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We compare nonlinear stresses and temperatures for adiabatic-shear flows, using up to 262 144 particles,
with those from corresponding homogeneous and inhomogeneous flows. Two varieties of kinetic temperature
tensors are compared to the configurational temperatures. This comparison of temperatures led us to two
findings beyond our original goal of analyzing shear algorithms. First, we found an improved form for local
instantaneous velocity fluctuations, as calculated with smooth-particle weighting functions. Second, we came
upon the previously unrecognized contribution of rotation to the configurational temperature.
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I. INTRODUCTION

Hoover et al. �1� studied the nonlinear stresses and tem-
perature changes induced by shear in a variety of stationary
flows. They used nonequilibrium molecular dynamics to
compare several popular algorithms. The algorithms are de-
scribed briefly in Sec. II. See Figs. 1 and 2 for the geometries
used to induce the flows. This work used a smooth repulsive
soft-sphere potential �2� with a range of unity,

��r � 1� = 100�1 − r2�4.

The particle mass, energy per particle, and density were all
chosen equal to unity. These conditions correspond to a
dense fluid at about 2/3 the freezing pressure,

m = 1; E/N = �K + ��/N = 1; � = Nm/V = 1.

Thermostat or ergostat forces were used to generate station-
ary states. There, as well as in the present work, we choose x
for the flow direction and �̇=0.5 for the strain rate, where the
time-averaged velocity component of the flow vx increases
linearly in the y direction,

�vx�y�� = �̇y .

Three-dimensional homogeneous periodic simulations �Fig.
1 shows a two-dimensional version� gave

Tyy � Txx � Tzz, Pyy � Pxx � Pzz �Doll ’ s algorithm� ,

Txx � Tyy � Tzz, Pxx � Pyy � Pzz �Sllod algorithm� ,

and differed qualitatively from the corresponding three-
dimensional boundary-driven results �Fig. 2 shows a two-
dimensional version�,

Txx � Tzz � Tyy, Pxx � Pzz � Pyy �boundary-driven� .

The main conclusion drawn from that work was that nei-
ther homogeneous method, Doll’s �3� nor Sllod �4�, success-
fully reproduces the more-physical boundary-driven results
�5�. To quote Ref. �1� “the Doll’s and Sllod algorithms pre-
dict opposite signs for this normal-stress difference �Pxx
− Pyy�, with the Sllod approach definitely wrong, but some-
what closer to the �boundary-driven� truth.”

Evans �6� objected to this conclusion, stating that the
Sllod algorithm is “exact.” He is of course correct, in the

sense that the Sllod algorithm is nothing more than Newton’s
equations of motion written in a different coordinate frame, a
Lagrangian frame moving along with the sheared fluid. But
because Newton’s equations by themselves cannot lead to
nonequilibrium steady states, the Sllod algorithm is exact in
the rather limited case of isolated systems.

The misunderstanding evident in Evans’ remark led us to
undertake the present work. Instead of considering steady
states, which seem to us the simplest situation, Evans had in
mind a time-dependent spatially periodic adiabatic deforma-
tion. When no thermostat or ergostat forces are used in the
equations of motion, the shear deformation is adiabatic with
continuous heating. In the adiabatic case no steady state re-
sults and the Sllod equations of motion are equivalent to
Newton’s equations of motion for a system undergoing peri-
odic deformation with strain rate �̇. Just as in the thermo-
stated case the normal stresses and temperatures differ. Not
only the magnitudes but also the orderings of these compo-
nents can, and do, differ from those found in steady states.

In this paper we motivate and describe large-scale
adiabatic-shear simulations and discuss the interpretation of
these simulations. These simulations use periodic boundary
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FIG. 1. Two-dimensional version of periodic homogeneous
isoenergetic shear flow. Eight periodic images of the central
N-particle system are shown. In this figure, as in all the others, the
units are dimensionless, where the volume per particle, the particle
mass, and Boltzmann’s constant k are all equal to unity. Thus the
plotted lengths, times, pressures, and temperatures are all
dimensionless.
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conditions, just as shown in Fig. 1, but are extended here to
three Cartesian space dimensions �x ,y ,z�. We take into ac-
count the important role of fluctuations in defining local val-
ues of the velocity, and the temperature and stress tensors.
Section II describes the algorithms, and Sec. III describes the
various definitions of temperature for nonequilibrium �as
well as equilibrium� systems. Section IV outlines the results
of the current simulations. Section V gives the conclusions
we have reached as a result of this work. Section VI suggests
extensions of this work.

II. SHEAR FLOW ALGORITHMS

Two numerical algorithms, “Sllod” and “Doll’s,” for spa-
tially periodic shear flow in a volume V both satisfy the

macroscopic energy-balance relation Ė=−�̇PxyV. The corre-
sponding solutions differ in effects of order �̇2, with Pxx
� Pyy in the Sllod case and the reverse using Doll’s algo-
rithm. To describe nonequilibrium situations it is natural to
introduce the gradients and time derivatives of these vari-
ables, with the simplest situations those “stationary states”
�necessarily driven by external forces or heat sources� in
which all the partial time derivatives �the rates of change at a
fixed location� vanish. Steady shear flow can be simulated
with homogeneous sources and sinks of momentum and en-
ergy through the Doll’s and Sllod algorithms. The adiabatic
versions of these equations of motion �no thermostats or er-
gostats� introduce an overall flow field imposed with the pa-
rameter �̇ through periodic boundary conditions,

ẋ 	 �px/m� + �̇y ; ẏ = �py/m� �Sllod or Doll ’ s� .

The Sllod algorithm is simply a rewriting of Newton’s
equations of motion,

ẍ = �Fx/m�; ÿ = �Fy/m� .

To see this we introduce the new “momenta” px and py,

px 	 m�ẋ − �̇y�; py 	 mẏ .

The time derivative of these definitions then gives the Sllod
algorithm for �ẋ , ẏ , ṗx , ṗy�,

ẋ = �px/m� + �̇y ; ẏ = �py/m�;

ṗx 	 Fx − m�̇ẏ = Fx − �̇py ; ṗy 	 Fy .

In the laboratory frame �where one sees the overall strain rate
�̇y induced by the periodic boundary conditions� px and py
are just mẋ and mẏ, and the motion follows from the usual
Hamiltonian,

HLab = 
 p2/�2m� + � .

If, as in the Sllod algorithm, the momentum �px , py� is
defined instead in the comoving frame then there is no analo-
gous Hamiltonian. To see this in detail suppose that the co-
moving equations of motion �describing the Newtonian dy-
namics� could be derived from a hypothetical comoving
Hamiltonian, Hcom��x ,y , px , py��,

ẋ = + ��Hcom/�px� = �px/m� + �̇y ,

ẏ = + ��Hcom/�py� = �py/m� ,

ṗx = − ��Hcom/�x� = Fx − �̇py, ṗy = − ��Hcom/�y� = Fy .

The second partial derivatives of the hypothetical Hamil-
tonian with respect to y and px should be equal. But we find
instead

��/�y���Hcom/�px� = ��/�y���̇y� = �̇

and

��/�px���Hcom/�y� = ��/�px��− Fy� = 0,

showing that there is no such comoving Hamiltonian.
On the other hand, the very similar Doll’s-Tensor equa-

tions of motion �which are not Newtonian� do follow from a
special Hamiltonian appropriate to the comoving frame,

HDoll’s = 
 p2/�2m� + � + �̇ 
 ypx:

+ ��HDoll’s/�px� = ẋ = �px/m� + �̇y;

+ ��HDoll’s/�py� = ẏ = �py/m� .

− ��HDoll’s/�x� = ṗx = Fx; − ��HDoll’s/�y� = ṗy = Fy − �̇px.

Both the foregoing Sllod and Doll’s sets of motion equa-
tions are adiabatic, so that the systems they describe heat due
to viscous shear as time goes on. Additional time-reversible
frictional forces of the form −�p can be added to either set of
motion equations to keep the energy or the temperature con-
stant �7,8�,

Newtonian

LxL

Newtonian

LxL

FIG. 2. Two-dimensional version of periodic inhomogeneous
boundary-driven shear flow. The system consists of four separate
chambers of N particles each. The chambers indicated by arrows are
driven to the right and left by moving tether forces. Heat is ex-
tracted from the driven chambers to maintain constant internal en-
ergy there. The boundary-driven motion of the other two chambers
is purely Newtonian.
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�	F = − �p; px 	 m�ẋ − �̇y�; py = mẏ ; pz = mż� .

The frictional forces make it possible to explore a spatially
homogeneous nonequilibrium steady state with definite val-
ues of the �time-averaged� stress and temperature. Both these
nonequilibrium properties need proper definitions. We con-
sider several alternative definitions of temperature in Sec. III.

III. DEFINITIONS OF TEMPERATURE

In statistical mechanics a longstanding definition of tem-
perature has been kinetic based on the physical picture of an
ideal-gas thermometer �7,9�. Measuring the momenta �p�
relative to the comoving frame of the kinetic thermometer,
the kinetic-theory definition is

kTxx 	 �px
2/m�; kTyy 	 �py

2/m�; kTzz 	 �pz
2/m� .

A simple mechanical model capable of measuring all three
temperatures simultaneously is a dilute gas of parallel hard
cubes �10�.

There is also a configurational analog �11,12�,

kTxx = �Fx
2�/��x

2H�; kTyy = �Fy
2�/��y

2H�;

kTzz = �Fz
2�/��z

2H� .

The configurational temperature has no clear connection to a
physical model of a thermometer but follows instead �11�
from a formal integration by parts of the canonical average
of �2H,

��2H� 	 ���H�2/kT� .

Both temperature definitions, kinetic and configurational,
have associated ambiguities �1�: fluctuations in the kinetic
case and �2� rotation in the configurational case. Consider
fluctuations first. The local velocity fluctuates in time. The
thermal momentum in the kinetic definition has to be mea-
sured in a “comoving” frame. Once the velocity is a local
quantity, as well as a time-dependent quantity, its definition
becomes crucial. Here we adopt a modification of the
“smooth-particle” definition of local velocity �13�,

v�r� 	 
 w��r − ri� � h�vi/
 w��r − ri� � h� ,

where vi is the velocity of particle i and that particle lies
within the range h of the smooth-particle weighting function
w�r�h�.

Smooth-particle applied mechanics �SPAM� �13� provides
spatially very smooth material properties �such as density,
velocity, stress, and energy� with two continuous spatial de-
rivatives. The definitions of these properties require a smooth
weighting function, w�r�h�, which must be continuously
twice differentiable, normalized, and which must also have a
finite range h. Here we adopt the simplest such weighting
function meeting these requirements, Lucy’s. In three dimen-
sions Lucy’s form for w is

wLucy =
105

16
h3 �1 − 6x2 + 8x3 − 3x4�; x 	 �r�/h;

→�
0

�

4
r2w�r � h�dr 	 �
0

h

4
r2w�r � h�dr 	 1.

In Sec. IV we show that the smooth particulate velocity fluc-
tuations measured as temperature are best defined through a
slight modification of the smooth-particle approach, in which
the “self” contributions to the particle sums, 
w and 
wv,
are absent. This modification reduces the number depen-
dence inherent in comparing atomistic simulations to con-
tinuum predictions.

At first sight, the configurational definition of temperature
has an advantage over the kinetic one that a calculation of
the stream velocity is not required. But the current work led
us to recognize a difficulty in defining configurational tem-
perature away from equilibrium. Consider rotation. Particu-
larly in turbulent flows, rotation is important. Although con-
figurational temperature has been touted as a way to avoid
defining a local velocity �13�, it also contains a small and
subtle ambiguity—configurational temperature depends on
rotation rate.

A rotating rigid body generates centrifugal forces of order
�2r �offset by tensile forces� at a distance r from the center
of mass. The tensile forces contribute to the configurational
temperature definition,

kTC 	 �F2�/��2H� ,

while the centrifugal ones do not, so that perimeter particles
are apparently “hotter” than the cooler interior by �relatively
small� contributions of order �4.

To see this in a simple two-dimensional example, consider
the point �x ,y� viewed from an �X ,Y� coordinate system ro-
tating counterclockwise at the angular frequency �,

X = x cos��t� + y sin��t�; Y = y cos��t� − x sin��t� .

Two time differentiations, evaluated at time t=0, give the
Coriolis, centrifugal �rotating-frame�, and centripetal
�laboratory-frame� forces,

Ẍ = ẍ + 2�ẏ − �2x = ẍ + 2�Ẏ + �2X ,

Ÿ = ÿ − 2�ẋ − �2y = ÿ − 2�Ẋ + �2Y .

For rigid rotation at an angular velocity � a particle at
�x ,y�= �r ,0� with laboratory-frame velocity �0,�r� and ac-

celeration �Fx ,0� /m= �−�2r ,0�, the Ẍ equation becomes

Ẍ = ẍ + 2�ẏ − �2x = �Fx/m� + 2�2r − �2r 	 0 = �Fx/m� + �2r ,

showing that the atomistic force �Fx /m� exactly offsets the
centrifugal force �2r. Thus the configurational temperature
for rigid rotation is proportional to r2�4.

The numerical work described in Sec. IV, for relatively
gentle shear flows, supports the view that kinetic temperature
is both simpler and better behaved than configurational tem-
perature, with smaller fluctuations in both space and time. In
a work still in progress we contrast the two approaches for
the problem of a strong shockwave.
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IV. SIMULATIONS AND RESULTS

Throughout, we focus on a dense fluid in three space di-
mensions, with the short-ranged “soft-sphere” potential of
Refs. �1,2�,

��r � 1� = 100�1 − r2�4, � = 

i�j

���rij�� ,

where the sum over pairs includes all particle pairs within a
distance unity. The total energy of the system consists of a
kinetic part in addition to the potential energy �,

E = K + �, K = 
 p2/�2m� .

We focus on the dense-fluid state of Ref. �1�, with a density
and energy per particle of unity,

E/N = Nm/V = N/V = 1,

6  103 = 216 � N � 2744 = 14  103.

Data for homogeneous isoenergetic Doll’s and Sllod
simulations are given in Ref. �1�� along with complementary
results for boundary-thermostated flows. That study showed
that the normal-stress differences in the homogeneous simu-
lations are very different from those found in boundary-
driven flows. The number dependence in the temperatures
and normal-stress differences of the homogeneous flows is
nearly negligible, no more than 1 /N once the number of
particles N is a few hundred. By contrast, the boundary-
driven temperatures are quite different, as the midstream
temperature increases as N2/3.

Here we consider in addition adiabatic deformation with
the Newtonian motion driven by shearing boundary condi-
tions and without any thermostat or ergostat forces. The ini-
tial state is a cubic lattice with a kinetic temperature of kT
=0.01 and an initial energy per particle of E=K+�
=0.015N+0 �because the nearest-neighbor separation is ini-
tially unity just beyond the range of the repulsive forces�. We
compute and compare two different kinetic temperatures,
each with the three components �Txx ,Tyy ,Tzz�. The time-
averaged temperature, kTTA is

kTxx
TA 	 �m�ẋi − �̇yi�2� ,

kTyy
TA 	 �mẏ2� ,

kTzz
TA 	 �mż2� ,

while the instantaneous temperature, kTinst, is

kTxx
inst 	 �m�ẋi − vx�ri,t��2� ,

kTyy
inst 	 �m�ẏi − vy�ri,t��2� ,

kTzz
inst 	 �m�żi − vz�ri,t��2� ,

where the instantaneous velocity at particle i’s location is a
modified version of the usual smooth-particle average �13�,

v�ri,t� = 

j�i

w�rij�v j/

j�i

w�rij� .

For simplicity we choose Lucy’s weight function with the
range h=3,

w�r � h� =
105

16
h3 �1 − 6x2 + 8x3 − 3x4�, x 	 r/h ,

for the evaluation of all the smooth-particle sums.
In smooth-particle simulations �13� the “self-terms,” in

the two particle sums, wiivi and wii are always included. In
analyzing equilibrium molecular-dynamics simulations for
local velocity fluctuations �the usual kinetic temperature�,
numerical work shows that there is a much better correspon-
dence with equilibrium temperature when the self-terms are
omitted. We have followed that practice here. If the self-
terms are included in computing the local stream velocity the
resulting kinetic temperatures are roughly 10% lower. With
the self-terms omitted the three temperature definitions,
time-averaged kinetic, instantaneous kinetic, and configura-
tional, all give similar results.

The need for excluding the “self”-contributions can be
rationalized by considering an equilibrium particle i at loca-
tion ri with velocity vi. With its neighbor velocities uncorre-
lated �as they are at equilibrium within terms of order 1 /N�,
the smooth-particle velocity at ri is, on average,
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FIG. 3. Overall adiabatic temperature variations for adiabatic-
shear flows with 646464 soft spheres with an initial kinetic
temperature of 0.01. The strain rate dux /dy= �̇ is 0.5. �Txx ,Tyy ,Tzz�
are plotted here. For times greater than 3 neither algorithm shows
significant differences between the temperatures on the scale of the
plots.
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FIG. 4. Overall adiabatic pressure variation for adiabatic-shear
flows with 646464 soft spheres with an initial kinetic tempera-
ture of 0.01. The strain rate dux /dy= �̇ is 0.5. �Pxx , Pyy , Pzz� are
plotted here. For times greater than 3 neither algorithm shows sig-
nificant differences between the pressures on the scale of the plots.
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vSPAM�ri� 	 

j

wijv j/

j

wij  w�0�vi/n, n 	 N/V ,

so that the temperature, based on the velocity fluctuations as
measured by the differences, �vi− �vSPAM�ri���, is reduced by
a factor of �1−w�0� /n�2. In the present work the number
density n is unity. In accord with this equilibrium argument,
we have excluded the “self-terms” in the kinetic parts of the
temperatures and pressures illustrated in the figures.

Figures 3 and 4 show the overall increase in temperature
and pressure beginning with a homogeneous cubic crystal, at
a kinetic temperature of 0.01, and ending at a homogeneous
shearing fluid state with a temperature somewhat greater
than 0.5. The details of the temperature and pressure for
64 000 particles, in the vicinity of kT0.5, are shown in
Figs. 5 and 6. The fluctuations in the data can be reduced by
using even larger systems. Compare Figs. 5 and 6 with the
corresponding results for 262 144 particles, shown in Figs. 7
and 8. In these latter simulations the internal energy per par-
ticle reaches unity for the Sllod algorithm at a time of 9.799
and for the Doll’s algorithm at a time of 9.480.

At a fixed strain rate of 0.5, small-system fluctuations can
completely obscure the orderings of �Tii� and �Pii�. By in-
creasing the system size it is possible to verify that the tran-
sient fluctuating temperatures and stresses in adiabatic defor-
mation are close to those of the isoenergetic periodic shears,
with the orderings y�x�z for Doll’s and x�y�z for Sllod.
Neither algorithm reproduces the boundary-driven ordering
�at the same density, strain rate, and energy� x�z�y. We
discuss this finding in Sec. V.

V. NONEQUILIBRIUM CONSTITUTIVE RELATIONS

Models for continuum mechanics follow from conserva-
tion of mass, momentum, and energy. The differential ex-
pressions of these conservation relations are the continuity
equation, the equation of motion �which introduces the pres-
sure tensor P as the comoving momentum flux�, and the
energy equation �which introduces the heat flux vector Q as
the comoving energy flux�,

�̇ = − � � · v; �v̇ = − � · P; �ė = − �v:P − � · Q .

The time-and-space-dependent state variables of hydrody-
namics are taken from equilibrium thermodynamics, ex-
tended to the case in which gradients and time dependence
can occur. The state variables at location r and time t are the
density, velocity, and energy, ���r , t� ,v�r , t� ,e�r , t��, and it is
assumed that the pressure and heat flux can be defined in
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FIG. 5. �Txx ,Tyy ,Tzz� are plotted here for portions of 64 000-
particle adiabatic simulations of Figs. 3 and 4. The heaviest lines
show the laboratory-frame kinetic temperature; the medium lines
show kinetic temperature relative to the instantaneous smooth-
particle velocity. The light dashed lines show the configurational
temperatures, which fluctuate more wildly than the kinetic tempera-
tures. In the steady-state simulations of Ref. �1� the Doll’s kinetic
temperatures �0.496,0.508,0.493� and the Sllod kinetic temperatures
�0.507,0.497,0.493� correspond to an internal per particle energy of
exactly unity.
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FIG. 6. �Pxx , Pyy , Pzz� are plotted here for portions of the adia-
batic simulations of Figs. 3 and 4 �using laboratory-frame kinetic
contributions� and correspond to the heavy, medium, and light lines,
respectively. In the steady-state simulations of Ref. �1� the Doll’s
pressures �using laboratory-frame kinetic parts� �2.496,2.528,2.482�
and the Sllod pressures �2.516,2.509,2.484� correspond to an inter-
nal per particle energy of exactly unity and an average temperature
of about 0.5. The shear stress is about the same for the two algo-
rithms, �xy =0.343.
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FIG. 7. �Txx ,Tyy ,Tzz� are plotted here for portions of 262 144-
particle adiabatic-shear simulations. The heaviest lines show the
laboratory-frame kinetic temperature; the medium lines show ki-
netic temperature relative to the instantaneous smooth-particle ve-
locity. The light dashed lines show the configurational temperatures,
which fluctuate more than the kinetic temperatures. The kinetic
temperatures are nearly the same as those in the stationary shear
simulations of Ref. �1�.
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FIG. 8. �Pxx , Pyy , Pzz� are plotted here for portions of 262 144-
particle adiabatic-shear simulations and correspond to the heavy,
medium, and light lines, respectively. The configurational parts of
the pressure are slightly, but significantly, larger than those found in
the stationary shear simulations of Ref. �1�.
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terms of the present values, the gradients, and possibly the
past histories of these same variables.

In the present work we have seen that both the tempera-
ture �extended from the scalar thermodynamic variable to
tensor values� and the stress can differ for two systems with
identical densities, strain rates, energies, and constitutive re-
lations �because the underlying particles are the same�. Evi-
dently both temperature and stress depend on additional state
variables. The relative independence of the normal-stress dif-
ferences to the system size �1� L suggests that the discrep-
ancy between periodic and boundary-driven systems is in-
sensitive to second derivatives, ���� ,��v ,��e�, all of
which vary as L−2. From the constitutive standpoint it is sim-
plest to imagine a dependence of the normal-stress differ-
ences and the temperature tensor on the rate of heating ė.
Such a dependence could be used to describe the deviation of
the adiabatic transient flows from the corresponding station-
ary flows. Finding an additional independent constitutive
variable to distinguish stationary boundary-driven flows
from stationary homogeneous flows is a challenging research
goal.

VI. SUMMARY

Evans’ emphasis on the exactness of the Sllod algorithm
�restricted to adiabatic flows� is confirmed here, as Sllod is
nothing but Newton in a different coordinate frame. But it
must be noted that the large-system adiabatic pressure tensor
exhibits clear differences from the stationary pressure tensor
at the same energy, density, and strain rate. Sufficiently large
systems, with hundreds of thousands of particles, show that
the nonequilibrium temperature tensors of adiabatic transient
flows are very similar to those of homogeneous periodic sta-
tionary flows. The “realism” of the adiabatic flows is ques-
tionable because real boundaries, which normally drive, con-
strain, and cool flows, are absent. The diffusion time for an
N-particle system driven by a strain rate incorporated in its
periodic boundary conditions varies as N2/3, so that simula-
tion results depend increasingly on their initial conditions as
system size increases.

An interesting finding of the present work is that the
smooth-particle calculation of local velocity �when that ve-
locity is needed for the computation of the local tempera-
ture�, vSPAM=
wv /
w, is best modified by omitting the self-
terms in both sums. In a motionless equilibrium system the
“correct” average velocity, about which thermal fluctuations
are measured, should vanish. The usual smooth-particle av-
erage at particle i, �vSPAM�, includes a contribution of order
vi divided by the number of particles included in the sums.

For typical useful choices of the weight function and its
range h, field variables, such as density and velocity, include
contributions from a few dozen particles. When temperature
is estimated from fluctuations about a smooth-particle aver-
age, omitting the self-terms gives an improved temperature
estimate. The improvement is of the order of 10%.

From the constitutive standpoint it is simplest to “explain”
the difference between the adiabatic and boundary-driven
nonlinear properties through a dependence on ė, where e is
the internal energy per unit mass. Though the configurational
temperature tensor avoids the problem of defining a local
stream velocity, it still includes the effect of rotational con-
tributions, giving rise to “temperature gradients” based on
centrifugal forces in the absence of heat flow. Fortunately
these rotational temperature contributions are small, of order
�̇4.

VII. WHAT TO DO?

One referee asked us Lenin’s famous question with regard
to this work’s consequences. We hope to stimulate further
investigations of microscopic systems from macroscopic
points of view. The microscopic analogs of macroscopic
temperature, stress, and fluctuations are imperfect but vital in
drawing macroscopic conclusions from particle simulations.
There is much to do in understanding this correspondence
better for more complex systems with rotational and vibra-
tional degrees of freedom. Simulations and theories of elon-
gational flow have led to unresolved controversies as to the
“right way” to simulate such flows. See, for instance Refs.
�28–36� cited in our Ref. �1�. We believe that the nonlinear
aspects of steady deformational flows deserve more study.
For unsteady flows even an “exact” algorithm such as Sllod
depends on an essential way on the initial conditions unless
the deformation rate is very small.

Shockwaves provide more extreme tests of the correspon-
dence between microscopic and macroscopic models. The
significance of temperature for quantum systems away from
equilibrium needs elucidation too. We are confident that
progress along all of these lines can best be achieved by
carrying out, analyzing, and comparing series of simulations
such as those described in the present work.
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