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Abstract

We investigate and discuss the time-reversible nature of phase-space instabilities for several flows, _x ¼ f ðxÞ. The flows
describe thermostated oscillator systems in from two through eight phase-space dimensions. We determine the local extre-
mal phase-space growth rates, which bound the instantaneous comoving Lyapunov exponents. The extremal rates are
point functions which vary continuously in phase space. The extremal rates can best be determined with a ‘‘singular-value
decomposition’’ algorithm. In contrast to these precisely time-reversible local ‘‘point function’’ values, a time-reversibility
analysis of the comoving Lyapunov spectra is more complex. The latter analysis is nonlocal and requires the additional
storing and playback of relatively long (billion-step) trajectories.

All the oscillator models studied here show the same time reversibility symmetry linking their time-reversed and time-
averaged ‘‘global’’ Lyapunov spectra. Averaged over a long-time-reversed trajectory, each of the long-time-averaged
Lyapunov exponents simply changes signs. The negative/positive sign of the summed-up and long-time-averaged spectra
in the forward/backward time directions is the microscopic analog of the Second Law of Thermodynamics. This sign
changing of the individual global exponents contrasts with typical more-complex instantaneous ‘‘local’’ behavior, where
there is no simple relation between the forward and backward exponents other than the local (instantaneous) dissipative
constraint on their sum. As the extremal rates are point functions, they too always satisfy the sum rule.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Lyapunov spectrum of time-averaged phase-space growth and decay rates {kj = hkjj (t)i} is a promising
long-standing tool for the understanding of both equilibrium and nonequilibrium phase-space flows. The indi-
vidual exponents describe the mutually orthogonal one-dimensional growth rates, fkjjðtÞ ¼ _dj � dj=d

2
jg, at the

surface of an infinitesimal phase-space hypersphere centered on, and comoving with, the phase-space trajec-
tory. Our special interest here is time-reversible flows describing atomistic systems in nonequilibrium heat-con-
ducting stationary states. Many interesting discoveries have already emerged from such studies [1–3]. Typical
thermostated nonequilibrium systems have both a time-reversible dynamics and a formally reversible Lyapu-
nov spectrum, with the exponents changing signs in the reversed flow. Despite this apparent simplicity the
nonequilibrium systems typically generate dissipative multifractal strange attractors [4,5] and exhibit a ‘‘time’s
arrow’’ ‘‘symmetry breaking’’, with the sum over all exponents negative, rather than zero, indicating the expo-
nentially fast collapse of phase volume � onto a multifractal strange attractor [4,5],

hd ln�=dti ¼
X

j

kj < 0:

The formal reversibility of the instantaneous spectra is actually incorrect, as we illustrate in what follows.
Early work on the numerical determination of Lyapunov exponents involved the contributions of Stoddard

and Ford [6], Benettin [7–9], and Shimada and Nagashima [10]. For simplicity we refer to the technique which
developed from these three sets of workers as ‘‘Benettin’s’’ in what follows. Benettin used Gram–Schmidt ort-
honormalization [11] of a comoving set of phase-space basis vectors {di}, each associated with one of the
Lyapunov exponents, to quantify Lyapunov instability. His approach characterizes attractors in terms of time
averages of instantaneous values of the entire Lyapunov spectrum [7,9,10] of phase-space growth and decay
rates. The individual time-dependent Lyapunov exponents can alternatively be expressed in terms of an upper-
triangular matrix of continuous two-subscript Lagrange multipliers {ki6j (t)}; {ki >j � 0} [12–14]. The time-
averaged [single-subscript] Lyapunov exponents are the time-averaged diagonal elements of the Lagrange-mul-
tiplier matrix which constrains the basis vectors—the jth offset vector has the N components:

dj ¼ fdijg; 1 6 i 6 N :

The N vectors in the N-dimensional phase space are constrained to remain orthonormal by the array of La-
grange multipliers {kkj}:

_dij ¼
X

k

½Dikdkj � dikkkj�; kk>j � 0; _x ¼ f ðxÞ; Dij � ofi=oxj ¼ o _xi=oxj; fkjg � hkjjðtÞi

for
X

k

dkidkj � 0() i 6¼ j;
X

k

dkidki � 1() i ¼ j

( )
:

The dynamical matrix D = $xf describes the linearized flow which propagates the N offset vectors {dj}. This
continuous Lagrange multiplier approach is exactly equivalent to the small timestep limit of Benettin’s Gram–
Schmidt procedure which we use in the present work.

Eckmann and Ruelle compiled a useful review of the early literature, published in 1985 [15], just before the
subsequent flood of numerical results. The 20 productive years of numerical and analytical work since that
review have led to a good qualitative understanding of phase-space structures far from equilibrium [4]. But
there remain many unanswered questions concerning the symmetries and symmetry-breakings of the Lyapu-
nov spectra for ‘‘time-reversible’’ systems. (The trajectory of a time-reversible system, played backward in
time, satisfies exactly the same differential equations as does the forward trajectory. Hamilton’s mechanics
is an example of this reversibility property.)

Typically the time-reversed motion in a dissipative system is even less stable than the forward-in-time evo-
lution, and is hence unobservable [16]. Any numerical approximation to the reversed dynamics seeks out the
attractor rather than following the repellor. This less-unstable attractor obeys the Second Law while the more-
unstable repellor does not. Thus the numerical unobservability of the repellor is nicely in accord with
Thermodynamics.
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The numerical analysis of local trajectory instabilities for time-reversible nonequilibrium systems, as
reflected in their instantaneous Lyapunov spectra, shows yet another, more detailed and intricate, instability.
By recording and replaying the dissipative trajectory backward [(q,p)! (q,�p) or dt !�dt] and studying the
sensitivity of this reversed motion to small perturbations (dq,dp), the reversed comoving Lyapunov spectrum
{kbackward} can be determined [17]. Formally, a reversed spectrum, with appropriate sign changes [as illus-
trated in Section 7] in the momentum-like [odd in the time] components of the offset vectors {d}, satisfies
the set of instantaneous identities {+kforward(t) � �kbackward(t)}. Despite these formal identities, numerical
work shows that there is generally no correlation between the forward and reversed instantaneous Lyapunov
spectra {k(t)} [17–19]. In view of this additional missing symmetry it is desirable to check whether or not the
long-time-averaged version of the symmetry relation remains valid:

hþkforwardif g¼? h�kbackwardif g:

Here we study a series of generalizations of the simple harmonic oscillator problem, including not only the
thermostat introduced by Nosé [20], but also some generalizations [21], and including also temperature gra-

dients [22], as well as interoscillator coupling. The models we construct generate time-reversible but dissipative
(h _�i < 0) phase-space structures, ranging from one-dimensional limit cycles to many-dimensional multifractal
strange attractors. The consistent results coming from the present numerical analyses of these phase-space
objects lend plausibility to the general behavior we infer for time-reversible systems far from equilibrium.

We begin by reviewing the geometric and thermodynamic significance of the Lyapunov Spectrum and by
describing the Benettin algorithm for its determination. We then introduce a family of coupled thermostated
harmonic oscillator problems, including a temperature gradient, which are well-suited to numerical analysis.
We present precise numerical results for the forward and backward Lyapunov spectra for typical models,
relating these to the bounding local extremal phase-space growth rates. The numerical work leads to two inter-
esting conclusions. First, the global (time-averaged) Lyapunov spectrum simply changes sign in the time-
reversed motion. Second, the local (instantaneous) Lyapunov spectrum has no such simple behavior. The sec-
ond result, the lack of time-reversal symmetry of the individual instantaneous exponents, makes it essential to
check the first. The failure of the Kaplan–Yorke conjecture (which is based on oversimplified geometric rea-
soning) underscores the need for numerical support of theoretical reasoning. The Kaplan–Yorke prediction of
the information dimension [23], estimated from the Lyapunov spectrum, is poor [22] for some of these oscil-
lator systems.

2. Computing the Lyapunov spectrum

The complete spectrum of Lyapunov exponents describes the N exponential rates of growth and decay in
N-dimensional phase-space flows:

_x ¼ f ðxÞ ! fkðtÞg ! fkg ¼ fhkðtÞig:

Generally the instantaneous comoving rates {k(t)} are time-averaged. The averaging process requires follow-
ing the progress of an infinitesimal basis set of orthogonal vectors, the offset vectors {d(t)}, with the set of N

components. {dij}; 1 6 i 6 N, composing the jth offset vector, centered on the flow trajectory x(t) and associ-
ated with an array of Lagrange multipliers {kkj}:

_dij ¼
X

k

½Dikdkj � dikkkjðtÞ�; fdj ! kj ¼ hkjjðtÞi; t!1g:

The vectors can be thought of as describing the separation of a set of N ‘‘satellite’’ trajectories fxsat
j g con-

strained to rotate rigidly about the central ‘‘reference’’ trajectory xref:

dj ¼ xsat
j � xref

n o
:

A useful geometric picture visualizes the virtual infinitesimal distortion of a comoving ‘‘ball’’, or hypersphere,
of solutions centered on the reference trajectory. The distortion is virtual because the radius of the ball is actu-
ally kept constant, jdjj = d0, where d0 is a small (or even infinitesimal) constant length in the N-dimensional
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phase space. The time-development of the comoving principal axes of the ball which would take place in the
absence of the length constraints gives the Lyapunov spectrum. For the jth axis, the unconstrained equations
of motion,

_dij ¼ _xsat
ij � _xref

i

are replaced by the constrained equations,

_dij ¼ _xsat
ij � _xref

i �
X

k

dikkkj; kk>j � 0;

which lead to the instantaneous spectra:

kjjðtÞ ¼
dj � D � dj

d2
j

( )
:

Benettin developed a numerical algorithm equivalent to these analytic ideas in 1978 [7,9]. The algorithm
imposes the orthogonality relations {(dj Æ dk)j5k = 0} as well as the length constraints fðdj � djÞ ¼ d2

0g.
Hoover and Posch [13] and Goldhirsch et al. [14] described and implemented the analytic continuous
representation of Benettin’s idea. They used an array of nonzero Lagrange Multipliers {kk6j} to maintain
the orthonormal relationship of the offset vectors [13,14] in the limit that the length of the offset vectors is
infinitesimal.

The continuous algorithm generates automatically the set of Lagrange multipliers {kjj (t)} which describe
the Lyapunov spectrum as well as the offdiagonal multipliers {kk<j (t)} which describe the relative rotation of
the vectors. The N exponents describe the N growth/decay rates associated with the directions of the rotating
vectors. Either finite (but small) [Benettin] or truly infinitesimal [Hoover and Posch] offset vectors can be used.
For small N the accuracy and efficiency of the computation is improved by solving the linearized ‘‘tangent-
space’’ equations for the evolution of the offset vectors:

D ¼ o _x=ox:

For the linearized tangent-space system it is convenient to choose the vectors {d} of unit length, fd2
j � 1g.

The Lyapunov spectra for many nonequilibrium systems have been characterized. Time-reversible nonequi-
librium motion equations typically lead to asymmetric Lyapunov spectra, with motion in the forward direc-
tion of time (which obeys the Second Law of Thermodynamics) less unstable than the reversed motion (which
is unobservable and would violate the Second Law). The intimate connection of the Lyapunov spectrum
(which describes changing phase volume) and thermodynamics follows from Gibbs’ and Boltzmann’s discov-
ery that the logarithm of phase volume corresponds to thermodynamic entropy [4].

Mima et al. [24] recently studied the time-reversibility of a three-dimensional many-body stationary non-
equilibrium heat flow. The geometry they chose was a periodic system with an aspect ratio of four
(L = 4W). The system was composed of two Newtonian regions of width W separated by two thermostated
reservoir regions, one hot and one cold, and also of width W : (. . .N � H � N � C � N � H � N � C . . .).
This geometry matches that of a two-dimensional system studied earlier [25]. Mima et al. were particularly
interested in the time-reversibility properties, especially Lyapunov instability, of their conducting system.
We consider this aspect of simpler time-reversible stationary heat flows here, following our earlier work
[4,18,26,27] on the thermostated oscillators described in the following sections. The results of our investigation
suggest that the time-averaged Lyapunov exponents simply change sign in the time-reversed flow, though the
instantaneous exponents do not [18]. The observation that the overall phase-space flow shrinks, in the forward
direction of time, but expands even more unstably in the reversed direction, is the microscopic equivalent of
the Second Law of Thermodynamics. The systems investigated here are not only sufficiently complex to show
this typical behavior, but are also sufficiently simple for precise numerical work.

In what follows we describe the harmonic oscillator model as well as its generalizations to temperature con-
trol, including a temperature gradient, with several interacting thermostated oscillators. We measure and dis-
cuss the time-reversibility of the Lyapunov spectra for these models. Our conclusions make up the final
section.
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3. Equilibrium harmonic oscillator

Consider first an equilibrium harmonic oscillator tracing out an elliptical constant-energy orbit in its (qp)
phase space:

H ¼ 1

2
½ðpsÞ2 þ ðq=sÞ2�; _H � 0;

_q ¼ þoH=op ¼ þpsþ2; _p ¼ �oH=oq ¼ �qs�2:

The dynamical matrix D, which describes the local phase-space deformation in the neighborhood of a (qp)
phase point is

D ¼
o _q=oq o _q=op

o _p=oq o _p=op

� �
¼

0 þsþ2

�s�2 0

� �
; _dq ¼ þsþ2 dp; _dp ¼ �s�2 dq:

The radial phase-space growth rate, in the direction given by the vector (dq,dp) on an infinitesimal circle can
be estimated by using a fixed very-small constant radius d0, so that dq2 þ dp2 � d2

0, is

_dq � dqþ _dp � dp
dq2 þ dp2

¼ ðsþ2 � s�2Þdqdp=d2
0:

Evidently the extremal growth rates result from the choices dp = ±dq:

_d � d
d2

 !
max=min

¼ �ðsþ2 � s�2Þ=2:

The oscillator’s instantaneous Lyapunov exponents can be computed from the average values of the growth
rates for the corresponding offset vectors. The results [28] are of course bounded by the extremal rates just
calculated:

� ðsþ2 � s�2Þ=2 < k1ðtÞ; k2ðtÞ < þðsþ2 � s�2Þ=2; k1 ¼ hk1ðtÞi ¼ 0 ¼ hk2ðtÞi ¼ k2;

hk1ðtÞ2i ¼ hk2ðtÞ2i ¼ ðsþ1 � s�1Þ2=2:

It should be noted that a numerical algorithm for the extremal phase-space growth rates during a short time-
step dt can most simply be obtained by ‘‘singular-value decomposition’’ [11,29]. The phase-space circle
dq2 þ dp2 ¼ d2

0 is propagated for a time interval dt by adding the unconstrained D matrix, times dt, to the unit
matrix:

dðt þ dtÞ ¼ 1 þsþ2 dt

�s�2 dt 1

� �
� dðtÞ:

Consider the example (s = 2; dt = 0.001). Singular value decomposition expresses the mapping of the offset
vector from time t to time t + dt as a product of three matrices, U · A · V, where the diagonal matrix A con-
tains the ‘‘singular values’’ of the growth rate:

þ1:00000 þ0:00400

�0:00025 þ1:00000

� �
¼
þ0:70636 þ0:70786

�0:70786 þ0:70636

� �
�
þ0:99813 þ0:00000

þ0:00000 þ1:00188

� �
�
þ0:70786 �0:70636

þ0:70636 þ0:70786

� �
:

For small dt the logarithms of the singular values, divided by dt, reproduce the extremal growth rates,
±(s+2 � s�2)/2 = ±1.875:

ð1=dtÞ lnð0:99813Þ ’ �1:875; ð1=dtÞ lnð1:00188Þ ’ þ1:875:

The matrices U and V approximate the 45� rotation matrices associated with the axes of extremal growth,
dq = ±dp.

For symmetric matrices, singular value decomposition is almost equivalent to matrix eigenvalue-eigenvector
analysis. The eigenvector matrices in the symmetric case are simply related, U = V t, where the t indicates
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transpose. Typical singular-value-decomposition software returns vectors of arbitrary sign, spoiling the rela-
tion which holds for eigenvectors, U · V = U · U t = I. The phase-space growth rates of interest in statistical
mechanics can be obtained from symmetrized matrices, either (D + Dt)/2 or I + dt(D + Dt)/2. Our very limited
experiments with packaged software showed greater efficiency with the singular-value approach than with the
standard eigenvalue approach.

4. Nosé–Hoover oscillator, at and away from equilibrium

The simplest form of the thermostated Nosé–Hoover harmonic oscillator equations [26] is

€q ¼ �q� f _q; _f ¼ _q2 � T :

Though apparently locally dissipative and nonHamiltonian, Dettmann showed that there is a Hamiltonian
giving rise to these motion equations:

HDettmann ¼
p2

s
þ sq2 þ sf2 þ sT ln s2

� ��
2 � 0; f � ps;

_q ¼ p=s; _p ¼ �qs; _s ¼ sps; _ps ¼
p2

2s2
� T � q2 þ f2 þ T ln s2

2
¼ p2

s2
� T ¼ _q2 � T :

The Nosé–Hoover friction coefficient f = ps is the momentum conjugate to Nosé’s ‘‘time-scaling’’ variable s:

_s ¼ þoH=of; _f ¼ �oH=os:

For the history of Dettmann’s work see Ref. [30]. If we calculate the Lyapunov spectrum using Dettmann’s
Hamiltonian we obtain four Lyapunov exponents satisfying the Hamiltonian symmetry requirements:

þk1 ¼ �k4; þk2 ¼ �k3 � 0;

which follow from the time-reversible nondissipative nature of Hamilton’s motion equations. In the case that
T = 1 with a chaotic initial condition, such as

fq0; p0; s0; f0g ¼ fq; p; s; fgt¼0 ¼ f0; 5; 1; 0g;
we find the Lyapunov spectrum:

fkg ¼ fþ0:014; 0:000; 0:000;�0:014g:
Compare this result to that obtained in a three-dimensional phase space from the Nosé–Hoover equations
considered below.

The thermostating friction coefficient f, which maintains the oscillator temperature at T / _q2, with a char-
acteristic relaxation time s, can be expressed in any one of three equivalent ways:

_f ¼ _q2

T
� 1 or _f ¼ ½ _q2 � 1�=s2 or _f ¼ _q2 � T :

Even for a constant temperature T these simple equations for ð€q; _fÞ have complex multifractal solutions in the
three-dimensional phase fq; _q ¼ p; fg space [26,27]. There are many interesting special cases, including not
only chaotic solutions, but also stable regular solutions. Because the equilibrium Nosé–Hoover oscillator is
a conventional Hamiltonian system its Lyapunov spectrum is symmetric, and sums to zero. Figs. 1 and 2 show
the two typical solutions of the equilibrium equations for T = 1, one regular and one chaotic. The correspond-
ing three-dimensional time-averaged Lyapunov spectra are as follows:

ðq0; p0; f0Þ ¼ ð0; 1:55; 0Þ ! fkg ¼ f0:000; 0:000; 0:000g;
ðq0; p0; f0Þ ¼ ð0; 5:00; 0Þ ! fkg ¼ fþ0:014; 0:000;�0:014g;

Sprott analyzed this same chaotic case in Ref. [31, pp. 439–440], with the more precise results k1,3 = ±0.0138.
Notice that because the Nosé–Hoover three-dimensional dynamics just considered and the preceding four-
dimensional Dettmann approach are exactly equivalent, the nonzero Lyapunov exponents for the two cases
agree with one another.
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The linearized phase-space growth rate in the direction (dq,dp,df) at the phase-space location
(q + dq,p + dp,f + df) for the equilibrium Nosé–Hoover oscillator follows from the dynamical matrix
derivatives:

dq � _dqþ dp � _dp þ df � _df ¼ �fdp2 þ pdpdf:

The extremal rates follow from the plane-polar-coordinate relations in the (dp,df) plane:

dp � sinðhÞ; df � cosðhÞ; d

dh
½�fdp2 þ pdpdf� ¼ 0

! tanð2hÞ ¼ ðp=fÞ:

In Figs. 3 and 4 we show the extremal growth rates and the instantaneous Lyapunov spectra, for the regular
and chaotic orbits of Figs. 1 and 2. In the general case the extremal growth rates could be obtained in any one
of three ways: (i) Monte Carlo sampling of rates in tangent-space, with a decreasing jump length; (ii) a ‘‘sim-
plex’’ method [11], in which a number of sampling points just exceeding the dimensionality of the space is used
to add a ‘‘better’’ point to the sample while discarding the ‘‘worst’’ point, and (iii) singular-value decomposi-
tion of the propagator matrix. Combined with Gram–Schmidt orthonormalization these techniques lead to a
local growth-rate spectrum analogous to the Lyapunov spectrum. Unlike the Lyapunov spectrum the growth-

q p

ζ

Fig. 1. Phase-space trajectory for the regular Nosé–Hoover oscillator, with initial conditions (q,p,f) = (0.00,1.55,0.00). The trajectory
length shown here, 5.58, is a complete oscillator period. This calculation, like all others in the present work, uses fourth-order Runge–
Kutta integration with a timestep dt = 0.001 [�1.5 < q <+1.5;�2.0 < p < +2.0;�0.6 < f < +0.6].

q
p

ζ

Fig. 2. Phase-space trajectory for the chaotic Nosé–Hoover oscillator, with initial conditions (q,p,f) = (0.00,5.00,0.00). The trajectory
length shown here is 1000 [�5 < q,p,f < +5].
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rate spectrum is local and independent of the direction of time even in the nonequilibrium case. For some rea-
son the computation of these local growth rates is seldom, if at all, done or discussed. The extremal rates are
typically orders of magnitude bigger than the time-averaged Lyapunov exponents for the systems studied here.

Consider a nonequilibrium case [18] where the temperature depends strongly on the coordinate q of a heat-
conducting oscillator,

0 < T ðqÞ � T q ¼ 1þ tanhðqÞ < 2:

The motion is dissipative, with overall heat transfer from larger values of q and T to smaller values. It might be
thought odd to define temperature for a system with only a single degree of freedom, such as the nonequilib-

-1.0

 0.0

 1.0

-5.58  <  time  <  +5.58

Fig. 3. Local Lyapunov exponents and extremal growth rates (heavy lines) for a typical two-period segment of the regular Nosé–Hoover
oscillator trajectory of Fig. 1. The extremal lines do not cross. The time-averaged Lyapunov exponents all vanish. The interior heavy and
light dashed lines show k1(t) and k3(t). The light interior solid line is k2(t).

-2.5

 0.0

 2.5

-10.0  <  time  <  +10.0

Fig. 4. Local Lyapunov exponents and extremal growth rates (heavy lines) for a typical segment of length 20 from the chaotic Nosé–
Hoover oscillator trajectory of Fig. 2. The interior heavy and light dashed lines show k1(t) and k3(t). The light interior solid line is k2(t).
The long-time-averaged Lyapunov exponents are (+0.014,0.000,�0.014).
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rium oscillator. This idea is really not at all strange, and is fully consistent with Gibbs’ equilibrium canonical-
ensemble result that every Cartesian degree of freedom satisfies the long-time-averaged relationship:

kT ensemble � hp2=mi:

Here, in the single-thermostated-oscillator case, the motion in ðq; _q; fÞ space quickly reaches a one-dimensional
limit cycle:

€q ¼ �q� f _q; _f ¼ _q2 � ½1þ tanhðqÞ� ! fkg ¼ f0:0000;�0:1095;�1:2155g:

The two minus signs describe the time-averaged phase-space shrinkage toward a stable periodic attracting or-
bit. Fig. 5 shows the limit cycle, which has a period of 13.75. Fig. 6 shows that not only are the extremal
growth rates periodic; the associated instantaneous Lyapunov exponents are periodic too.

The orbit can be stored, and run backwards, either replaying the stored values of fq; _q; fg unchanged:

dt! �dt; €q ¼ þqþ f _q; _f ¼ � _q2 þ ½1þ tanhðqÞ�;

or, with {Q,P,Z} = {q,�p,�f},

dt! dt; €Q ¼ �Q� Z _Q; _Z ¼ _Q2 � ½1þ tanhðQÞ�:

Either of these equivalent interpretations of reversibility provides the same unstable Lyapunov spectrum, accu-
rate to four significant figures:

fkg ¼ fþ1:2155;þ0:1095; 0:0000g:

The reversal does not hold for the instantaneous exponents k(t). Fig. 6 shows the exponents (along with the
maximum and minimum growth rates) both forward and backward in time. Though both evolutions are peri-
odic and trace out the same phase-space trajectories, there is no simple relation linking the individual instan-
taneous forward and backward exponents. We next consider more-complex systems, still time-reversible, and
also chaotic, with at least one positive Lyapunov exponent, but still dissipative, with a negative time-averaged
exponent sum.

5. Doubly-thermostated conducting oscillator

The second moment hp2i of the Nosé–Hoover oscillator is controlled by the friction coefficient f. Adding a
second control variable n, controlling in addition the fourth moment [18,21,22,32] hp4i, provides not only an
ergodic solution for the equilibrium oscillator but also a more complicated set of nonequilibrium systems
within the four-dimensional (q,p,f,n) phase space:

q
p

ζ

Fig. 5. Phase-space limit-cycle trajectory for the nonequilibrium Nosé–Hoover oscillator, with temperature T = 1 + tanh(q). The period for
this limit cycle is 13.75 [�3 < q < +1;�4 < p < +1;�4 < f < +4].
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_q ¼ p; _p ¼ �q� fp � np3; _f ¼ p2 � T q; _n ¼ p4 � 3p2T q; T q ¼ 1þ � tanhðqÞ:

At equilibrium, with � = 0 and T = 1, the Lyapunov spectrum for the doubly-thermostated oscillator exhibits
the expected symmetry:

fkg ¼ fþ0:066; 0:000; 0:000;�0:066g:

A nonequilibrium oscillator system can be constructed by choosing a coordinate-dependent temperature
Tq, so that the oscillator is exposed to a temperature gradient. For the strongly nonequilibrium choice
� ¼ 1! T q ¼ 1þ tanhðqÞ the solution generates an ergodic strange attractor with an information dimension
(based on the four-dimensional phase-space averaged bin sums hf ln f i) of Dinfo = 2.56 and a Lyapunov spec-
trum with broken symmetry:

fkg ¼ fþ0:073;þ0:000;�0:091;�0:411g:

Fig. 7 shows the (qp) and (fn) projections of the strange attractor into two two-dimensional subspaces. The
predicted Kaplan–Yorke dimension from this spectrum is DKY ¼ 2þ 73

91
’ 2:80. Ordinarily the Kaplan–Yorke

-4.0

 0.0

 4.0
+13.75  >  time  >  -13.75

-4.0

 0.0

 4.0

-13.75  <  time  <  +13.75

Fig. 6. Local Lyapunov exponents and extremal growth rates (heavy lines) for two periods of the nonequilibrium limit cycle shown in
Fig. 5. Results in both the reversed (shown at the top) and forward (shown below) directions of time are shown. The interior heavy and
light dashed lines show k1(t) and k3(t). The light interior solid line is k2(t). Note the lack of correspondence between the forward and
backward instantaneous Lyapunov exponents.
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dimension is thought to provide a good estimate for the information dimension. The definite failure of the
estimate here reflects the rapid rotation of the offset vectors, without which rotation the relation would be ex-
act. On physical grounds the Kaplan–Yorke dimensionality error cannot exceed unity.

The instantaneous behavior of the Lyapunov exponents, together with that of their bounds from singular-
value decomposition, is both complicated and sporadic. Fig. 8 illustrates the time-dependence of the upper
and lower bounds for a short but typical segment of this chaotic trajectory. This phase-space flow, in only four
dimensions, already illustrates two typical aspects of many-body flows. There are huge fluctuations in the
exponents with wide disparities between the local (instantaneous) Lyapunov and their global (long-time-aver-
aged) values. Like the bounds shown here, the local exponents reach values two orders of magnitude greater

Fig. 7. Phase-space projected distributions for the chaotic nonequilibrium (q,p,f,n) oscillator, with T = 1 + tanh(q). 200,000 points,
separated by 1000dt, are shown [�6 < q,p,f,n < +6].

-200

-100

0

 100

 200

-20   <   time   <   +20

Fig. 8. Extremal instantaneous growth rates (from singular-value decomposition) for a segment of the chaotic (q,p,f,n) trajectory of
Fig. 7. Rates in the reversed directions of time simply change sign.
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than their averages. Just as in the simpler Nosé–Hoover case there is no special relationship between the
instantaneous forward and backward exponents.

Grond and his coworkers investigated an alternative instantaneous ‘‘Wolf-algorithm’’ definition of local
Lyapunov exponents [33,34], in which the direction of one offset vector is constrained to be parallel to the
phase-space trajectory. In this case the local exponents measure the surface growth rates of an infinitesimal
hypercylinder paralleling the trajectory. This approach leads to a slight reduction in the fluctuations of the
local exponents. We found that the long-time-averaged exponents—using Wolf’s modification of Benettin’s
original idea—lead to no detectable changes in the long-time-averaged Lyapunov spectrum.

The transformation of the phase-space distribution, from a smooth Gibbsian distribution to a fractal dis-
tribution, is in fact typical of nonequilibrium systems treated with Nosé–Hoover mechanics [4]. Let us consider
next a two-body example, before discussing the more general situation, together with its implications for non-
equilibrium statistical mechanics.

6. Coupled doubly-thermostated harmonic oscillators

A many-body thermostated oscillator system can be developed by coupling the oscillator coordinates. As
an example, consider the addition of pairwise-additive forces from the coupling potential,

/12 ¼
j
2
ðq1 � q2Þ

2 � 1

2
ðq1 � q2Þ

2

to the thermostated-oscillator equations of motion for two oscillators. In the nonequilibrium case, where the
control variables for the two oscillators react to the individual temperatures,

T 1 ¼ 1þ tanhðq1Þ ! ð _f1; _n1Þ; T 2 ¼ 1þ tanhðq2Þ ! ð _f2; _n2Þ;

the forward and reversed Lyapunov spectra in the eight-dimensional phase space turn out be simply related:

fkgf=b ¼ f�0:231;�0:105;�0:025; 0:000;	0:045;	0:129;	0:262;	0:463g:

The upper signs correspond to the usual dynamics. The lower signs were obtained by playing the eight-dimen-
sional phase-space trajectory backward, analyzing the replayed trajectory for the long-time-averaged spec-
trum. To the numerical accuracy of the calculation, (±0.001) the time-averaged spectrum reverses sign
perfectly. For the nonequilibrium system evolving forward in time the Kaplan–Yorke dimension is 6.71 in
the eight-dimensional phase space.

7. Formal [incorrect!] Lyapunov-spectrum reversibility

In general, time-reversible equations of motion imply (formally, but incorrectly) that the instantaneous

Lyapunov exponents all change sign in a time-reversed motion. It seems simplest to illustrate this not-so-
well-known fact by detailing a sufficiently-complicated example to make the general result plausible. Accord-
ingly, consider the full equations of motion, in three-dimensional phase space, for a Nosé–Hoover oscillator
with unit mass, temperature, and relaxation time,

_q ¼ p; _p ¼ �q� fp; _f ¼ p2 � 1:

A time-reversed trajectory portion satisfies the same equations of motion, provided that the initial condi-
tions in the reversed portion are properly chosen. If, at the end of the forward-in-time portion the signs of p

and f are changed, the backward-in-time trajectory is related to its forward-in-time twin as follows:

f _q; _p; _f; q; p; fgbackward ¼ f� _q;þ _p;þ _f;þq;�p;�fgforward:

Notice that both sides of the _q equation change sign in the reversed motion while the _p and _f equations are
unchanged in sign.

The formal time-reversibility of the Lyapunov exponents is only slightly more complicated to see. In the
three-dimensional {q,p,f} phase space each of the three orthogonal offset vectors has three components. Here
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are the full motion equations for the three three-dimensional infinitesimal offset vectors, forward in time, for
this example:

_dq1 ¼ þdp1 � dq1k11; _dp1 ¼ �dq1 � fdp1 � pdf1 � dp1k11; _df1 ¼ þ2pdp1 � df1k11:

_dq2 ¼ þdp2 � dq2k22 � dq1k12; _dp2 ¼ �dq2 � fdp2 � pdf2 � dp2k22 � dp1k12; _df2 ¼ þ2pdp2 � df2k22 � df1k12:

_dq3 ¼ þdp3 � dq3k33 � dq2k23 � dq1k13; _dp3 ¼ �dq3 � fdp3 � pdf3 � dp3k33 � dp2k23 � dp1k13;

_df3 ¼ þ2pdp3 � df3k33 � df2k23 � df1k13:

Notice that by allowing all of the various {dpj,dfj,kkj} to change sign in the reversed Lyapunov analysis
[along with (p(t),f(t)) on the reference trajectory itself] that both sides of the three equations for f _dqjg change
sign while both sides of the remaining six equations, for f _dpj; _dfjg, do not. Thus the time reversibility guaran-
tees that any trajectory analysis proceeding forward in time corresponds to a twin trajectory proceeding back-
ward in time [and satisfying the same 12 differential equations] with the instantaneous Lyapunov spectrum
reversed:

fþkkjgforward � f�kkjgbackward:

8. Conclusions for the general situation

Generally, thermostated Nosé–Hoover mechanics makes it possible to connect the time-rates-of-change of
phase volume �, the phase-space probability density f, and the external entropy-production rate _S to the sec-
ond-moment friction coefficients {fi (Ti)} and to the time-averaged Lyapunov spectrum {ki � hki (t)i}, where
as usual the angular brackets indicate a long time average:

�hd ln�=dti � þhd ln f =dti �
X

i

hfii � h _S=ki � �
X

j

hkjðtÞi ¼ �
X

j

kj P 0:

The final inequality is the Second Law of Thermodynamics. The chain of inequalities, which follow exactly
from the Nosé–Hoover equations of motion, relate the loss of microscopic phase-space volume � (and dimen-
sionality) to the macroscopic rate of entropy production.

The fractal nature of the nonequilibrium distributions, together with the time-reversibility of the motion
equations, also provides a physical interpretation of irreversibility [4,5,16]. Motion in the forward direction
is invariably less unstable than motion in the reverse direction;

kforward � �kbackward !
X

forward

kj < 0;� ! 0

" #
$

X
backward

kj > 0;� !1
" #

:

Thus any uncertainty or perturbation to a trajectory, no matter how small, will, when the trajectory is re-
versed, cause the trajectory to fail to reverse precisely. Instead, the unstable dynamics will choose the direction
of increasing entropy with overwhelming probability. Repellor trajectories can be generated only by replaying
stored trajectories backward.

If the distortion of an infinitesimal phase-space hyperball could be stably reversed then it would be an
‘‘obvious’’ consequence that the Lyapunov spectrum changes sign in the reversed motion. The fact that the
instantaneous offset vectors {d(t)} do not simply reverse made the change of sign of the time-averaged Lyapu-
nov exponents a matter for the investigation we carried out here. The failure of the Kaplan–Yorke conjecture
for these systems underscores the need for careful checks of intuitive reasoning. We found that a variety of
systems do satisfy the time-averaged sign-change identity. A proof of this result, or even a strong plausibility
argument for it, would be very welcome.

The exact connection linking singular-value decomposition to phase-space growth rates provides an effi-
cient bound on the instantaneous Lyapunov exponents. The fluctuations in the exponents are so large that
the singular value bounds are not particularly useful estimates for the exponents and cannot even be used
to predict the presence or absence of chaos. The extremal values from singular-value decomposition do have
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an intrinsic interest of their own—they are certainly simpler than the Lyapunov exponents. As point functions
they also have the exact time-antisymmetry which the nonequilibrium Lyapunov spectrum lacks.
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