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15 I. INTRODUCTION

16 Aleft-moving piston, impacting a fluid with velocity —u,,
17 generates a left-moving shockwave with velocity —u.
18 Throughout this paper we analyze such a shockwave from
19 the viewpoint of a coordinate system moving leftward, so as
20 to keep pace with the shock. See Figs. 1 and 2. In this special
21 uniformly translating coordinate frame the shockwave is sta-
22 tionary, simplifying theoretical analyses. One-dimensional
23 stationary shockwaves [1-14] provide a useful computa-
24 tional laboratory for the study of stationary far-from-
25 equilibrium states. In such a shockwave a cold fluid is con-
26 verted irreversibly to a hot one. As the fluid moves from left
27 to right, in the shock-centered coordinate frame of the Fig-
28 ures, at speed u(x), the x coordinate increases; typically, the
29 corresponding density, the longitudinal component of the
30 pressure tensor, and the energy all increase too, in just such a
31 way that the spatial structure of the wave is stationary,

32 {u:)&,p,Pxx,é}>0,
33 (Auldr),=0;  (dp/dr),=0; (dP,/d1),=0;
34 (9Py,/dt),=0; (deldt),=0.

35 As the velocity decreases from its leftmost entrance value,
36 u(x——°)=u, to its rightmost exit value, u(x— +%)=u,
37 —u,, the stationary nature of the wave requires that the fluxes
38 of mass, momentum, and energy remain constant throughout,

39 (pu)x = (pu)cold = (pu)hot’

40 (Pxx + puz)x = (P + puz)cold = (P + puz)hot’
) (p)(e + (Polp) + W?12)], + O,

42 = (Pu)[e + (P/P) + (uz/z)]cold

43 = (pu)le + (P/p) + (u?/2) Ty

44 The notation here is conventional, with the pressure tensor P
45 and heat flux vector Q assumed to be calculable from the
46 density p, velocity u, energy e, and their gradients.

47 Temperature [11,12,15-17] is our special interest in this
48 work. Temperature is most simply and usefully defined as a
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Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations
and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we
partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal
and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations
converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted
to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of

PACS number(s): 47.40.—x, 62.50.Ef, 05.20.—y, 02.60.—x

velocity fluctuation, the “kinetic temperature,” 49

KT = m{(i=(0)%); KTy, = m{(y = (1))

The angular brackets imply a local average. The velocities
here are individual particle velocities, whose local average
would be the hydrodynamic flow velocity u. Temperature is
just the fluctuation about this average. It is evident that 7',
and T, can differ. In dilute-gas kinetic theory, the difference
corresponds to a shear stress,

50

51
52
53
54
55
56

pk(T .~ T,,)/(2m) = (P, — Py,)/2[ Dilute Gas], 57

58
59
60
61
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where k is Boltzmann’s constant and m is the particle mass,
which we choose equal to unity in what follows. In dense
fluids there is no simple relationship between the two tensors
so that special evolution equations for 7, and T, need to be
developed, as we do in Sec. III.

The cold fluid, initially moving to the right at the entrance
velocity, or “shock velocity” ug, is slowed by its encounter
with the wave until it reaches its exit velocity u,—u,, where
u,, is the “piston velocity” or “particle velocity.” In this irre-
versible deceleration the kinetic energy lost by the deceler-
ating fluid is converted into additional hot fluid enthalpy
(H=E+PV<+h=e+Pv),

hhot - hcold = [6 + (P/p)]hot - [e + (P/p)]cold
= [uf/2] —[(u, - u[,)z/Z].

70

7

The cold and hot boundary conditions enclosing the shock 72
are equilibrium ones imposed far from the shockfront so that 73
the small-system surface effects complicating the number de- 74
pendence of nonequilibrium systems are minimized. In 75
implementing these ideas no arbitrary or artificial assump- 76

———
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FIG. 1. Schematic stationary shockwave. Cold fluid enters at the
left cold boundary, with speed u,; hot fluid leaves at the right hot
boundary, with speed u;—u,. We choose a coordinate frame which
moves leftward, at speed u, relative to the laboratory frame. The
shockwave remains stationary in this coordinate frame.
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FIG. 2. Stationary shockwave. Snapshot from a 10-row molecu-
lar dynamics simulation with a periodic height of 10y3/4. The
simulations analyzed in the text are based on 80-row molecular
dynamics with a periodic height of 80y3/4.

77 tions have to be made. All the observed phenomena follow
78 from the assumed form for the interparticle forces. Figures
79 3-5 show typical results from molecular dynamics, as is de-
80 scribed in more detail in Sec. II. Notice that the rise in lon-
81 gitudinal temperature 7, can be much larger and can occur
82 somewhat earlier [ 12] than that of the transverse temperature
83 T

84 In Sec. III we discuss the continuum mechanics of the
85 same shockwave problem. Evidently any continuum formu-
86 lation must first of all include the continuum conservation
87 laws for mass, momentum, and energy,

88 p=—pV -u,
89 pi=-V-P,
90 =-Vu:P-V-Q.

91 Here the pressure tensor P and heat flux vector O measure
92 the momentum and energy fluxes in the local “co-moving”
93 (or “Lagrangian”) coordinate frame moving with the mean
94 velocity u(x). Now the superior dot notation is used to indi-
95 cate the time derivatives of p, u, and e following the motion
96 at velocity u. In the continuum description these field vari-
97 ables are continuous differentiable functions of space and
98 time so that the spatial averaging (necessary to an analysis of
99 molecular dynamics data) is unnecessary.
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FIG. 3. A snapshot spatial profile of a nominally steady one-
dimensional shockwave from molecular dynamics, using a short-
ranged repulsive potential. Spatial one-dimensional averages of the
temperatures and heat flux (left) and the pressures, density, and
energy (right) have been computed with Lucy’s weight function
using a range h=3. The cold zero-pressure, zero-temperature tnﬂ
gular_lattice is compressed to twice the initial density (v4/3
—>2\4/3) by the shockwave, just as in Fig. 2.
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FIG. 4. Volume dependence of the temperature tensor (left) and
the pressure tensor (right) in the stationary shockwave of Fig. 3, as
calculated with molecular dynamics. Spatial averages have been
computed with Lucy’s weight function using a range h=3, as is
discussed in Sec. I
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The steady nature of the shock process makes it possible
to use either space or time as an independent variable. On the
average, the progress of a particle traveling through the
shockwave follows from the integral of the flow velocity. To
illustrate, consider again the molecular dynamics profiles
shown in Fig. 3, with space as the abscissa. Exactly the same
profiles can alternatively be expressed with time as the ab-
scissa, as in Fig. 5. To change from space-based to time-
based profiles requires use of the ratio (dx/dr)=u,

1 X
fdt':f dx'fu(x"); =0 x=xg,
0 X 109
110
111
112
113
114
115

where u(x) is the hydrodynamic flow velocity. Thus all the
spatial snapshots or equivalent temporal wave profiles cata-
log the sequence of time-ordered states through which the
particles in a typical volume (initially at x,) pass as they
transit the shockwave.

Because the conventional Navier-Stokes-Fourier ap-
proach, illustrated in Fig. 6, assumes a scalar temperature, 116
T=T,=T,,, several modifications of the continuum descrip- 117
tion need to be made to model the two-temperature results of 118
Figs. 3-5 found with molecular dynamics, with T, # T,,. In 119
Sec. III we describe simple modifications of the Navier- 120
Stokes-Fourier constitutive and flow equations, along with a 121

numerical method which converges nicely to give stationary 122
shockwave profiles in the two-temperature case. 123
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FIG. 5. Stationary temporal profile for the one-dimensional
shockwave of Fig. 3, using a short-ranged repulsive potential. Spa-
tial averages of the temperatures (left) and the pressures, density,
and energy (right) have been computed with Lucy’s weight function
using a range £=3. The initial stress-free cold triangular lattice is
compressed to twice the initial density by the shockwave, as in Fig.
2. The time origin has been chosen, arbitrarily, close to the
shockfront.
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FIG. 6. Stationary spatial profile for a one-dimensional shock-
wave according to the usual Navier-Stokes-Fourier equations for
the model fluid: Pey=pe; e=(p/2)+kT with unit shear viscosity,
zero bulk viscosity, and unit Fourier heat conductivity. Here the
temperature 7 (left) is a scalar, as in conventional continuum
mechanics.

124  Section IV is reserved for a summary and our concluding
125 remarks, including suggestions for adapting our ideas to de-
126 tailed two- and three-dimensional descriptions of the fluctua-
127 tions in nonequilibrium systems.

128 II. RESULTS FROM MOLECULAR DYNAMICS

129  The molecular dynamics simulations leading to our cur-
130 rent results are all based on a very simple model two-
131 dimensional system of unit-mass unit-radius particles inter-
132 acting pairwise with a short-ranged normalized repulsive
133 potential [12,15],

1
o(r<1)=10/m (1 -r) —>f 2ardrd(r) = 1.
0

134

135 The length and energy scales set by this potential correspond
136 to the range and strength of the interparticle pair forces. The
137 equilibrium properties for this potential can be approximated
138 very roughly by a theoretical model (based on a random
139 distribution of particles in space) resembling van der Waals’
140 mean-field idea,

14 P=pe; e=(p/2)+kT.

142 P, p, e, and T are the pressure, density, energy, and tempera-
143 ture. Though the models and language here all refer to sys-
144 tems in two space dimensions the same ideas can be applied
145 equally well to three-dimensional systems.

146 We expect that the nonequilibrium properties for this
147 model will likewise provide a simple interpretation. We are
148 particularly interested here in generalizing the notion of tem-
149 perature to the tensor case, T, # T),. The need for this gen-
150 eralization stems from the molecular dynamics shockwave
151 simulations summarized in Figs. 3-5.

152  Stationary shockwaves were obtained from molecular dy-
153 namics by matching the mass flux of a cold stress-free lattice
154 (p=14/3 and speed 1.930) to the mass flux of the hot fluid
155 exiting at the right-hand boundary (with p=2v4/3 and speed
156 0.965),

—
157 PU = Peoldheold = PhotUhot = 1.93 X V4/3 =2.229.

158 With this choice for the shockwave speed u;=1.93 and par-
159 ticle (or piston) speed u,=u,/2 the shockwave is stationary
160 and corresponds to twofold compression, a “strong” shock-
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wave [12]. The Mach number M=u/c, is not a useful de-
scription here as the sound speed ¢, vanishes in the cold
state. The momentum and energy fluxes throughout the wave
are equal to those of the initial cold lattice,

P+ pu® = \4/3(1.93)2 = 4.301,

pule + (P./p) + u2)]+ O, = V4/3(1.93)%2 = 4.151.
Spatial averages within the shockwave were calculated
here using Lucy’s weight function [12,13,15,16],
wLucy(|x| <h)=(5/4n)[1-6r%+8r-3r*]; r=x|/h<1,

with a range equal to three times the range of the potential,
h=3. The internal energy at a grid point coordinate x, for
example, is computed as a ratio of sums,

2 w(x - x;)e;

e(x) = lE

i

w(x = x;) ’

where the energy of Particle i is the sum of its kinetic energy
relative to the local flow velocity u(x) plus half its
summed-up interaction energy with other nearby Particles
{}-

Consider now the results shown in Figs. 3 and 4. The
density, energy, and pressure agree roughly with the
hyperbolic-tangent profiles derived by Landau and Lifshitz
for a weak shockwave with constant transport coefficients
[3]. Figure 4 shows the pressure-temperature-volume states
through which the moving fluid travels. The Rayleigh Line, a
straight-line relation linking P, and the volume, is necessar-
ily satisfied and corresponds to the conservation of momen-
tum. In marked contrast, the molecular dynamics tempera-
ture shows a strong maximum (as might be expected from
the mixing of cold and hot Gaussian distributions suggested
by Mott-Smith [1]) at the shockfront. Because the work done
in compressing the fluid appears first in the longitudinal di-
rection we expect that the rise in 7, precedes that of T}, as
is confirmed in Fig. 3. This thermal anisotropicity differs
from the conventional textbook result and is the main moti-
vation for our work on a two-temperature continuum de-
scription, detailed in the following Section.

III. RESULTS FROM CONTINUUM MECHANICS
A. General considerations

Continuum models combine the universal conservation
laws (mass, momentum, and energy) and the corresponding
evolution equations (continuity, motion, and energy) with
specific constitutive models. The constitutive models de-
scribe the pressure tensor and the heat flux vector for non-
equilibrium systems. The usual Navier-Stokes assumptions,
which we follow here for a two-dimensional fluid, are that
the pressure tensor and heat flux vector respond linearly to
velocity and temperature gradients,

P=P9- N[V -ull- 9[Vu+Vu']; N=q,-7,
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208 Q=-«VT.

209 It needs to be emphasized that the choice of particular ex-
210 pansion variables, here Vu and VT, affects the solutions of
211 nonlinear problems like shockwave structure. Garcia-Colin
212 and Green emphasized that the description of nonequilibrium
213 continuum mechanics is ambiguous whenever the choice of
214 “equilibrium” variables—energy or longitudinal temperature
215 or transverse temperature in this case—is ambiguous [17].
216 The numerical value of a Taylor’s series in the deviations
217 from equilibrium, truncated after the first nonlinear term, is
218 clearly sensitive to the choice of independent variable.

219  In the nonequilibrium pressure tensor the superscript
220 indicates the transposed tensor and / is the unit tensor

t

221 111=122=1; 112=121=0,

222 7 is the shear viscosity, and A= 7,— 7 is defined by the bulk
223 viscosity 7,. In the shockwave problem the pressure-tensor
224 definitions give

225 P, =P ~(n,+ nduldx; Py,=P"~(y,— nduldx.

226 For a two-temperature continuum model it is necessary to
227 formulate the “equilibrium pressure” P4 as a function of the
228 (nonequilibrium) energy, density, and the two temperatures.
229 The viscosities and conductivity could likewise depend upon
230 these state variables and « can be a tensor, as we show later,
231 with an example.

232 When we define T\, and 7, as continuum state variables
233 it becomes necessary for us to formulate constitutive rela-
234 tions for their evolution. The simplest such models begin by
235 separating the energy into two parts: a density-dependent
236 “cold curve” e*°'(p) and an additional kinetic or “thermal”
237 part, proportional to temperature,

238 e=ep) +eM™MNT,.T,,) = e+ (ck) (T, + T,,),

239 where ck is a scalar heat capacity. The functional form of the
240 cold curve produces a corresponding contribution to the
241 pressure,

242 P = — deNd(VIN) = p>de Y dp.

243 Griineisen’s 7y defines a corresponding thermal pressure,

Plhermal thermal

244 = ype

245 The viscous part of the pressure tensor is Newtonian,

246 pyiscous — _ )\ 7 . ul — 77(Vl/l + VMT).

247  The thermal and viscous parts of the first-law energy
248 change are then apportioned between the x and y directions
249 so as to be consistent with overall energy conservation,

250 gthermal = 6 — 6 p) = kT, + ckT,,

251 pckT, =—aVu:(P—IP®Y - BV -0+ pck(Tyy — Ty, )/ T,
252 pckT,y=(a—1) Vu:(P-IP*") + (B-1)V - Q
253 + pck(T,, = T),)/ .

254 The thermal relaxation time 7 has been introduced in the
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evolution equations to guarantee thermal equilibrium far 255
from the shockwave, 256
K.=K, < T,=T,,=T". 257

258
259

In what follows we consider two models for the cold
curve and the heat capacity. First, a weak repulsive pair force

suggests implementing a “van der Waals model,” 260
eM=(p2); MM =K(T, +T,,)/2; P=pe. 261
Second, a triangular-lattice-based model, based on Grii- 262

neisen’s ideas, uses the nearest-neighbor static lattice energy
and pressure corresponding to the pair potential evaluated at

263
264

the nearest-neighbor lattice spacing r, ¢=(10/m)(1-r)3, 265
M= 30/m)(1-r)3;  pOUVIN) = (45/m)r(1 - 1), 266
r=\VI/Vy: Vo= 3/4N. 267

The corresponding equilibrium equation of state separates 268
the energy and pressure into “cold” and “thermal” parts, 269
= ecold + ethermal. P = Pcold +p ,yelhermal 270

271
272

with y chosen so as to roughly reproduce equation of state
data from molecular dynamics. Let us next apply these two

simple cold-curve models to the shockwave problem. 273
B. Potential plus kinetic van der Waals models 274

First consider an arbitrary, but simple and natural, choice, 275
P=pe; =04 MM = (p+ kT, +kT,,)12, 276
Pcold — pecold — P2/2 277

with an initial density of unity and an initial temperature of 278
zero. Twofold compression of the cold van der Waals fluid 279

gives the following solution relating the initial and final equi- 280
librium states, 281
pl—2; uw2—1; T:0—1/4; e:1/2—5/4; 282
P:1/2 —5/2. 283

The mass, momentum, and energy fluxes connecting these 284
states must be constant throughout the profile, 285
pu=2; P +pu>=9/2; pule+ (P, /p)+u*2)]+Q, 286
=6. 287

Consider the most extreme anisotropic situation consistent
with energy conservation, in which all the work done and
heat transferred are associated with thermal change in the x
direction. The thermal relaxation time 7, here chosen equal to

288
289
290
291

unity, guarantees that the x and y temperatures equilibrate in 292
a time of order 7, 293
gthermal = 6 — 6% (p) = (k/2) (T, + T), 294

p(ki2)T == Vu:(P = IP®) =V - Q + p(ki2)(T,, - T,,)/7; 295
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FIG. 7. Typical solution of the generalized Navier-Stokes-
Fourier equations for the van der Waals model with both heat and
work contributing to 7, and with the heat flux responding only to
the gradient of T',. The shear viscosity, heat conductivity, heat ca-
pacity, and thermal relaxation times are all taken equal to unity.

296 p(k/Z)Tyy =p(ki2)(T,—T,))/7; 7=1.

297 Two solutions of these equations appear in Figs. 7 and 8. For
298 both of them we chose a shear viscosity of unity and a van-
299 ishing bulk viscosity,

300 Py =P ~du/dx; Py, =P“+duldx.

301  The heat flux vector requires that an additional choice be
302 made for its response to the gradients of T, and T,,. We
303 compare two choices in Figs. 7 and 8. For both of them the
304 overall conductivity is unity, but the heat flux responds dif-
305 ferently to the two components of VT,

306 Q,=-«VT,,=-VT,[Choice 1],
307 Q,=-«(VT+VT,,)/2=~ (VT + VT,,)/2[Choice 2].
308 It is good fortune that the shockwave equations we sum-

309 marize here are relatively easy to solve numerically. The
310 usual numerical method is the “backward Euler” scheme [2].
311 One starts near the “hot” boundary and integrates backward,
312 using a first-order difference scheme. That approach fails
313 here, due to the temperature relaxation terms, which are ex-
314 ponentially unstable in the time-reversed case. An integration
315 forward in time is required in the presence of relaxation. A
316 successful “staggered-grid” (two separate spatial grids) algo-
317 rithm results if the density p. is defined at cell centers and
318 energy, temperature, and pressure are defined at the nodes
319 which bound the cells [18,19]. This algorithm follows the
320 dynamics correctly and converges nicely to the stationary
321 profiles shown in Figs. 7 and 8. A computational mesh spac-

0.35
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0.15}
0.05

-0.05} N/ J

-015 Heat FI
-0.25 eal ux

5.0 < x < +5.0

3.0

Temperatures

120

1.0

0.0
5.0 < x < +5.0

FIG. 8. Typical solution of the generalized Navier-Stokes-
Fourier equations for the van der Waals model with both heat and
work contributing to 7', and with the heat flux responding equally
to the gradients of both Ty, and 7},. The shear viscosity, heat con-
ductivity, heat capacity, and thermal relaxation times are all taken
equal to unity.
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ing of dx=0.1 is sufficient, using the second-order spatial 322
differencing scheme outlined in Refs. [18,19] with fourth- 323
order Runge-Kutta time integration. 324

In the early days of shockwave modeling this computa- 325
tional simplicity was by no means apparent, so that there is 326
an abundant literature on the stability of numerical methods 327
for the shockwave problem [2]. Now, in the early days of 328
tensor-temperature models, the main challenge is to develop 329
well-posed constitutive equations consistent with both the 330
conservation laws and the empirical results from molecular 331
dynamics. 332

Interesting aspects of both solutions are (i) the minimum 333
in P, (x), which suggests the need for bulk viscosity in mod- 334
eling molecular dynamics results, and (ii) the pronounced 335
maximum in T, (x), leading the response of T, and roughly 336
equal in magnitude to that found in the dynamical results of 337
Sec. II. 338

The physical ideas incorporated in this simplest approach 339
are four: (i) the pressure and the work done can usefully be 340
separated into a “cold” part and a “thermal” part; (ii) the heat 341
flux Q responds to a linear combination of the temperature 342
gradients VT, and VT, in the usual way, (iii) supplemented 343
by the thermal relaxation of the thermal anisotropicity, and 344
(iv) separate linear combinations of the work done and heat 345
absorbed contribute to 7\, and T,, throughout the shock 346
compression process. 347

Here the total pressure, P=P%+ PX contains potential and 348
kinetic components, measurable separately with molecular 349
dynamics. These extensions of the Navier-Stokes approach 350
closely parallel the relaxation-time treatments of strong 351
ideal-gas shockwaves carried out by Xu, Josyula, Holian, 352
and Mareschal [11,14]. Our more general approach necessar- 353
ily differs from theirs by allowing for contributions from the 354
potential energy to temperature changes and the transfer of 355
heat. The pressure profiles shown in Figs. 7 and 8 also indi- 356
cate the need for bulk viscosity, in that the molecular dynam- 357
ics results show a monotone-increasing Py, in contrast to the 358
distinct minimum found here in the absence of bulk viscos- 359
ity. We turn next to a slightly more sophisticated model, an 360
extension of Griineisen’s equilibrium equation of state. 361

C. Cold plus thermal Griineisen models 362

363
364
365
366
367
368

For gases, where the pressure and temperature tensors are
proportional to one another, a systematic expansion of the
Boltzmann equation can be, and has been, tried
[10,11,14,17]. Xu and Josyula [11] as well as Holian and
Mareschal [14] developed solutions of generalized
relaxation-time Boltzmann equations for the shockwave
problem. For dense fluids only Enskog’s hard-sphere-based 369
theory is available. More flexible empirical models need to 370
be developed for dense fluid shockwaves. A trial set of two- 371
temperature evolution equations, the simplest plausible set 372
generalizing the van der Waals model above, makes use of 373
Griineisen’s “cold-curve” representation of the energy and 374
pressure to define “thermal” contributions. These thermal 375
parts include both the effects of thermal agitation (heat and 376
temperature) and of mechanical distortion (work, through 377
compression with viscous deformation), 378
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Pcold + Pthermal + Pviscous

379 E= (Dcold + Elhermal; P(xx and yy) =

380  For the molecular dynamics simulations discussed in Sec.
381 II the cold parts of the pressure and energy, as well as their
382 time dependence, are naturally defined by imagining a per-
383 fect static triangular lattice of particles,

384 ECYN = ¢ = (30/m)(1 - r)’;
385 PNYIN = — (dE©V/dV) = (45/m)r(1 - r)?,
386 pe©ld = — vy peold,

387 Here r is the separation of the six nearest neighbors in a cold
388 triangular lattice, so that p=\4/3/r%.

389  Just as in the equilibrium Griineisen model the thermal
390 energy and the nonviscous parts of the thermal pressure are
391 taken to be proportional to temperature,

ethermal — C( Kx + Ky) / N; Pthermal

thermal

392 = ype >

393 where 7 is Griineisen’s constant and ck is a heat capacity.
394 The Krook-Boltzmann relaxation terms, with relaxation
395 time 7, are the simplest means for guaranteeing thermal equi-
396 librium, with the two temperatures approaching one another
397 far from the shockfront.

398 Because molecular dynamics simulations indicate that
399 temperature becomes a tensor in strong shockwaves, a tenta-
400 tive two-temperature formulation can be based on separating
401 the internal energy and the pressure into the three compo-
402 nents suggested by classical statistical mechanics, including
403 Newtonian shear and bulk viscosities,

404 E=Ne=®® 1 Qi1 K + K,

405 P =P~ (n+nyduldx; Py, =P+ (n—n,)duldx,
406 Peg=pl¢™ "+ yckT,] or  p[¢

407 + yckT,,] or pL ™M + yek(T ., + T,,)/2],

408 ethermal = el y (k)2)(T o + T)y) = k(T + T).

409 The sum of the three energy evolution equations just

410 given is designed to reproduce the usual First-Law energy
411 equation,

412 E=E,-Ey,

413 where EQ and Ey are the co-moving rates at which heat
414 enters the fluid and at which the fluid performs work on its
415 surroundings. The constitutive relations for P and Q must
416 also be given. For a two-dimensional Newtonian fluid with
417 shear viscosity 7 and bulk viscosity 7, we have

418 Py =P~ (n+ n)duldx; Py= P+ (- n,)duldx.

419 The heat flux is given by a generalization of Fourier’s law,
420 with independent contributions from VT, and VT,,.
421  Additional generalizations of this approach can be devel-
422 oped as needed to describe results from simulations. It is
423 only required that any such model satisfy energy conserva-

424 tion and reduce to the Navier-Stokes-Fourier model in the
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FIG. 9. Solution of the generalized Navier-Stokes-Fourier equa-
tions with both heat and work contributing solely to 7', and with
the heat flux Q=-«(VT,,+7VT,,)/8. The shear viscosity, bulk vis-
cosity, heat conductivity, and thermal relaxation times are respec-
tively 1, 1, 6, and 3. Griineisen’s 7y is 0.3 and ck=2k.

weak-shock limit. To illustrate the possibilities, compare the 425
molecular dynamics results of Fig. 3 to the model calcula- 426
tions of Fig. 9. In Fig. 9 the relaxation time has been in- 427
creased to 3, the heat capacity doubled, to ck=2k, and the 428
heat conductivity set equal to 6 so as to better match the 429
empirical results of molecular dynamics. The value of Grii- 430
neisen’s 7y is 0.3, and the bulk and shear viscosities are both 431
equal to unity. The results from these choices (which are by 432
no means optimized) resemble the shockwave profiles ob- 433
tained with molecular dynamics. 434

IV. CONCLUSIONS AND PROBLEMS FOR THE FUTURE 435

We have shown here that it is relatively easy to model the 436
thermal anisotropicity found in atomistic simulations of 437
strong shockwaves. Thermal relaxation, bulk viscosity, and 438
Griineisen equations of state are useful components of a ki- 439
netic shockwave model. By apportioning the longitudinal 440
and transverse thermal portions of the work, heat, and heat 441
flux vector a variety of useful models can be developed and 442
used to reproduce results from simulations. A forward-in- 443
time fourth-order Runge-Kutta (as opposed to backward Eu- 444
ler) integration of the cell and nodal motion equations results 445
in accurate and stable continuum dynamics. 446

One of the recent observations from molecular dynamics 447
is that the stress and heat flux lag somewhat behind the strain 448
rate and the temperature gradient [13]. It is desirable that 449
models be generalized to reflect these lags. Some study of 450
time-delayed or relaxational differential equations is neces- 451
sary to model this phenomenon. 452

A significant goal is the extension of these same ideas to 453
the fluctuating stress and heat flows of two and three dimen- 454
sional fluids. A comparison of results from molecular dynam- 455
ics with those from two and three-dimensional two- 456
temperature continuum simulations should provide useful 457
tools for describing fluctuations within the overall one- 458
dimensional flows. 459

These results show that even far-from-equilibrium shocks 460
can be treated in a semiquantitative way by relating the ten- 461
sor parts of the energy flows to one another in a relatively 462
simple way. An intriguing result of some model calculations 463
is the stable reversal of the direction of the heat flux vector. 464
Though this reversal seems unphysical, there is no difficulty 465
in obtaining stable numerical profiles which include flux re- 466
versal. 467
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WELL-POSED TWO-TEMPERATURE CONSTITUTIVE...

FIG. 10. Two snapshots of the collision of two 1600-particle
slabs (periodic in the y direction, with height 40 and initial width
40v3/4. The initial velocities, u,==0.965, give twofold shock
compression, followed by a nearly isentropic free expansion at the
free surfaces.
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The thermodynamic irreversibility of the shockwave pro-
cess has an interest independent of the definition of tempera-

468
469

ture and is worth further study. The shock process itself 470

obeys purely Hamiltonian mechanics, and Liouville’s Theo-
rem [20]. Even so, by using Levesque and Verlet’s integer
version of the leapfrog algorithm [21] the entire shockwave
dynamics can be precisely reversed, to the very last bit. The
apparent paradox, a perfectly time reversible but thermody-
namically irreversible process, can most clearly be illustrated
by simulating the (inelastic) collision of two zero-pressure
blocks of fluid. The collision of the blocks, with velocities
*u, generates two shockwaves, with laboratory-frame ve-
locities = (u;—~u,)= *u,. Two snapshots from such a simu-
lation are shown in Fig. 10.
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