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We sought to simulate auxetic behavior by carrying out dynamic analyses of mesoscopic model struc-
tures. We began by generating nearly periodic cellular structures. Four-node “Shell” elements and eight-
node “Brick” elements are the basic building blocks for each cell. The shells and bricks obey standard  
elastic-plastic continuum mechanics. The dynamical response of the structures was next determined for a 
three-stage loading process: (1) homogeneous compression; (2) viscous relaxation; (3) uniaxial compres-
sion. The simulations were carried out with both serial and parallel computer codes – DYNA3D and Para-
Dyn – which describe the deformation of the shells and bricks with a robust contact algorithm. We sum-
marize the results found here. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Auxetic behavior – negative Poisson’s ratio – is unusual but real. Relatively porous solids, such as the 
copper foam shown in Fig. 1 are auxetic [1]. Mesoscopic models for such microstructures, based on 
regular arrays of elements, can be auxetic too [2, 3]. The models considered so far have generally been 
relatively simple, so as to facilitate theoretical analyses. Here we consider a more complex class of mod-
els, well-suited to numerical simulation and exploration. The underlying full-density “matrix material” is 
simple, obeying Hookean linear elasticity (Young’s modulus 100E =  and Poisson’s ratio 0 25n = . ) up to 
a yield strength ( 0 1 1000)Y E= . = / , beyond which the continuing inelastic response to deformation be-
comes “plastic” ( and “irreversible”). 
 By building up nearly-regular cell structures using this idealized elastic-plastic material we can create 
highly irregular compressed structures. When these structures are relaxed, to a local energy minimum, 
further longitudinal deformation can be analyzed for auxetic behavior. That is, squeezing in the x-direction 
should result in proportional shrinkage in the y- and z-directions. Because a wide range of materials and 
cell structures give rise to auxetic behavior in the laboratory we expected that relatively simple models 
should do so too. This paper describes our search for auxetic behavior. In Section 2 we review the micro-
scopic approach, which points out the need for a macroscopic continuum approach to auxetic materials. 
Section 3 is a review of the underlying continuum mechanics. Section 4 describes the details of the numeri-
cal solution of the continuum equations. Section 5 describes our choices of initial and boundary conditions. 
Section 6 is devoted to results and Section 7 to our conclusions. Section 8 is a well-deserved acknow- 
ledgment  of  some of the debts we have incurred to the workshop organizer, Krzysztof Wojciechowski.  
 
 * Corresponding author: e-mail: hooverwilliam@yahoo.com 



586 Wm. G. Hoover and C. G. Hoover: Searching for auxetics with DYNA3D and ParaDyn 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 
 
Kris facilitated and supervised both the social and the scientific aspects of the stimulating workshop at 
which our material was presented. 

2 Microscopic statistical mechanics and molecular dynamics 

No doubt the fundamental basis of macroscopic thermodynamic and hydrodynamic behavior is micro-
scopic, as was detailed by Boltzmann and Gibbs. They developed “statistical mechanics”. The statistical 
mechanics of atomistic mass- m  particles, interacting with pairwise potential energies ( )rf  which pro-
vide central forces ( )F r  and a dynamics, ��mr F= , which can be simulated with standard integration 
methods, was worked out independently by these two men. Further elaborations of their ideas were made 
necessary when fast computers, able to simulate the many-body problem, became available around the 
time of the Second World War. Fermi, Alder, and Vineyard were responsible for pioneering simulations 
in the new field of “molecular dynamics”. For a brief history see the review by Hoover [4]. 
 By 1967 computers were able to solve deformation problems involving the correlated motions and 
interactions of a few thousand particles. Shockwaves converting a cold solid into a hot fluid were simu-
lated [5]. Simpler problems were considered. In considering them, it was natural to choose to describe 
the existing macroscopic formalism for elasticity in a form suitable for evaluation using molecular dy-
namics. Because molecular dynamics describes temperature (in terms of the kinetic energy of the mov-
ing particles) a description of the temperature dependence of the elastic response to strain became possible. 
In 1969 Hoover, Holt, and Squire developed a thermal microscopic description of the elastic constants in 
terms of the classic static-lattice sums (which they called the “Born” terms in recognition of Max Born’s 
contributions to elasticity) along with “fluctuation terms” taking thermal effects into account [6, 7]. 
 By 1989 it was feasible to carry out simulations with as many as a million atomistic particles [8–10]. 
Elastic-plastic indentation problems, in two and three dimensions, with both pair and many-body poten-
tials, were carried out then. By 1992 realistic simulations of the indentation of silicon appeared. Figure 2  
 

 

Fig. 1 Auxetic copper foam, as shown in Ref. [1]. 

Fig. 2 Identation pits, for the adiabatic motion of both smooth and atomistic 
indentors, as detailed in Ref. [9]. 



phys. stat. sol. (b) 242, No. 3 (2005) / www.pss-b.com 587 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Editor’s

Choice

 

Fig. 3 Cutting of pair potential (at the left) and metallic embedded-atom potential (at the right) crystals 
using nonequilibrium molecular dynamics, as described in Ref. [10]. Particles with above-average ener-
gies are shaded. 

 
is taken from the cover of the March/April 1992 issue of Computers in Physics. In the figure the indenta-
tion pits obtained using atomistic and continuum versions of a tetrahedral indentor are compared. In both 
cases the solid indentor penetrates a fully-atomistic workpiece. 
 Figure 3 shows two-dimensional simulations of precision metal cutting, from this same era [10]. Sev-
eral of these early simulations represented metals by using the many-body embedded-atom poten-
tial [11]. In all of this early work careful attention was paid to the development of useful boundary condi-
tions and to the analysis of quantitative measures of the simulation results. Even in two dimensions (and 
certainly in three) it was readily apparent that problems involving the plastic deformation of macroscopic 
bodies were best treated by continuum mechanics. Molecular dynamics takes too long. Not only the 
spatial and temporal limitations of molecular dynamics, but also the lack of fundamental information on 
atomistic forces, suggest still today that the macroscopic approach will be with us for the forseeable 
future. We turn to the simplest form of the macroscopic description in the next Section. 

3 Continuum dynamics 

Continuum dynamics describes the time development of matter with continuously differentiable veloci-
ties v , stress tensors s , and energy densities e. The fundamental (partial differential) equation describing 
the motion of a continuum comes from momentum balance [12]. It gives the acceleration field in terms 
of gradients of the local stress-tensor components: 

 �vr s= —◊ .  (1) 

The “comoving” time derivative �v  is the time rate of change of velocity v  for a particular volume ele-
ment. In principle the volume element is infinitesimal. Such a derivative is also the natural choice for a 
numerical method which divides the continuum into small but finite “Lagrangian zones” (or “finite ele-
ments”) so as to reduce the number of degrees of freedom to a manageable number. 
 A well-posed continuum problem requires a relation giving the stress tensor s  for the material in 
terms of the other state variables (energy, density r , strain e , …). For simplicity we begin by consider-
ing an elastic equation of state, with stress proportional to strain. It is usual to write this equation of state 
in terms of the Lamé constants l  and h  or in terms of the bulk and shear moduli B and G, 

 2
3B Gl h h= + ; = .  (2) 

 The linear elastic equation of state relates stress to the strains, which are symmetrized deformation 
gradients: 

 d d d d d dxx x yy y zz zu x u y u ze e e= / ; = / ; = / ;  (3) 
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 d d d dxy x yu y u xe = / + / ;  (4) 

 d d d dyz y zu z u ye = / + / ;  (5) 

 d d d dzx z xu x u ze = / + / .  (6) 

 For large deformations the extent of deformation u  becomes ambiguous. For that reason, in practical 
calculations the time derivatives of these equations (expressing the strain rates in terms of velocity gradi-
ents) are integrated instead. The stresses (integrated stress rates) from these strain rates need to be de-
fined so as to be symmetric also. A symmetric stress tensor is necessary for a mechanically stable treat-
ment of rotation [13]: 

 2 ( )xx xx xx yy zzs he l e e e= + + + ;  (7) 

 2 ( )yy yy xx yy zzs he l e e e= + + + ;  (8) 

 2 ( )zz zz xx yy zzs he l e e e= + + + ;  (9) 

 xy yx xys s he= = ;  (10) 

 yz zy yzs s he= = ;  (11) 

 zx xz zxs s he= = .  (12) 

 Now consider an application of elastic theory to the characterization of auxetic materials. Compress an 
otherwise stress-free cylinder in the x  direction. By setting the transverse stresses yys  equal to zero, and 
assuming cylindrical symmetry, ( )yy zze e= , we can relate the definition of Poisson’s ratio n  (minus the 
ratio of the transverse to the longitudinal strain) to the Lamé constants and the moduli: 

 (2 2 )yy xxn e e l h l= - / = / + ;  (13) 

 2
3( )B l h= + ;  (14) 

 2 2
3 3( ) (2 )B Bn h h= - / + .  (15) 

 

Poisson’s ratio is restricted in range by the requirements that both the bulk and shear moduli be positive: 

 1
20 1B G n< , < • Æ - < < .  (16) 

Equivalently, the fraction l h/  must exceed 2
3- : 

 
2

0
3
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l

h

-
> Æ > .  (17) 

Typical values of B h/  and n  are: 

 { } { }1 2 3 4 5 10 0 5 8 10
3 3 3 3 3 40 40 40 40 40

B
n

h

- + + +
= , , , , Æ = , , , , .  (18) 

 We use the simplest model for plasticity, in which an effective shear stress effs  cannot exceed a fixed 

(constant) yield strength Y : 

 
1
22 2 2 2 2 21 1 1

eff 2 2 2( ) ( ) ( ) 2 2 2xx yy yy zz zz xx xy yz zx Ys s s s s s s s s s
È ˘
Í ˙Î ˚

∫ - + - + - + + + < .  (19) 

With the specification of Young’s modulus 2l h+ , Poisson’s ratio, and the von Mises’ yield strength Y , 
the constitutive properties of a simple “elastic-perfectly plastic” model are complete. 
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4 Discretization of the continuum in DYNA3D and ParaDyn 

The serial and parallel computer codes, DYNA3D and ParaDyn, need a list of nodes and a list of ele-
ments, a connectivity (nearest-neighbor nodes) list, as well as initial and boundary conditions. Each of 
the nodes has its own coordinates, which can vary with time. Each element is made up of one or more 
nodes. We describe the continuum structure in terms of simple elastic “shell” or “brick” elements. Each 
shell element corresponds to four nodes. Bricks require eight nodes. We choose an initial brick size 
1 1 1¥ ¥ . For convenience we choose the size of the individual shells to be 1 1 0 1¥ ¥ . , where the shell 
thickness 0 1.  is again arbitrary. The shells can be treated by a wide variety of models. All of them in-
volve many internal degrees of freedom to describe the out-of-plane bending of the shells, and none of 
them is subject to the “locking” problems associated with shells having too few degrees of freedom. We 
have used two of the most popular choices available in DYNA, Hughes-Liu and Belytschko-Tsay. The 
shells are arranged in “panels” of 2 2 4 4 8 8 …¥ , ¥ , ¥ ,  shells. Our models based on brick elements have 
cubic vacancies. These vacancies are constructed by removing internal “cubes” made up of 8, 27, 64, …  
brick elements. 
 Both kinds of meshes can be generated easily. An n n n¥ ¥  array of nodes without any vacant por-
tions corresponds to 23 ( 1)n n -  shells or 3( 1)n -  bricks. It is simplest to generate all of these elements 
first, and then to discard from the list those necessary to make a regular array of vacancies. It is quite 
practical to consider vacancies covering the same volume as do 32 , 34 , 38 , and 316  elemental bricks. The 
elements are initially arranged in periodic arrays such as the two shown in Fig. 4. Prior to deformation 
small random displacements, of order one percent of the shell or brick size, are applied to all of the 
nodes. 
“Contact algorithms” prevent or limit the interpenetration of elements. This can be accomplished by 
Lagrange multipliers (which enforce the corresponding geometric constraints) or by using conditional 
Hooke’s law springs (which force any overlapping elements to separate). We have used both approaches 
in our simulations and found no significant differences. The additional computer time used by DYNA3D 
to enforce the contact constraints in these problems never exceeds half the total run time. Likewise, for 
the two distinct shell-element models, we found no significant differences in the results using either of 
them. 
 

 

   
 a) b) 

Fig. 4 Prototypical cellular structures, built up from shell elements (on the left) and brick elements (on the right). 
The external skin of elements, to which boundary forces are applied, is not shown here. 
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5 Deformation of the model 

We deform the model by applying accelerations to all of the surface nodes in a “compression phase”. 
The accelerations are chosen to be proportional to the initial separation of the node from the center of 
mass, and to a piecewise linear function of a reduced time variable, chosen here to vary from 2-  to 2 : 

 2 1 (0) [ 2]��t r r t- < < - Æ µ + + ;  (20) 

 1 1 (0) [ 0]��t r r t- < < + Æ µ - + ;  (21) 

 1 2 (0) [ 2]��t r r t+ < < + Æ µ + - .  (22) 

This arbitrary, but thoughtful, prescription for the deformation provides a very smooth cubic-spline in-
terpolation between initial and final conditions. See Fig. 5 for a summary of the displacements and ve-
locities which accompany these accelerations. In most cases we have arbitrarily chosen the time scaling 
and proportionality constant so that the side length at 2t = +  is ten percent less than that at 2t = -  for 
shells, and twenty percent less for bricks. The compression is carried out over a period of several sound 
traversal times. 
 Once this plastic deformation has been carried out a second “relaxation phase” is imposed on the 
structure. The relaxation is carried out by zeroing all the velocities at integral multiples of 100 dt . This 
ad hoc procedure was chosen because DYNA3D does not have a dynamical damping which is useful for 
this class of problem. A third and final “deformation phase”, in which the accelerations are applied only 
in the x  direction, with an amplitude 100 times smaller than those of the compression phase, is applied 
last of all. The response of the structure to this last deformation can then be analyzed to determine Pois-
son’s ratio for the compressed and relaxed material. 
 Throughout, the motion is approximated by a second-order Runge-Kutta “midpoint” integration. For 
the two coupled ordinary differential equations ( )� �r v v a r v= ; = ,  this integration algorithm is as fol-

lows: 

 
d d

( )
2 2
t t

r r v v v a r v= + ; = + , ;¢ ¢  (23) 

 d ( ) dr r v t v v a r v t= + ; = + , .¢ ¢ ¢  (24) 

DYNA3D and ParaDyn simulations solve equations for the time development of the nodal coordinates 
and velocities, the stresses for each element (by integrating the corresponding strain-rate tensor in time 
and applying the von Mises plastic yield condition as needed), and the plastic strain for each element 
(proportional to the irreversible work done on that element). The detailed models for shell elements are 
relatively complicated [14]. Interpolations within brick elements are carried out with a simple iso- 

Fig. 5 Piecewise-linear dependence of acceleration on time used to 
deform and stress shell-element and brick-element structures. The ampli-
tude of the final deformation is 100 times smaller than that of the initial 
inelastic deformation. The integrated velocity and displacement corre-
sponding to this acceleration function are also shown. 
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parametric representation. Function values inside an analogous square, with 1 1x y- < , < +  would be 
computed as follows: 

 1
4( ) [ (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )]y

xf f x y f x y f x y f x y f x y- + - +

- - + +
∫ , = - - + - + + + - + + + .  (25) 

It must be understood that the x  and y  coordinates in this interpolation are constants and do not vary 
with time. 
 The graphical data are plotted as the program progresses by a special program GRIZ. GRIZ reads the 
data files generated by DYNA3D or ParaDyn. Both DYNA3D and GRIZ are available from the United 
States Government’s Energy Science and Technology Software Center in Oak Ridge, Tennessee. Typical 
results from the simulations appear in the next Section. 

6 Results 

The most useful diagnostic tools for these problems were (1) animated views of the overall structure, (2) 
time histories of the coordinates for particular nodes, and (3) the time history of the kinetic energy. 
DYNA3D and ParaDyn allow for the use of several “materials” in a simulation, and the accompanying 
graphics package GRIZ allows the analyst to look at particular sets of materials. This makes it easy to 
see “cutaway” views of the structure, as well as cross sections. The simplest application of this feature is 
to term all those elements subject to external forces “Material 1” and the rest “Material 2”. A graphic 
display, restricted to Material 2, then shows only the interior of the deforming material. See Figs. 6, 7, 
and 10 for examples. 
 Because the defining property of auxetic materials is their unusual response to longitudinal loading it 
is useful to compute the strains { }xx yy zze e e, , . Overall strains can be defined in terms of differences of 
boundary-particle coordinate sums (those on the positive x  face minus those on the negative x  face, 
divided by the original value of the difference of these sums, gives 1xxe + ). 
 All of our simulations treated cubes of material subject to external loads on their faces. A better treat-
ment would be to use periodic boundaries. That approach would provide smoother results, with reduced  
 

   
 
 
 
 
 

Fig. 6 Deformed auxetic structure, composed of 
208,896 shell elements. The undeformed structure is 
shown at the left side of Fig. 4. Here the outermost 
“skin” of surrounding shell elements, to which the 
loads were applied, is not shown. 

Fig. 7 Deformed structure (not auxetic), made up of 
32,851 brick elements. The undeformed structure is 
shown at the right side of Fig. 4. Here the outermost 
skin of surrounding brick elements, to which the loads 
were applied, is not shown. 
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rate dependence. In a periodic deformation the central cube of material would be deformed by periodic 
images translated in space. These boundary conditions are the typical ones for molecular dynamics, but 
are not available options in most solid-mechanics computer codes. 
 We carried out quite a variety of simulations in searching for auxetic behavior. The first two weeks of 
our search were fruitless, but eventually the structures and procedures described here were successful. In 
this work we record only a few observations. It is quite practical to run simulations with some tens of 
thousands of elements on a work station. Typical runtimes on such a serial machine are of order several 
microseconds per element timestep. Thus a work-station run of 100,000 steps with N  elements would be 
executed in approximately N  seconds of computer time. 
 At Livermore it is quite feasible, though a bit tedious, to reduce these times by a factor of order 100, 
by assigning a simulation to several processors. Figure 8 illustrates the assignment of a 65 65 65¥ ¥ –
node problem to 32 processors. To check the sensitivity of the results we found we varied the Poisson’s 
ratio of the matrix material, the rate of compression, the shear modulus, and the amplitude of the initial 
perturbations. Of all of these, the results are most sensitive to the perturbations. Figure 9 shows the dis-
placements of a typical node during the third-stage small deformation used to determine Poisson’s ratio 
for the deformed cellular material. The structure is shown in Fig. 10. The effective Poisson’s ratio for 
this multishell structure is changed, from –0.1 to –0.4, by a decrease in the random displacements from 
the range 2 5%± .  to the range 0 5%± . . 
 We carried out several simulations involving brick elements. See Figs. 7 and 11 for examples. Despite 
varying the thickness of the partitions between empty cells (one, two, or three bricks thick) and the size 
of the cells (1 1 1¥ ¥  to 40 40 40¥ ¥ ) we have not yet (midJuly, 2004) found auxetic behavior for the 
brick structures. In the structure shown in Fig. 11 the loads were applied directly to the outer nodes 
shown in the figure. In our earlier work the loads were applied to an outer complete skin of brick ele-
ments, but that boundary condition was more sensitive to hourglass instability, and we abandoned it. 
Because a large number of bricks can serve as a surrogate shell there is no doubt that we will eventually 
find auxetic behavior for the brick structures too. 

Fig. 8 Partition of a 65 65 65¥ ¥  node problem 
over 32 processors. Nodes belonging to elements on 
the boundaries of the processors’ partitions are shared 
between the corresponding processors. Here the 
external skin of elements is shown. 
 

Fig. 9 Longitudinal and transverse displacements 
of a (typical) boundary node for the structure shown 
in Fig. 10. At the left, with an effective Poisson’s 
ratio of –0.1, the initial random displacments were 
five times larger than those generating the more-
negative effective Poisson’s ratio of –0.4 shown at 
the right. See the text for details. 
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7 Conclusions 

Our simulations are insensitive to the numerical algorithms used to represent the underlying brick and 
shell elements, so that one can use the continuum codes with confidence. Individual cells made up of 
shell elements, when severely buckled, exhibit auxetic behavior. The details of this behavior, for the 
loading rates we used, are sensitive to the small perturbations from ideal symmetry used in the initial 
conditions. The most negative Poisson’s ratio found in our exploratory calculations (most of which used 
a matrix Poisson’s ratio of 1

4 ) was 0 4- . . See again the right side of Fig. 9. 
 We conclude that auxetic materials are an ideal problem for parallel computation. The problems are 
nonlinear and chaotic, with the results mostly not known in advance, and the simulations are relatively 
quick and inexpensive. We expect that the future will lead to a systematic understanding of auxetic be-
havior supported by computer simulations. 
 Overall, we conclude that DYNA3D and ParaDYN are useful research tools for predicting auxetic  
behavior. A number of improvements could be made to DYNA3D and to ParaDYN to facilitate further 
work. Periodic boundary conditions would be very useful for exploring the response of anisotropic  
complex structures. Isotropic cell structures (as opposed to those with cubic symmetry) could be devel-
oped. One way to do this would be to base a continuum mesh on the structure of a typical atomistic fluid, 
taken from a molecular dynamics simulation. Beam elements which prevent contact would be particu-
larly welcome in modeling the auxetic foams remaining after the evaporation of nominally-spherical 
bubbles. In the present exploratory work we have chosen to use only small perturbations to the regular 
shell and brick structures. This has been done solely for the sake of simplicity. We recognize that simula-
tions designed to mock up actual pore structures would necessarily involve more complexity and irregu-
larity. 

Fig. 10 Structure corresponding to the displace-
ments shown in Fig. 9. Young’s modulus, the yield 
strength, and Poisson’s ratio were equal to 100, 0.10, 
and 0.25, with compressive strains of 0.10 in the x, y, 
and z-directions. The external skin of shell elements 
is not shown here. The total number of shell elements 
in the structure is 52,224. 
 

Fig. 11 Deformation of a structure made up of 
259,712 brick elements. Here the external loads were 
applied directly to the outer surfaces shown in the 
figure, with no external skin. Young’s modulus, the 
yield strength, and Poisson’s ratio were equal to 100, 
0.10, and 0.25, with compressive strains of 0.20 in the 
x, y, and z-directions. The behavior of this structure is 
not auxetic. 
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8 Afterword 

The workshop, with its opportunities to meet with a distinguished set of international scholars, to cele-
brate Krzysztof’s Professorship, and to enjoy the elegant hospitality of the Institute for Mathematics at 
Bedlewo, were real highpoints of 2004 for WGH. This work was performed under the auspices of the 
United States Department of Energy by Lawrence Livermore National Laboratory under Contract  
W-7405-ENG-48. 
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