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Well-posed two-temperature constitutive equations for stable dense fluid shock waves
using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics
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Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations
and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we
partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal
and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations
converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted
to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of
far-from-equilibrium states.
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I. INTRODUCTION

A left-moving piston, impacting a fluid with velocity −up,
generates a left-moving shockwave with velocity −us.
Throughout this paper we analyze such a shockwave from
the viewpoint of a coordinate system moving leftward, so as
to keep pace with the shock. See Figs. 1 and 2. In this special
uniformly translating coordinate frame the shockwave is sta-
tionary, simplifying theoretical analyses. One-dimensional
stationary shockwaves �1–14� provide a useful computa-
tional laboratory for the study of stationary far-from-
equilibrium states. In such a shockwave a cold fluid is con-
verted irreversibly to a hot one. As the fluid moves from left
to right, in the shock-centered coordinate frame of the Fig-
ures, at speed u�x�, the x coordinate increases; typically, the
corresponding density, the longitudinal component of the
pressure tensor, and the energy all increase too, in just such a
way that the spatial structure of the wave is stationary,

�u = ẋ, �̇, Ṗxx, ė� � 0,

��u/�t�x = 0; ���/�t�x = 0; ��Pxx/�t�x = 0;

��Pyy/�t�x = 0; ��e/�t�x = 0.

As the velocity decreases from its leftmost entrance value,
u�x→−��=us, to its rightmost exit value, u�x→+��=us
−up, the stationary nature of the wave requires that the fluxes
of mass, momentum, and energy remain constant throughout,

��u�x = ��u�cold = ��u�hot,

�Pxx + �u2�x = �P + �u2�cold = �P + �u2�hot,

��u���e� + �Pxx/�� + �u2/2��x + Qx

= ��u��e + �P/�� + �u2/2��cold

= ��u��e + �P/�� + �u2/2��hot.

The notation here is conventional, with the pressure tensor P
and heat flux vector Q assumed to be calculable from the
density �, velocity u, energy e, and their gradients.

Temperature �11,12,15–17� is our special interest in this
work. Temperature is most simply and usefully defined as a

velocity fluctuation, the “kinetic temperature,”

kTxx � m��ẋ − �ẋ	�2	; kTyy � m��ẏ − �ẏ	�2	 .

The angular brackets imply a local average. The velocities
here are individual particle velocities, whose local average
would be the hydrodynamic flow velocity u. Temperature is
just the fluctuation about this average. It is evident that Txx
and Tyy can differ. In dilute-gas kinetic theory, the difference
corresponds to a shear stress,

�k�Txx − Tyy�/�2m� = �Pxx − Pyy�/2�Dilute Gas� ,

where k is Boltzmann’s constant and m is the particle mass,
which we choose equal to unity in what follows. In dense
fluids there is no simple relationship between the two tensors
so that special evolution equations for Txx and Tyy need to be
developed, as we do in Sec. III.

The cold fluid, initially moving to the right at the entrance
velocity, or “shock velocity” us, is slowed by its encounter
with the wave until it reaches its exit velocity us−up, where
up is the “piston velocity” or “particle velocity.” In this irre-
versible deceleration the kinetic energy lost by the deceler-
ating fluid is converted into additional hot fluid enthalpy
�H=E+ PV↔h=e+ Pv�,

hhot − hcold = �e + �P/���hot − �e + �P/���cold

= �us
2/2� − ��us − up�2/2� .

The cold and hot boundary conditions enclosing the shock
are equilibrium ones imposed far from the shockfront so that
the small-system surface effects complicating the number de-
pendence of nonequilibrium systems are minimized. In
implementing these ideas no arbitrary or artificial assump-

us u - us p

FIG. 1. Schematic stationary shockwave. Cold fluid enters at the
left cold boundary, with speed us; hot fluid leaves at the right hot
boundary, with speed us−up. We choose a coordinate frame which
moves leftward, at speed us relative to the laboratory frame. The
shockwave remains stationary in this coordinate frame.
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tions have to be made. All the observed phenomena follow
from the assumed form for the interparticle forces. Figures
3–5 show typical results from molecular dynamics, as is de-
scribed in more detail in Sec. II. Notice that the rise in lon-
gitudinal temperature Txx can be much larger and can occur
somewhat earlier �12� than that of the transverse temperature
Tyy.

In Sec. III we discuss the continuum mechanics of the
same shockwave problem. Evidently any continuum formu-
lation must first of all include the continuum conservation
laws for mass, momentum, and energy,

�̇ = − � � · u ,

�u̇ = − � · P ,

�ė = − �u:P − � · Q .

Here the pressure tensor P and heat flux vector Q measure
the momentum and energy fluxes in the local “co-moving”
�or “Lagrangian”� coordinate frame moving with the mean
velocity u�x�. Now the superior dot notation is used to indi-
cate the time derivatives of �, u, and e following the motion
at velocity u. In the continuum description these field vari-
ables are continuous differentiable functions of space and
time so that the spatial averaging �necessary to an analysis of
molecular dynamics data� is unnecessary.

The steady nature of the shock process makes it possible
to use either space or time as an independent variable. On the
average, the progress of a particle traveling through the
shockwave follows from the integral of the flow velocity. To
illustrate, consider again the molecular dynamics profiles
shown in Fig. 3, with space as the abscissa. Exactly the same
profiles can alternatively be expressed with time as the ab-
scissa, as in Fig. 5. To change from space-based to time-
based profiles requires use of the ratio �dx /dt��u,



0

t

dt� = 

x0

x

dx�/u�x��; t = 0 ↔ x = x0,

where u�x� is the hydrodynamic flow velocity. Thus all the
spatial snapshots or equivalent temporal wave profiles cata-
log the sequence of time-ordered states through which the
particles in a typical volume �initially at x0� pass as they
transit the shockwave.

Because the conventional Navier-Stokes-Fourier ap-
proach, illustrated in Fig. 6, assumes a scalar temperature,
T=Txx=Tyy, several modifications of the continuum descrip-
tion need to be made to model the two-temperature results of
Figs. 3–5 found with molecular dynamics, with Txx�Tyy. In
Sec. III we describe simple modifications of the Navier-
Stokes-Fourier constitutive and flow equations, along with a
numerical method which converges nicely to give stationary
shockwave profiles in the two-temperature case.
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FIG. 2. Stationary shockwave. Snapshot from a 10-row molecu-
lar dynamics simulation with a periodic height of 10�3 /4. The
simulations analyzed in the text are based on 80-row molecular
dynamics with a periodic height of 80�3 /4.
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FIG. 4. Volume dependence of the temperature tensor �left� and
the pressure tensor �right� in the stationary shockwave of Fig. 3, as
calculated with molecular dynamics. Spatial averages have been
computed with Lucy’s weight function using a range h=3, as is
discussed in Sec. II.
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FIG. 5. Stationary temporal profile for the one-dimensional
shockwave of Fig. 3, using a short-ranged repulsive potential. Spa-
tial averages of the temperatures �left� and the pressures, density,
and energy �right� have been computed with Lucy’s weight function
using a range h=3. The initial stress-free cold triangular lattice is
compressed to twice the initial density by the shockwave, as in Fig.
2. The time origin has been chosen, arbitrarily, close to the
shockfront.
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FIG. 3. A snapshot spatial profile of a nominally steady one-
dimensional shockwave from molecular dynamics, using a short-
ranged repulsive potential. Spatial one-dimensional averages of the
temperatures and heat flux �left� and the pressures, density, and
energy �right� have been computed with Lucy’s weight function
using a range h=3. The cold zero-pressure, zero-temperature trian-
gular lattice is compressed to twice the initial density ��4 /3
→2�4 /3� by the shockwave, just as in Fig. 2.
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Section IV is reserved for a summary and our concluding
remarks, including suggestions for adapting our ideas to de-
tailed two- and three-dimensional descriptions of the fluctua-
tions in nonequilibrium systems.

II. RESULTS FROM MOLECULAR DYNAMICS

The molecular dynamics simulations leading to our cur-
rent results are all based on a very simple model two-
dimensional system of unit-mass unit-radius particles inter-
acting pairwise with a short-ranged normalized repulsive
potential �12,15�,

��r � 1� = �10/���1 − r�3 → 

0

1

2�rdr��r� � 1.

The length and energy scales set by this potential correspond
to the range and strength of the interparticle pair forces. The
equilibrium properties for this potential can be approximated
very roughly by a theoretical model �based on a random
distribution of particles in space� resembling van der Waals’
mean-field idea,

P = �e; e = ��/2� + kT .

P, �, e, and T are the pressure, density, energy, and tempera-
ture. Though the models and language here all refer to sys-
tems in two space dimensions the same ideas can be applied
equally well to three-dimensional systems.

We expect that the nonequilibrium properties for this
model will likewise provide a simple interpretation. We are
particularly interested here in generalizing the notion of tem-
perature to the tensor case, Txx�Tyy. The need for this gen-
eralization stems from the molecular dynamics shockwave
simulations summarized in Figs. 3–5.

Stationary shockwaves were obtained from molecular dy-
namics by matching the mass flux of a cold stress-free lattice
��=�4 /3 and speed 1.930� to the mass flux of the hot fluid
exiting at the right-hand boundary �with �=2�4 /3 and speed
0.965�,

�u = �colducold = �hotuhot = 1.93 � �4/3 = 2.229.

With this choice for the shockwave speed us=1.93 and par-
ticle �or piston� speed up=us /2 the shockwave is stationary
and corresponds to twofold compression, a “strong” shock-

wave �12�. The Mach number M =u /cs is not a useful de-
scription here as the sound speed cs vanishes in the cold
state. The momentum and energy fluxes throughout the wave
are equal to those of the initial cold lattice,

Pxx + �u2 = �4/3�1.93�2 = 4.301,

�u�e + �Pxx/�� + �u2/2�� + Qx = �4/3�1.93�3/2 = 4.151.

Spatial averages within the shockwave were calculated
here using Lucy’s weight function �12,13,15,16�,

wLucy��x� � h� = �5/4h��1 – 6r2 + 8r3 − 3r4�; r � �x�/h � 1,

with a range equal to three times the range of the potential,
h=3. The internal energy at a grid point coordinate x, for
example, is computed as a ratio of sums,

e�x� =


i

w�x − xi�ei


i

w�x − xi�
,

where the energy of Particle i is the sum of its kinetic energy
relative to the local flow velocity u�x� plus half its
summed-up interaction energy with other nearby Particles
�j�.

Consider now the results shown in Figs. 3 and 4. The
density, energy, and pressure agree roughly with the
hyperbolic-tangent profiles derived by Landau and Lifshitz
for a weak shockwave with constant transport coefficients
�3�. Figure 4 shows the pressure-temperature-volume states
through which the moving fluid travels. The Rayleigh Line, a
straight-line relation linking Pxx and the volume, is necessar-
ily satisfied and corresponds to the conservation of momen-
tum. In marked contrast, the molecular dynamics tempera-
ture shows a strong maximum �as might be expected from
the mixing of cold and hot Gaussian distributions suggested
by Mott-Smith �1�� at the shockfront. Because the work done
in compressing the fluid appears first in the longitudinal di-
rection we expect that the rise in Txx precedes that of Tyy, as
is confirmed in Fig. 3. This thermal anisotropicity differs
from the conventional textbook result and is the main moti-
vation for our work on a two-temperature continuum de-
scription, detailed in the following Section.

III. RESULTS FROM CONTINUUM MECHANICS

A. General considerations

Continuum models combine the universal conservation
laws �mass, momentum, and energy� and the corresponding
evolution equations �continuity, motion, and energy� with
specific constitutive models. The constitutive models de-
scribe the pressure tensor and the heat flux vector for non-
equilibrium systems. The usual Navier-Stokes assumptions,
which we follow here for a two-dimensional fluid, are that
the pressure tensor and heat flux vector respond linearly to
velocity and temperature gradients,

P = Peq − 	�� · u�I − 
��u + �ut�; 	 � 
V − 
 ,
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FIG. 6. Stationary spatial profile for a one-dimensional shock-
wave according to the usual Navier-Stokes-Fourier equations for
the model fluid: Peq=�e ; e= �� /2�+kT with unit shear viscosity,
zero bulk viscosity, and unit Fourier heat conductivity. Here the
temperature T �left� is a scalar, as in conventional continuum
mechanics.
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Q = − � � T .

It needs to be emphasized that the choice of particular ex-
pansion variables, here �u and �T, affects the solutions of
nonlinear problems like shockwave structure. García-Colín
and Green emphasized that the description of nonequilibrium
continuum mechanics is ambiguous whenever the choice of
“equilibrium” variables—energy or longitudinal temperature
or transverse temperature in this case—is ambiguous �17�.
The numerical value of a Taylor’s series in the deviations
from equilibrium, truncated after the first nonlinear term, is
clearly sensitive to the choice of independent variable.

In the nonequilibrium pressure tensor the superscript t

indicates the transposed tensor and I is the unit tensor

I11 = I22 = 1; I12 = I21 = 0,


 is the shear viscosity, and 	=
v−
 is defined by the bulk
viscosity 
v. In the shockwave problem the pressure-tensor
definitions give

Pxx = Peq − �
v + 
�du/dx; Pyy = Peq − �
v − 
�du/dx .

For a two-temperature continuum model it is necessary to
formulate the “equilibrium pressure” Peq as a function of the
�nonequilibrium� energy, density, and the two temperatures.
The viscosities and conductivity could likewise depend upon
these state variables and � can be a tensor, as we show later,
with an example.

When we define Txx and Tyy as continuum state variables
it becomes necessary for us to formulate constitutive rela-
tions for their evolution. The simplest such models begin by
separating the energy into two parts: a density-dependent
“cold curve” ecold��� and an additional kinetic or “thermal”
part, proportional to temperature,

e � ecold��� + ethermal�Txx,Tyy� = ecold + �ck��Txx + Tyy� ,

where ck is a scalar heat capacity. The functional form of the
cold curve produces a corresponding contribution to the
pressure,

Pcold = − decold/d�V/N� = �2decold/d� .

Grüneisen’s � defines a corresponding thermal pressure,

Pthermal = ��ethermal.

The viscous part of the pressure tensor is Newtonian,

Pviscous = − 	 � · uI − 
��u + �ut� .

The thermal and viscous parts of the first-law energy
change are then apportioned between the x and y directions
so as to be consistent with overall energy conservation,

ėthermal = ė − ėcold��� = ckṪxx + ckṪyy ,

�ckṪxx = −  � u:�P − IPcold� − � � · Q + �ck�Tyy − Txx�/� ,

�ckṪyy = � − 1� � u:�P − IPcold� + �� − 1� � · Q

+ �ck�Txx − Tyy�/� .

The thermal relaxation time � has been introduced in the

evolution equations to guarantee thermal equilibrium far
from the shockwave,

Kx = Ky ↔ Txx = Tyy = Teq.

In what follows we consider two models for the cold
curve and the heat capacity. First, a weak repulsive pair force
suggests implementing a “van der Waals model,”

ecold = ��/2�; ethermal = k�Txx + Tyy�/2; Peq = �e .

Second, a triangular-lattice-based model, based on Grü-
neisen’s ideas, uses the nearest-neighbor static lattice energy
and pressure corresponding to the pair potential evaluated at
the nearest-neighbor lattice spacing r, �= �10 /���1−r�3,

ecold = �30/���1 − r�3; pcold�V/N� = �45/��r�1 − r�2,

r = �V/V0; V0 = �3/4N .

The corresponding equilibrium equation of state separates
the energy and pressure into “cold” and “thermal” parts,

eeq = ecold + ethermal; Peq = Pcold + ��ethermal,

with � chosen so as to roughly reproduce equation of state
data from molecular dynamics. Let us next apply these two
simple cold-curve models to the shockwave problem.

B. Potential plus kinetic van der Waals models

First consider an arbitrary, but simple and natural, choice,

Peq = �e; eeq = ecold + ethermal = �� + kTxx + kTyy�/2,

Pcold = �ecold = �2/2,

with an initial density of unity and an initial temperature of
zero. Twofold compression of the cold van der Waals fluid
gives the following solution relating the initial and final equi-
librium states,

�:1 → 2; u:2 → 1; T:0 → 1/4; e:1/2 → 5/4;

P:1/2 → 5/2.

The mass, momentum, and energy fluxes connecting these
states must be constant throughout the profile,

�u = 2; Pxx + �u2 = 9/2; �u�e + �Pxx/�� + �u2/2�� + Qx

= 6.

Consider the most extreme anisotropic situation consistent
with energy conservation, in which all the work done and
heat transferred are associated with thermal change in the x
direction. The thermal relaxation time �, here chosen equal to
unity, guarantees that the x and y temperatures equilibrate in
a time of order �,

ėthermal = ė − ėcold��� = �k/2��Ṫxx + Ṫyy� ,

��k/2�Ṫxx = − �u:�P − IPcold� − � · Q + ��k/2��Tyy − Txx�/�;
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��k/2�Ṫyy = ��k/2��Txx − Tyy�/�; � = 1.

Two solutions of these equations appear in Figs. 7 and 8. For
both of them we chose a shear viscosity of unity and a van-
ishing bulk viscosity,

Pxx = Peq − du/dx; Pyy = Peq + du/dx .

The heat flux vector requires that an additional choice be
made for its response to the gradients of Txx and Tyy. We
compare two choices in Figs. 7 and 8. For both of them the
overall conductivity is unity, but the heat flux responds dif-
ferently to the two components of �T,

Qx = − � � Tyy = − �Tyy�Choice 1� ,

Qx = − ���Txx + �Tyy�/2 = − ��Txx + �Tyy�/2�Choice 2� .

It is good fortune that the shockwave equations we sum-
marize here are relatively easy to solve numerically. The
usual numerical method is the “backward Euler” scheme �2�.
One starts near the “hot” boundary and integrates backward,
using a first-order difference scheme. That approach fails
here, due to the temperature relaxation terms, which are ex-
ponentially unstable in the time-reversed case. An integration
forward in time is required in the presence of relaxation. A
successful “staggered-grid” �two separate spatial grids� algo-
rithm results if the density �c is defined at cell centers and
energy, temperature, and pressure are defined at the nodes
which bound the cells �18,19�. This algorithm follows the
dynamics correctly and converges nicely to the stationary
profiles shown in Figs. 7 and 8. A computational mesh spac-

ing of dx=0.1 is sufficient, using the second-order spatial
differencing scheme outlined in Refs. �18,19� with fourth-
order Runge-Kutta time integration.

In the early days of shockwave modeling this computa-
tional simplicity was by no means apparent, so that there is
an abundant literature on the stability of numerical methods
for the shockwave problem �2�. Now, in the early days of
tensor-temperature models, the main challenge is to develop
well-posed constitutive equations consistent with both the
conservation laws and the empirical results from molecular
dynamics.

Interesting aspects of both solutions are �i� the minimum
in Pyy�x�, which suggests the need for bulk viscosity in mod-
eling molecular dynamics results, and �ii� the pronounced
maximum in Txx�x�, leading the response of Tyy and roughly
equal in magnitude to that found in the dynamical results of
Sec. II.

The physical ideas incorporated in this simplest approach
are four: �i� the pressure and the work done can usefully be
separated into a “cold” part and a “thermal” part; �ii� the heat
flux Q responds to a linear combination of the temperature
gradients �Txx and �Tyy in the usual way, �iii� supplemented
by the thermal relaxation of the thermal anisotropicity, and
�iv� separate linear combinations of the work done and heat
absorbed contribute to Txx and Tyy throughout the shock
compression process.

Here the total pressure, P= P�+ PK, contains potential and
kinetic components, measurable separately with molecular
dynamics. These extensions of the Navier-Stokes approach
closely parallel the relaxation-time treatments of strong
ideal-gas shockwaves carried out by Xu, Josyula, Holian,
and Mareschal �11,14�. Our more general approach necessar-
ily differs from theirs by allowing for contributions from the
potential energy to temperature changes and the transfer of
heat. The pressure profiles shown in Figs. 7 and 8 also indi-
cate the need for bulk viscosity, in that the molecular dynam-
ics results show a monotone-increasing Pyy, in contrast to the
distinct minimum found here in the absence of bulk viscos-
ity. We turn next to a slightly more sophisticated model, an
extension of Grüneisen’s equilibrium equation of state.

C. Cold plus thermal Grüneisen models

For gases, where the pressure and temperature tensors are
proportional to one another, a systematic expansion of the
Boltzmann equation can be, and has been, tried
�10,11,14,17�. Xu and Josyula �11� as well as Holian and
Mareschal �14� developed solutions of generalized
relaxation-time Boltzmann equations for the shockwave
problem. For dense fluids only Enskog’s hard-sphere-based
theory is available. More flexible empirical models need to
be developed for dense fluid shockwaves. A trial set of two-
temperature evolution equations, the simplest plausible set
generalizing the van der Waals model above, makes use of
Grüneisen’s “cold-curve” representation of the energy and
pressure to define “thermal” contributions. These thermal
parts include both the effects of thermal agitation �heat and
temperature� and of mechanical distortion �work, through
compression with viscous deformation�,

-0.25
-0.15
-0.05
0.05
0.15
0.25
0.35

-5.0 < x < +5.0

Temperatures

Heat Flux
-0.25
-0.15
-0.05
0.05
0.15
0.25
0.35

-5.0 < x < +5.0

Temperatures

Heat Flux
-0.25
-0.15
-0.05
0.05
0.15
0.25
0.35

-5.0 < x < +5.0

Temperatures

Heat Flux
0.0

1.0

2.0

3.0

-5.0 < x < +5.0

xx and yy Pressures

u

e

ρ

0.0

1.0

2.0

3.0

-5.0 < x < +5.0

xx and yy Pressures

u

e

ρ

0.0

1.0

2.0

3.0

-5.0 < x < +5.0

xx and yy Pressures

u

e

ρ

0.0

1.0

2.0

3.0

-5.0 < x < +5.0

xx and yy Pressures

u

e

ρ

0.0

1.0

2.0

3.0

-5.0 < x < +5.0

xx and yy Pressures

u

e

ρ

0.0

1.0

2.0

3.0

-5.0 < x < +5.0

xx and yy Pressures

u

e

ρ

FIG. 7. Typical solution of the generalized Navier-Stokes-
Fourier equations for the van der Waals model with both heat and
work contributing to Txx and with the heat flux responding only to
the gradient of Tyy. The shear viscosity, heat conductivity, heat ca-
pacity, and thermal relaxation times are all taken equal to unity.
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FIG. 8. Typical solution of the generalized Navier-Stokes-
Fourier equations for the van der Waals model with both heat and
work contributing to Txx and with the heat flux responding equally
to the gradients of both Txx and Tyy. The shear viscosity, heat con-
ductivity, heat capacity, and thermal relaxation times are all taken
equal to unity.
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E = �cold + Ethermal; P�xx and yy� = Pcold + Pthermal + Pviscous.

For the molecular dynamics simulations discussed in Sec.
II the cold parts of the pressure and energy, as well as their
time dependence, are naturally defined by imagining a per-
fect static triangular lattice of particles,

Ecold/N = ecold = �30/���1 − r�3;

PcoldV/N = − �dEcold/dV� = �45/��r�1 − r�2,

�ėcold = − �u:Pcold.

Here r is the separation of the six nearest neighbors in a cold
triangular lattice, so that �=�4 /3 /r2.

Just as in the equilibrium Grüneisen model the thermal
energy and the nonviscous parts of the thermal pressure are
taken to be proportional to temperature,

ethermal = c�Kx + Ky�/N; Pthermal = ��ethermal,

where � is Grüneisen’s constant and ck is a heat capacity.
The Krook-Boltzmann relaxation terms, with relaxation

time �, are the simplest means for guaranteeing thermal equi-
librium, with the two temperatures approaching one another
far from the shockfront.

Because molecular dynamics simulations indicate that
temperature becomes a tensor in strong shockwaves, a tenta-
tive two-temperature formulation can be based on separating
the internal energy and the pressure into the three compo-
nents suggested by classical statistical mechanics, including
Newtonian shear and bulk viscosities,

E = Ne = �cold + �thermal + Kx + Ky ,

Pxx = Peq − �
 + 
V�du/dx; Pyy = Peq + �
 − 
v�du/dx ,

Peq = ���cold + �ckTxx� or ���cold

+ �ckTyy� or ���cold + �ck�Txx + Tyy�/2� ,

ethermal = �thermal + �k/2��Txx + Tyy� = ck�Txx + Tyy� .

The sum of the three energy evolution equations just
given is designed to reproduce the usual First-Law energy
equation,

Ė = ĖQ − ĖW,

where ĖQ and ĖW are the co-moving rates at which heat
enters the fluid and at which the fluid performs work on its
surroundings. The constitutive relations for P and Q must
also be given. For a two-dimensional Newtonian fluid with
shear viscosity 
 and bulk viscosity 
v we have

Pxx = Peq − �
 + 
v�du/dx; Pyy = Peq + �
 − 
v�du/dx .

The heat flux is given by a generalization of Fourier’s law,
with independent contributions from �Txx and �Tyy.

Additional generalizations of this approach can be devel-
oped as needed to describe results from simulations. It is
only required that any such model satisfy energy conserva-
tion and reduce to the Navier-Stokes-Fourier model in the

weak-shock limit. To illustrate the possibilities, compare the
molecular dynamics results of Fig. 3 to the model calcula-
tions of Fig. 9. In Fig. 9 the relaxation time has been in-
creased to 3, the heat capacity doubled, to ck=2k, and the
heat conductivity set equal to 6 so as to better match the
empirical results of molecular dynamics. The value of Grü-
neisen’s � is 0.3, and the bulk and shear viscosities are both
equal to unity. The results from these choices �which are by
no means optimized� resemble the shockwave profiles ob-
tained with molecular dynamics.

IV. CONCLUSIONS AND PROBLEMS FOR THE FUTURE

We have shown here that it is relatively easy to model the
thermal anisotropicity found in atomistic simulations of
strong shockwaves. Thermal relaxation, bulk viscosity, and
Grüneisen equations of state are useful components of a ki-
netic shockwave model. By apportioning the longitudinal
and transverse thermal portions of the work, heat, and heat
flux vector a variety of useful models can be developed and
used to reproduce results from simulations. A forward-in-
time fourth-order Runge-Kutta �as opposed to backward Eu-
ler� integration of the cell and nodal motion equations results
in accurate and stable continuum dynamics.

One of the recent observations from molecular dynamics
is that the stress and heat flux lag somewhat behind the strain
rate and the temperature gradient �13�. It is desirable that
models be generalized to reflect these lags. Some study of
time-delayed or relaxational differential equations is neces-
sary to model this phenomenon.

A significant goal is the extension of these same ideas to
the fluctuating stress and heat flows of two and three dimen-
sional fluids. A comparison of results from molecular dynam-
ics with those from two and three-dimensional two-
temperature continuum simulations should provide useful
tools for describing fluctuations within the overall one-
dimensional flows.

These results show that even far-from-equilibrium shocks
can be treated in a semiquantitative way by relating the ten-
sor parts of the energy flows to one another in a relatively
simple way. An intriguing result of some model calculations
is the stable reversal of the direction of the heat flux vector.
Though this reversal seems unphysical, there is no difficulty
in obtaining stable numerical profiles which include flux re-
versal.
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FIG. 9. Solution of the generalized Navier-Stokes-Fourier equa-
tions with both heat and work contributing solely to Txx and with
the heat flux Q=−���Txx+7�Tyy� /8. The shear viscosity, bulk vis-
cosity, heat conductivity, and thermal relaxation times are respec-
tively 1, 1, 6, and 3. Grüneisen’s � is 0.3 and ck=2k.
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The thermodynamic irreversibility of the shockwave pro-
cess has an interest independent of the definition of tempera-
ture and is worth further study. The shock process itself
obeys purely Hamiltonian mechanics, and Liouville’s Theo-
rem �20�. Even so, by using Levesque and Verlet’s integer
version of the leapfrog algorithm �21� the entire shockwave
dynamics can be precisely reversed, to the very last bit. The
apparent paradox, a perfectly time reversible but thermody-
namically irreversible process, can most clearly be illustrated
by simulating the �inelastic� collision of two zero-pressure
blocks of fluid. The collision of the blocks, with velocities
�up generates two shockwaves, with laboratory-frame ve-
locities ��us−up�= �up. Two snapshots from such a simu-
lation are shown in Fig. 10.
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