor-
respond to sine wave displacements or velocities with a
wavelength �. The corresponding exact solutions are peri-
odic in both time and space, and illustrate the dispersion
relation for the dependence of the oscillation frequency on
the wavelength,

Fig. 3. A sinewave-displacement initial condition is shown, with the force-
free chain illustrated below. The energy error incurred by the Runge-Kutta
PY 007803AJP  

algorithm for this system is analyzed in Fig. 4.
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� = 2 sin�k/2� , �11�

with k=2� /�. For either periodic or rigid boundaries, the
total energy of the chain,

E =
�

2 �
ij pairs

�xij − d�2 +
m

2 �
i=1

N

ẋi
2, �12�

is constant. In a numerical solution the computed energy
depends on the time step �t used in the Runge-Kutta inte-
grator. It is an interesting exercise, illustrated in Figs. 3 and
4, to determine the power law dependence of the total energy
on the time step �t. An analytic expression for such a Runge-
Kutta solution can be related to the single oscillator case
discussed in Ref. 2, Sec. 1.6.

We generally prefer the fourth-order Runge-Kutta integra-
tor on the grounds of simplicity and ease of use. Some work-
ers prefer one or another of the various Gear predictor-
corrector integrators. These integrators require only a single
force evaluation per time step, rather than four. A stimulating
article by Berendsen and van Gunsteren25 provides a read-
able introduction to the Gear integrators, along with numeri-
cal results for the harmonic oscillator problem. Like the
Runge-Kutta integrators, the Gear integrators replace the
single-time step solution of a differential equation with a
low-order polynomial in the time step �t. Away from equi-
librium, with non-Hamiltonian equations of motion, the sym-
plectic integrators25,26 originated by Störmer26 and appropri-
ate to Hamiltonian mechanics cannot be used.

Because the Runge-Kutta trajectory and energy errors for
this system are only a bit smaller �a factor of 2 in the coor-
dinate error and an order of �t in the energy error� the Gear
approach saves computer time. Note that an expensive part
of the computation, finding the interacting neighbors, needs
to be done only once per time step for either method.

More complicated boundary conditions can provide inter-
esting problems. A steadily moving boundary �such as x1
=1+ t� provides an unsteady wave resembling a shockwave.
The initial condition, ẋi=−1, applied to all particles, together
with the time-independent boundary condition, xi	0, illus-
trates the possibility of inelastic collisions, in which the total
energy is conserved while the total momentum of the chain,
�ẋ, is only partially reflected by the rigid wall at x=0. In this
case some of the kinetic energy of the chain is converted to
internal vibrational energy. Similarly, pairs of chains can be
made to collide with one another. To implement the inequali-
ties xi	0 most simply any particle with xi less than 0 at the

Fig. 4. Energy error as a function of time for �t
=0.01,0.02,0.04,0.08,0.16,0.32 for the eight-atom chain with an initial
sinewave amplitude of 0.1. Fourth-order Runge-Kutta integration is used.
The double logarithmic plot shows that the error at a fixed time varies as

5 6
�t , so that the single-step energy error is of order �t .

3Wm. G. Hoover and Carol G. Hoover
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end of a time step can be reflected from the rigid wall at x
=0 by the pair of operations xi→−xi and ẋi→−ẋi. Alterna-
tively, a steep short-ranged repulsive potential can provide a
reflector, as is illustrated in Eq. �25� of Sec. VI.

IV. KUSNEZOV AND AOKI’S �4 MODEL
FOR HEAT FLOW

A slightly more sophisticated model than linear forces is
required for a realistic treatment of heat flow. Such a model
has been studied by Kusnezov and Aoki27,28 in one, two, and
three dimensions. It is remarkable that even the one-
dimensional form of their 
4 model illustrates Fourier’s law
for heat conduction. In addition to the harmonic nearest-
neighbor spring forces the 
4 model includes tethering
forces,

ẍi = − �xi − i�3, �13�

which are derived from the tethering potential, 
= 1
4 �xi− i�4.

The latter localizes the particles near their lattice sites:

	xi
 = i . �14�

The localization provided by the tethers also furnishes suffi-
cient anharmonicity for the chain to follow Fourier’s law �as
the chain becomes long and the temperature gradient be-
comes small�:

Ṫ = DT�2T � − DT � Q , �15�

where Q is the heat flux vector, DT is the thermal diffusivity,
and Q=−DT�T. To study such problems requires a defini-
tion of the temperature T, either kinetic or configurational, as
discussed in Sec. II. Endpoint kinetic temperatures can be
constrained by using the Nosé-Hoover equations of motion,

ẍ1 = F1 − �coldẋ1, �̇cold = ẋ1
2 − Tcold �16a�

ẍN = FN − �hotẋN, �̇hot = ẋN
2 − Thot �16b�

for the endpoint particles, where F is the usual �nearest-
neighbor plus tether� force, and the friction coefficients �
�which can change sign as the motion progresses� control the
average values of the endpoint particles temperatures. The
endpoint particles can alternatively be thermostated with the
configurational definition of T:

ẋ = v + �F , �17a�

v̇ = F , �17b�

�̇ �
F2

kTconfigurational
− �2H . �17c�

Studies of these models27,28 reveal an interesting dependence
of the conductivity on the length of the chain and on the
temperature gradient, �Thot−Tcold� / �N−1� consistent with
Fourier’s law in the long chain limit. Figure 5 compares the
long-time averaged temperature profiles obtained with both
kinetic and configurational thermostats applied to just the
PY 007803AJP  

first and last particles in the chain.
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V. IRREVERSIBLE FREE EXPANSION
OF AN IDEAL GAS

The free expansion of a gas into a larger container is an
interesting pedagogical problem. Thermodynamics gives an
entropy increase of Nk ln�Vfinal /Vinitial� for this isoenergetic
adiabatic process for an ideal gas, but Liouville’s theorem
states that the Gibbs’ entropy, −k	ln f
, where f is the many-
body phase-space probability density and a constant of the
motion, is unchanged.

Simulation can give insight into this apparent paradox.
Imagine, as an initial condition, a checkerboard array of
squares, one fourth of which are occupied by a compressed
ideal gas �density �=4� with the rest of the squares empty.
The subsequent motion equilibrates quickly, with an average
density �=1 in all the squares. Such an expansion can be
modeled by using a “unit cell” of four squares, one full and
three empty, with periodic boundary conditions. Snapshots
from a simulation of this free expansion29 for particles inter-
acting with Lucy’s short-range pair potential,3,29


�r � h� =
5

�h2 �1 − 6�r/h�2 + 8�r/h�3 − 3�r/h�4� , �18�

are shown in Fig. 6. As explained in Sec. VIII, this functional
form is the simplest twice-differentiable function vanishing
at r=h and having its maximum at r=0. The constant
5 / ��h2� has been arbitrarily selected so as to satisfy the nor-
malization condition appropriate to two dimensions

�
0

h


�r�2�rdr = 1. �19�

Even in the absence of any hydrodynamic motion, Lucy’s
pair potential provides a reasonable model for an ideal gas.
Although an ideal gas has only negligible interactions be-
tween particles, the Lucy potential of interaction leads to the
same ideal-gas equation of state �P��2�, as the virial theo-
rem shows.1,2,29

The virial theorem for the potential contribution to the
pressure involves the number density of particles separated

Fig. 5. Temperatures for a 400 particle 
4 system. The first and last particles
are thermostated �either Nosé-Hoover or Travis-Braga-Jepps thermostats are
used� at temperatures of 0.1 and 0.2, respectively. At the cold end of the
chain the configurational temperatures exceed the kinetic temperatures
slightly for both these methods. In both simulations all the thermostat relax-
ation times � were set equal to unity. Note that the abscissa is the particle
number from 1 to 400.
by the distance r: 338
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PV =
1

2 � Fi · ri =
1

2�
i�j

Fij · rij

= −
N

4
�

0



r
��r���r�2�rdr . �20�

For large enough h a random distribution of unit mass par-
ticles is appropriate: ��r�=N /V. In this case an integration by
parts reproduces the ideal gas adiabatic equation of state:

PV =
N

2

N

V
�

0

h


�r�2�rdr =
N

2
� → P =

�2

2
. �21�

A 16,384-particle simulation of the expansion is illustrated
in Fig. 6. The equations are just those of ordinary molecular
dynamics, but using the Lucy potential to represent the ideal-
gas fluid. As the fluid expands, locally averaged values of the
density, velocity, and kinetic energy can be calculated as
weighted sums:

��r� = �
i

mw�ri − r� �22a�

��r�v�r� = �
i

mw�ri − r�vi �22b�

��r�e�r� = �
i

mw�ri − r�
1

2
vi

2, �22c�

where w�r�h� is a normalized weight function with a suffi-
cient range h to include several particles in the sums. A good

Fig. 6. Snapshots from a 16,384 particle free expansion in which the densit
from about 2�h2�60 to �h2 /2�15 as the motion develops. The range of t
the black and white region is the contour of average density/kinetic energ
sound-traversal times �see Ref. 29�.
PY 007803AJP  
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w�r�h�=
�r�h� in Eq. �18�. Such spatially weighted aver-
ages are the basis of smooth particle applied mechanics3 as
discussed in Sec. VIII.

Calculations of these field variables on a finely meshed
grid provide a precise description of the continuum evolu-
tion. The average density and kinetic energy contours are the
boundaries between the white and black portions of Fig. 6.
Equilibration is rapid, with a nearly homogeneous fluid re-
sulting after about two sound traversal times. An understand-
ing of the actual entropy increase of the expansion, �com-
puted in the usual way from the ideal gas equation of state� is
shown in Fig. 7 for five system sizes, and despite Liouville’s
theorem, can be based on the thermal energy fluctuations,
which is the part of the kinetic energy density over and
above that associated with the flow, �v2 /2. In two spatial
dimensions the relation is

2kT/m = 	v2
 − 	v
2. �23�

It is necessary to subtract the flow velocity 	v
 from the
particle velocities because temperature is measured in a co-
moving frame, a coordinate frame moving along with the
flow. The simple ideal gas thermodynamic formula S /Nk
=ln�VT�, where T is the thermal energy computed in this
way, accounts nicely for the irreversible entropy increase as-
sociated with the free expansion.

VI. GRAVITATIONAL EQUILIBRATION
AND COLLAPSE OF A FLUID COLUMN

A two-dimensional molecular dynamics simulation of the
equilibration of a fluid column under the influence of gravity
involves solving four first-order differential equations for

reases by a factor of 4. The average number of interacting neighbors varies
cy potential is h=3 and the particle mass is unity. The boundary separating
the two contour plots. The total time interval shown corresponds to two
y dec
he Lu
y in
each particle: 386
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ẋ = px, ẏ = py �24a�

ṗx = Fx − � px

�
�, ṗy = Fy − g − � py

�
� . �24b�

To avoid complexity we have omitted the particle subscript i
in these coordinate and momentum equations of motion for a
typical particle. We have also chosen the particle mass equal
to unity. Notice that the force in the y direction includes the
gravitational acceleration −g and that the frictional forces
−p /� remove heat with a characteristic time scale �. A steep
one-body repulsive potential,

�wall = �
i

50�yi
4, �for �y = yi � 0� , �25�

provides a simple implementation of a perfectly reflecting
boundary at the base of the column. A similar potential near
the top of the column makes for a more efficient equilibra-
tion.

A close to correct initial condition for the column could be
obtained by first solving the force-balance equations for the
density ��y�:

dP

dy
=

�P

��

d�

dy
= − �g , �26�

and then choosing an initial square or triangular lattice spac-

Fig. 7. Time dependence of the increase of entropy as a function of the nu
entropy calculated here is based on the thermal energy fluctuations descr
cell-based entropies. A third “entropy,” based on the total �in the fixed labor
increase even during the adiabatic expansion phase, and prior to the expand
the figure the ordinate scale varies from 0 to the expected entropy change, �S
from 0 to the sound-traversal time of the periodic box.
PY 007803AJP  

ing nonuniform in y and corresponding to this y-dependent
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density. Instead it is simpler to begin with a regular stress
free lattice �such as a square or simple cubic lattice with the
density chosen so that the total force on each particle van-
ishes� and to let the frictional forces −p /� do the work of
selecting the proper initial condition.

For simplicity, and to eliminate low-order numerical inte-
gration errors, we choose a very smooth and short-range pair
potential, the difference of two simple polynomials, vanish-
ing beyond r=�2, and with a maximum 
�r=0�=224 and a
minimum of 
�r=1�=−1,


�r � �2� = �2 − r2�8 − 2�2 − r2�4. �27�

During the equilibration phase we additionally rescale the
particle velocities at the end of every time step to impose a
thermal energy equal to the well depth at the minimum,

	mv2
 = 2kT = 1. �28�

Without this velocity rescaling the frictional forces would
eventually remove all of the column’s kinetic energy and
force it to solidify. A time of order several sound traversal
times is sufficient for the finite-temperature equilibration
used here, after which the lateral periodic boundary is re-
leased so that the column can expand laterally and collapse.

Figure 8 shows snapshots from a 5000 particle
simulation,3 where the equilibrated height of the column �ini-
tially 100� is about 80 for a column width of 50. The subse-
quent collapse generates a lateral expansion, which occurs at

N of smooth particles used in the free expansion problem in Sec. V. The
in that section. The lower curve and the dots indicate particle-based and
frame� thermal energy �the upper curves�, incorrectly indicates an entropy

uid’s impact with its periodic image. For each of the system sizes shown in
=ln 4. The abscissa is the elapsed time since the motion began, which varies
mber
ibed
atory

ing fl
/Nk
a speed somewhat less than the speed of sound. We can 432
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estimate the sound speed c�10 for a triangular lattice with
the interparticle spacing and the particle mass both equal to
unity and with a stress-free density of �4 /3:

c =�� �P

��
�

�=�4/3
= �96. �29�

After the vertical boundary constraints are released, tensile
“rarefaction waves” move inward from the edges of the col-
umn, eventually leading to sufficiently negative pressure to
cause the formation of internal voids. The kinetics and mor-
phology of the void formation is an interesting and challeng-
ing subject. Particular solution details depend on the type
and the range of the interparticle forces. We could, for in-
stance, explore the consequences of a van der Waals’ model
by using a hard-core repulsive potential plus a longer-ranged
attraction. A fundamental continuum treatment of the col-
lapse process is also feasible. Such a treatment would in-
volve formulating the dependence of the surface tension and
viscosity on the local state variables, and the specification of
a failure model leading to void formation. The irregular na-
ture of the atomistic shape, for the system width shown here
of 50 atoms motivates the study of this same problem using
continuum mechanics. We do such a simulation with SPAM
in Sec. X.

VII. CONTINUUM MECHANICS
WITH FINITE ELEMENTS

Ever since computers became available, continuum prob-
lems of interest to engineers have been solved with finite-
element methods.30 In this approach each part of the struc-
ture or system being simulated is divided into small parts,
“elements” defined by a grid of “nodes.” In an Eulerian
fixed-grid treatment the nodes are fixed in space, while a
Lagrangian moving-grid method uses nodes which move
with the underlying material. In either case the elements are
generally chosen small enough that all the dependent vari-
ables �density, velocity, stress, energy density, …� can be
approximated by simple polynomials within each element. In
the equation of motion for the nodes it is usual to assume
that the masses are lumped at the nodes. The time step in the
finite-element simulations is limited by the smallest sound-
traversal time among the elements. The gradients appearing

Fig. 8. Gravitational collapse of a pair-potential column. The equilibrated
width is 50 and the equilibrated height is 80, both in units of the stress-free
interparticle spacing. The total number of particles is 5000. The strength of
the gravitational field g=0.50, as is the thermal energy kT. A viscous relax-
ation time �=10 was applied for a time interval �t=190 using fourth-order
Runge-Kutta with time step �t=0.01. The time interval over which the
collapse is illustrated is for the subsequent time interval 0� t�10. Note the
presence of tensile voids and some surface evaporation.
PY 007803AJP  

in the continuum equations can then be averaged over the
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elements so as to formulate ordinary differential equations
for the dynamics of the nodes. Much effort in the finite-
element approach is devoted to generating suitable numerical
meshes for the structure of interest.

Any well-posed continuum approach to materials simula-
tion must solve the partial differential equations for the den-
sity, velocity, and internal energy ��r , t�, v�r , t�, e�r , t� by
formulating both the pressure tensor P and the heat flux vec-
tor Q in terms of the past and present values of � ,v ,e given
in Eq. �2�. In problems with external sources and sinks of
momentum and energy �like gravity� corresponding terms
are added to the right-hand sides of these conservation equa-
tions.

The simplest forms of the nonequilibrium parts of P and Q
are Newton’s and Fourier’s laws for the dependence of the
viscous stress on the velocity gradient and for the depen-
dence of the heat flux vector on the temperature gradient. A
continuum has an infinite number of degrees of freedom. A
finite and regular grid, imposed on a continuum, can generate
either Eulerian �if the grid is fixed� or Lagrangian �if the grid
moves with the continuum� finite elements.

Relatively complex materials and structures can be built
up of simple components, themselves composed of a few
finite elements. Typical engineering applications model
bridges, buildings, automobiles, and airplanes with finite-
element descriptions. As a more microscopic example of a
finite-element application in materials science, consider the
mesoscopic structure of an auxetic material, a material with a
negative value of Poisson’s ratio. Such an odd material ex-
pands transversely when it is stretched, and shrinks when it
is compressed. Simple structures composed of identical
pores provide a useful model for this behavior. Figure 9
shows an auxetic material model31 put together by connect-
ing elastic-plastic finite elements to model a possible meso-
scopic cell structure. Simulations, carried out by controlling
the motion of the external surfaces of the model, confirm the

31

Fig. 9. Auxetic structure composed of 208,896 “shell” elements. The basic
building blocks for this structure are 4�4 arrays of shell elements oriented
perpendicular to the x ,y ,z coordinate directions.
auxetic behavior. 509
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VIII. CONTINUUM MECHANICS
WITH PARTICLES [SPAM]

Because the microscopic time scale and length scale limits
of atomistic dynamics make macroscopic atomistic simula-
tions impossible, it is natural to seek alternative macroscopic
particle methods. These resemble the finite-element methods
we described in Sec. VII, but the polynomial representation
is bypassed and is replaced by a simple particle sum. This
method, which we call SPAM, which is described in the
following, is simpler than the conventional Eulerian and La-
grangian finite-element methods, in that no shape functions
and no integrations over elements are involved.

Eulerian interface and Lagrangian tangling are the main
difficulties for finite elements. They can be avoided by using
an irregular grid made up of moving particles. The interac-
tions governing the particles’ motion are determined by the
constitutive properties of the continuum. This approach was
conceived by Lucy and Monaghan.32,33 They called it “sph”
for “smooth particle hydrodynamics.” Because this name
suggests that the method only applies to fluids �and water in
particular�, we prefer the name “SPAM” �an acronym for
Smooth Particle Applied Mechanics� to indicate its applica-
bility to both fluid and solids, not just water.

Lucy and Monaghan visualized macroscopic �even astro-
nomical!� chunks of material with individual masses, veloci-
ties, energies, pressure tensors, and heat-flux vectors. The
spatial extent and range h of influence of each chunk is de-
scribed by a smooth finite-range weighting function w�r
�h�. The density at any point in space is computed by sum-
ming the contributions of all sufficiently near particles, as is
also the local continuum value of F, an appropriate average
of the smooth-particle values Fj:

��r� = �
j

mw�rj − r� �30a�

��r�F�r� = �
j

mFjw�rj − r� �30b�

for rj −r�h. Because the location r can be anywhere, not
necessarily at a particle, this interpolation method makes it
possible to interpolate field variables F�r� onto any conve-
nient grid, such as a square grid used to generate contour
plots or Fourier transforms.

This smooth particle approach provides simple expres-
sions for all the gradients. These expressions for the gradi-
ents are important because the right-hand sides of the con-
tinuum equations all involve such gradients, ��, � · P, � ·Q,
�v, �T. For example, the continuity equation becomes
equivalent to a set of ordinary differential equations �actually
identities� for the particle densities:

�̇ = − � · ��v� + v · �� �31a�

becomes

�̇i = − �
j

mv j · �iwij + mvi · �
j

�iwij = �
j

mvij · �iwij .

�31b�

Similarly, the equations of motion become ordinary differen-
PY 007803AJP  

tial equations for the particle velocities. That is,
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v̇ = − �� · P

�
� = − � · �P

�
� − � P

�2� · �� �32a�

becomes

mv̇i = − �
j

m2��P/�2�i + �P/�2� j� · �iwij . �32b�

Here the vij =vi−v j are the relative velocities of nearby pairs
of particles and the wij are the weight functions evaluated for
the separation between particles i and j.

These ordinary differential equations conserve both the
mass and the linear momentum exactly. The energy equation,
which takes both heat and work into account, can likewise be
written in a completely conservative way. We solve the com-
plete set of continuum equations in Sec. IX for the Rayleigh-
Bénard problem, which includes the need for specifying
boundary velocities and temperatures.

In general, numerical solutions of the particle equations
require both initial and boundary conditions.3 The initial con-
ditions include the initial arrangement and motion of all the
particles. The boundary conditions typically involve specific
algorithmic rules for the “collisions” of particles with
surfaces34 and for specific particle properties at or near sur-
faces. A relatively simple, but still challenging, example
problem for continuum simulation is the free expansion of a
gas, treated with atoms in Sec. V. Imagine an infinite check-
erboard geometry with the initial condition that one-fourth of
the cells are filled with motionless gas. Then, to start the
dynamical motion, the particles are allowed to move. As the
dynamics develops, rarefaction waves converge on the center
of the filled cells while shockwaves form when gases from
next-neighbor cells collide. The singular nature of this prob-
lem causes difficulty for either Eulerian or Lagrangian finite-
element codes.29

The smooth-particle approach is quite different. Using the
ideal gas adiabatic equation of state P= 1

2�2 and choosing the
particle mass m equal to unity, the smooth-particle motion
equations become

v̇i = − �
j

�iwij , �33�

so that the continuum dynamics corresponds precisely to the
atomistic development of the fluid illustrated in Sec. V. The
effective pair potential w is the smooth-particle weight func-
tion, with range r�h. The simplest choice for the weight
function is a polynomial, with a maximum at r=0 and which
vanishes, along with two vanishing derivatives at r=h. As
before, the form is the same as given in Eq. �18�. This weight
function, the choice originally proposed by Lucy in 1977,32

was used in the free expansion simulation illustrated in Fig.
6, which shows both the particles and the contours of the
average density and kinetic temperature for times up to two
sound traversal times. It is clear that a particle method is
ideal for such complicated flow problems.

This free expansion problem underscores the importance
of proper interfacial boundary conditions. When fluids col-
lide, some mechanism must act to prevent their interpenetra-
tion. To avoid the interpenetration of oppositely directed
gases a modification of the straightforward smooth-particle
approach, due to Monaghan,35 can be used. Monaghan re-

˙
placed the usual velocity definitions, ri=vi, with 615
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ṙi = vi + m�
j

�v j − vi��wij/�ij� , �34�

where �ij is either the arithmetic or the geometric mean of
the densities at particle i and particle j. Summing Mon-
aghan’s velocity definition over all particles gives exact con-
servation of momentum because the relative velocity sum
vanishes by symmetry:

Fig. 10. Late time distribution of smooth particles using �a� the usual ve-
locity definition, ṙ=v, and �b� Monaghan’s modified velocity as given in Eq.
�34�. Notice that the mixing of particles from adjacent quadrants shown at
the left is avoided by Monaghan’s motion equations.

Fig. 11. Rayleigh-Bénard simulation. The initial velocities are shown at the
a gravitational field with periodic lateral boundaries and mirror-image bound
fluid with constant transport coefficients. A comparison of Rayleigh-Bénard
PY 007803AJP  

SPAM particles �right�, appears in the bottom two rows �see Ref. 34�.

9 Am. J. Phys., Vol. 76, Nos. 4 & 5, April/May 2008
007803AJP  

m�
i

�
j

�v j − vi�wij/�ij = 0. �35�

It is easy to confirm that this approach also conserves the
mass and momentum exactly. Figure 10 shows the improved
interface behavior using Monaghan’s approach.35

IX. RAYLEIGH–BÉNARD CONVECTION
WITH SMOOTH PARTICLES

An interesting problem with relatively simple time-
independent boundaries is the behavior of a compressible
fluid in a gravitational field. For such a fluid, heated from
below and cooled above, heat can be transferred upward by
either of two mechanisms. If the temperature gradient is suf-
ficiently small, motionless Fourier conduction results. If the
temperature gradient exceeds a certain threshold, steady con-
vective rolls form, and the heat transfer becomes convective.
At still higher temperature gradients complex turbulent flows
can result.3 This problem is ideal for students. An interesting
aspect of the numerical solutions using particles is that with
too few particles the smooth-particle fluid can freeze, pre-
venting the formation of convective rolls. Figure 11 illus-
trates the flow using Lucy’s weight function for 5000 smooth
particles. Here the Rayleigh number,

eft with a late-time smooth-particle snapshot at the top right. Convection in
at the top and bottom imposes a Rayleigh number R=10000 on the ideal-gas
ities and energies as computed with exact continuum mechanics �left� and
 

top l
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gH4��T/H�
�DT

= 10000, �36�

is large enough that the particles provide a realistic descrip-
tion of the continuum flow field. Here g is the gravitational
field strength, H is the system height, �T is the top-to-
bottom temperature difference across the system, � is the
kinematic viscosity �=� /�, and DT is the thermal diffusivity.
The flow shown in Fig. 11 corresponds to an ideal gas with
constant transport coefficients, described in Ref. 36. Figure
11 compares the approximate smooth-particle solution to the
exact solution of the continuum flow equations.

The boundary conditions for the Rayleigh-Bénard problem
have to specify the velocity and the temperature at the top
and bottom of the fluid. In the flow illustrated in Fig. 11 the
lateral boundaries are periodic. The top and bottom boundary
conditions are implemented by introducing “ghost” or “im-
age” particles outside the system in such a way that averages
which include these extra particles exactly satisfy the desired
boundary conditions.

X. GRAVITATIONAL COLLAPSE OF A CONTINUUM
COLUMN USING SPAM

In Sec. VI we considered the equilibration and collapse of
a column using molecular dynamics. Here we consider the
continuum analog of this problem using SPAM. We use the
simple polynomial equation of state:

P = ��/�̄�3 − ��/�̄�2 = �3 − �2, �37�

where �̄=1 is the stress-free equilibrium density. For sim-

Fig. 12. Equilibrated particle distributions for 500 and 2000 smooth par-
ticles, with a reflecting boundary at y=0 and periodic boundaries at x
= �L /2. The particles have been shaded to indicate equally spaced density
contours. The arrows indicate the corresponding exact contour locations
from an exact continuum calculation.
PY 007803AJP  

plicity, we set both the particle mass and the stress-free den-
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sity equal to unity here. The SPAM particle densities are
calculated as usual, using Lucy’s form of the weighting func-
tion in Eq. �18�. For simplicity here we choose the mass of
each particle equal to unity, so that the mass density and the
number density are equal. Notice that the integral of the
weight function over space,

�
0

h

w�r�2�rdr = 1, �38�

is unity, so that a completely random distribution of N par-
ticles in a volume V, with the average number density n̄
=N /V= �̄ /m=1 and average mass density �̄=Nm /V= n̄m=1,
provided that h is sufficiently large, gives

	n
 =
1

N
�

i
�

j

wij, 	�
 =
1

N
�

i
�

j

mwij . �39�

The smooth-particle equations of motion take the form,

mv̇i = − �
j

m2��P/�2�i + �P/�2� j� · �iwij . �40�

If we use the polynomial equation of state

P/�2 = ��/�̄3� − �1/�̄2� = � − 1, �41�

we obtain

mv̇i = − � ���i − �̄��i��i� + �� j − �̄��i�� j��

= − � ��i + � j − 2��iw�rij� . �42�

The fourth-order Runge-Kutta solution of these equations of
motion conserves energy apart from a small single-step error
of order �t6. �There is also a phase error of order �t5 which
does not affect the energy.� The SPAM equations of motion
are equivalent to those computed in molecular dynamics
from a many-body potential function designed to minimize
density fluctuations:

� = �
i


i��� = �
i

��i − 1�2

2
. �43�

In either interpretation the particle and mass densities �i are
simple sums: �i=� jmw�rij�. The density at particle i is the
sum of contributions of nearby particles that are within the
maximum range h of the weighting function w�r�.

Although the SPAM motion equations induce a density
near unity for each particle, the model contains no intrinsic
surface tension. To model realistic flows with surfaces re-
quires either the addition of a pair potential discouraging
surface formation or the addition of a phenomenological
surface-energy potential which minimizes density gradients,

�surface � �
i=1

N

��i��2. �44�

Here we choose to use a surface potential with a proportion-
ality constant of 1 /10.

For the density-dependent equation of state designed to
give a density of unity at zero pressure, P=�3−�2, there is an
additional unphysical feature. The SPAM particles tend to
form one-dimensional chains or “strings.” This undesirable
chain formation can be overcome by using a very short-range

core potential, 715
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�core�r � �� � �
i�j

��2 − r2�4. �45�

We choose a proportionality constant of unity and a core size
�=0.6.

Now consider the equilibration and collapse of a column
of particles in a gravitational field g induced by the gravita-
tional potential �grav=�igyi. By imposing frictional forces,
Ffriction=−p /� and appropriate boundary conditions, a sta-
tionary equilibrated structure can be obtained. Figure 12 cor-
responds to a field strength g chosen to give a structure with
an overall density of 8 /5 and an aspect ratio of five. The
boundary condition at the bottom, y	0, is implemented by
reflecting any particle violating that condition. That is, if yi
�0 we take yi→−yi and ẏi→−ẏi. A comparison of the the-
oretical density profile with that computed in this way is
shown in Fig. 12. Figure 13 shows the tensile regions formed
in the collapse of square equilibrated columns, as given by
the smooth-particle equations of motion.

XI. CONCLUSIONS

The problems we have illustrated barely scratch the sur-
face of interesting applications from which new physics can
be gleaned. In Ref. 3 we discuss several interesting problem
areas, including the deformation of sea ice and the breakup
of stellar clusters. Problems involving failure are a natural
application of smooth-particle techniques. A failure model
based on stress, strain, or energy can be implemented easily
in a smooth-particle code. By comparing smooth particle
simulations with laboratory experiments or with molecular
dynamics simulations, it should be possible to develop useful
predictive models of tensile and shear failure. The main dif-
ficulty and a good research area is the identification and
elimination of the various instabilities that can arise in the
presence of tensile stresses.

The penetration of a continuum by a projectile is a generic
failure problem type with many applications. Figure 14
shows the progress of a round ball fired at an elastic-plastic
plate. In treating such problems not only failure models, but

Fig. 13. Two successive stages of collapse of square equilibrated columns
modeled by SPAM. Simulations with 640, 2560, and 10240 particles are
compared at corresponding times. The bottom row indicates the regions of
positive pressure. These results are taken from Ref. 3.
PY 007803AJP  

also boundary conditions at material interfaces, are in need
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of development. The problem areas and solution techniques
are mainly limited by our imagination, now that the cost of
high speed computation is affordable.

A further advantage of the smooth particle approach, be-
yond the simplicity of ordinary differential equations, is the
ease with which interpolation and rezoning can be carried
out. If more detail is desired in a particular region, it is
straightforward to include more particles there, maintaining
the overall mass, momentum, and energy. Likewise, particles
can be combined in more quiescent regions, saving compu-
tational effort.
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