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5 We analyze temperature and thermometry for simple nonequilibrium heat-conducting models. We also show
6 in detail, for both two- and three-dimensional systems, that the ideal-gas thermometer corresponds to the
7 concept of a local instantaneous mechanical kinetic temperature. For the ¢* models investigated here the
8 mechanical temperature closely approximates the local thermodynamic equilibrium temperature. There is a
9 significant difference between the kinetic temperature and nonlocal configurational temperature. Neither obeys
10 the predictions of extended irreversible thermodynamics. Overall, we find that the kinetic temperature, as
11 modeled and imposed by the Nosé-Hoover thermostats developed in 1984, provides the simplest means for
12 simulating, analyzing, and understanding nonequilibrium heat flows.
13 DOI: XXXX PACS number(s): 05.20.—y, 05.45.—a, 05.70.Ln, 07.05.Tp
14
15 I. INTRODUCTION mentation of this model with molecular dynamics, see Ref. 49
. \ . 1] 50
16 The present work emphasizes and details the mechanical [1] . ... .
. . Configurational temperature definitions are also possible. 51
17 nature of the kinetic temperature, in contrast to the .. Cy . .
. ) . There are two motivations for considering such coordinate- 52
18 ensemble-based configurational temperature. Simulations for . R
. . . e based temperatures: first, there is some ambiguity in deter- 53
19 the simple models considered here are insensitive to system . . . .
. N . L mining the mean velocity in a transient inhomogeneous 54
20 size and show significant differences between the kinetic and L .
. . . . flow—the kinetic temperature has to be measured relative to 55
21 configurational temperatures. Our main goal is to illustrate . . .
. . . the flow velocity while configurational temperature does 56
22 and emphasize the relative advantages of the kinetic tem- .
. Ty not—second, the search for novelty. The simplest of the 57
23 perature, particularly away from equilibrium. . s
. X & many configurational possibilities was suggested and also 58
24  Ever since the early days of molecular dynamics, “tem- . . .
" e \ . implemented by Jepps [2]. In independent research directed 59
25 perature” has been based on the familiar ideal-gas kinetic- . . . .
. . . toward finding a canonical-ensemble dynamics consistent 60
26 energy definition. For a Cartesian degree of freedom at equi- . . .
o . o with configurational temperature, Travis and Braga devel- 61
27 librium the kinetic definition is . L . , .
oped an implementation identical to Jepps’ unpublished al- 62
28 kTy = (mv?). gorithm [3]. The underlying expression for the configura- 63
) o ) o ] tional temperature, 64
29 This definition provides a means for linking Gibbs’ and Bolt-
30 zmann’s classical statistical mechanics to thermodynamics. kT = (FY(V*H), 65
31 Because thermodynamic equilibrium corresponds to the . o .
Y q P appeared over 50 years ago in Landau and Lifshitz’ statistical 66

32 Maxwell-Boltzmann velocity distribution,
33 f(v) = (m/2mwkT)exp[— mv?/2kT],

34 any of the even moments

35 W =1 X (kT/m),

36 WH=1X3 X (kT/m)?,
37 @%=1X3X5X (kTim)3,
38 ceey

39 can be used to define the temperature for a system at equi-
40 librium. The second-moment choice is not only the simplest,
41 but in the ideal-gas case it also corresponds to a conserved
42 quantity: the energy. The same definition of temperature is a
43 fully consistent choice away from equilibrium too.

44  An ideal-gas thermometer can be visualized as a collec-
45 tion of many very small, light, and weakly interacting par-
46 ticles, but with such a high collision rate that thermal equi-
47 librium (the Maxwell-Boltzmann distribution) is always
48 maintained within the thermometer. For an innovative imple-
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physics textbook [4]. In the definition of kT the force F for 67
a particular degree of freedom depends upon the correspond- 68

ing gradient of the Hamiltonian: 69
F=-VH. 70

71
72

Landau and Lifshitz showed that the expression for k7 fol-
lows from Gibbs’ canonical distribution,

faivbs = exp[— H/kT], 73

by carrying out a single integration by parts: 74

(VPH) = (VH)KT — kT = (VH)HI(V*H). 75

76
77
78
79
80
81
82
83
84
85

Unlike the kinetic temperature, the configurational tempera-
ture T is not simply related to a mechanical thermometer.
And in fact, there are many other such nonmechanical tem-
perature expressions. Away from equilibrium it is clear that
no finite number of moments or averages can be expected to
uniquely define a phase-space distribution function. For a
thorough discussion see Refs. [2] and [3]. Long before this
complexity surfaced the proper definition of temperature
away from equilibrium was a lively subject. To capture some
of its flavor over a 30-year period see Refs. [5] and [6].

©2008 The American Physical Society
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FIG. 1. Jou and co-worker’s nonequilibrium system (described
in detail in Sec. III), driven by the temperature difference Ty—T¢, is
coupled to a thermometer which reads the “actual” or “correct” or
“equilibrium” or “operational” temperature 7T'y. This idea underlies
our own simulations. Here 7'y represents temperature “at” the con-
tact point between the vertical “thermometer” and the particle lo-
cated between the two thermostated particles. Each of the seven
particles in the system is represented here by a short trajectory
fragment.

86 Relatively cumbersome microcanonical versions of the con-
87 figurational temperature have been developed following
88 Rugh’s investigations. For references and an early applica-
89 tion of these variants see Morriss and Rondoni’s work [7].
90  Jou and co-workers and their critics [8—12] have consid-
91 ered the desirability of measuring an “operational” “thermo-
92 dynamic” temperature for nonequilibrium systems. They dis-
93 cussed and then implemented a method [8,12] (which we
94 explore in more detail here) for its measurement. Figure 1
95 illustrates the simplest case of their idea: a heat conductor
96 connected to a “thermometer.” As usual, the devil is in the
97 details. Here the details include both the rype of thermometer
98 used and the linkage connecting that thermometer to the con-
99 ducting system. The linkage certainly has an effect on the
100 forces and internal energy at the linkage point, and hence
101 affects the local-thermodynamic-equilibrium temperature
102 and the configurational temperature. In addition to their “op-
103 erational” temperature, Jou and co-workers also consider a
104 “Langevin temperature” T 4pgevin (the temperature which en-
105 ters explicitly into the usual equilibrium Langevin equations
106 of motion) and a “local thermodynamic equilibrium” tem-
107 perature Tjrp (the temperature based on the equilibrium
108 equation of state),

109 TLTE = T(p,e),

110 where e is the internal energy per unit mass). At equilibrium,
111 and only at equilibrium, all of the various temperatures are
112 the same and there is no ambiguity in the temperature con-
113 cept:

114 T= TK = TC = TLangevin = TLTE [at equlllbrlum] .

115 Away from equilibrium, where most physical interpretations
116 of temperature are actually symmetric second-rank tensors,
117 we can expect that each of the these four “temperatures”
118 differs from the others. This fensor nature of temperature is
119 evident in strong shock waves [13]. Generally we must an-
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ticipate that the nonequilibrium temperature can be aniso- 120
tropic, with 121

X vy ZZ
T;(,C,LTE # TK,C,LTE # TK,C,LTE' 122

This anisotropicity makes it imperative to describe the mi- 123
croscopic mechanics of any nonequilibrium thermometer in 124
detail and argues strongly against a nonequilibrium version 125
of the zeroth law of thermodynamics. 126

In their illustrative example, Hatano and Jou [ 12] used the 127
temperature of a Langevin oscillator [14] coupled to a driven 128
oscillator to measure the driven oscillator’s temperature. A 129
Langevin oscillator is damped with a constant friction coef- 130
ficient and driven with a random force [14]. See also the 131
next-to-last paragraph of Sec. II. Hatano and Jou [12] found 132
that their measured temperature was qualitatively sensitive to 133
the assumed form of coupling linking their “system” (the 134
driven oscillator) to their “thermometer” (the Langevin os- 135
cillator). 136

At equilibrium, thermometry and thermodynamics, itself, 137
both rely on the observation often called the zeroth law of 138
thermodynamics, that two bodies in thermal equilibrium with 139
a third are also in thermal equilibrium with each other (inde- 140
pendent of the couplings linking the bodies). Hatano and Jou 141
drew the very reasonable conclusion from their work that 142
this fundamental property of temperature, which makes equi- 143
librium thermometry possible, might be impossible away 144
from equilibrium. 145

Baranyai [15,16] considered a much more complicated 146
thermometer, a tiny crystallite, made up of a few hundred 147
tightly bound miniparticles. He compared both the kinetic 148
and configurational temperatures of nonequilibrium flows 149
with the temperatures within his thermometer and found sub- 150
stantial differences. Baranyai was able to conclude from his 151
work that neither the kinetic nor the configurational tempera- 152
ture was a “good” nonequilibrium temperature. By this, he 153
meant that neither satisfied the zeroth law of thermodynam- 154
ics. The temperature within Baranyai’s minicrystal thermom- 155
eter, his “operational temperature,” exhibited relatively small 156
spatial variations (the entire many-body thermometer was 157
about the same size as a single particle of the nonequilibrium 158
system in which it was immersed). 159

There is a considerable literature extending irreversible 160
thermodynamics away from equilibrium, based on defining 161
the nonequilibrium temperature, in terms of an (ill-defined) 162

nonequilibrium entropy: 163
T = (IE/3Sponeq)v- 164
For a recent guide to the literature, see Ref. [17]. 165

At equilibrium, Gibbs and Boltzmann showed that the en- 166
tropy S.q of a classical system is simply the averaged loga- 167
rithm of the phase-space probability density: 168

Seq=—k(In feq). 169

Away from equilibrium f,,eq is typically fractal [18,19] (so 170
that its logarithm diverges), so that the very existence of a 171
nonequilibrium entropy appears doubtful. For a comprehen- 172
sive review of efforts based on a nonequilibrium Gibbs en- 173
tropy, presumably —(In f,neq), see Ref. [20]. It is evident 174
that such efforts are inconsistent with what is known about 175
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176 the singular fractal nature of nonequilibrium phase-space dis-
177 tributions {f,oneq}-

178  Recent thorough work by Daivis [21] investigated the
179 consequences of an assumed nonequilibrium entropy. Daivis
180 compared three equalities (analogous to the equilibrium
181 Maxwell relations) based on the assumed existence of S,eq
182 with results from numerical simulations. None of the three
183 “equalities” was satisfied by the simulation results, casting
184 doubt on both the existence of a nonequilibrium entropy
185 analogous to the Gibbs-Boltzmann entropy and also on the
186 existence of a corresponding entropy-based temperature.
187  In the present work we will explore these ideas for a
188 simple nonequilibrium model of heat flow: the ¢* model
189 [19,22]. This very basic model has quadratic Hooke’s-law
190 interactions linking nearest-neighbor pairs of particles. In ad-
191 dition, each particle is tethered to its individual lattice site
192 with a quartic potential. This model has been extremely use-
193 ful for nonequilibrium statistical mechanics. In its most use-
194 ful temperature range (where the particles are sufficiently
195 localized, as detailed in Sec. IV) we will see that the internal
196 energy varies nearly linearly with kinetic temperature, sim-
197 plifying the analyses. The model obeys Fourier’s law (for
198 small enough temperature gradients for the equivalence of all
199 the various temperature definitions), even in one dimension
200 [22]. It can also display considerable phase-space dimension-
201 ality loss [19], establishing the fractal nature of the phase-
202 space distribution function. Because the loss can exceed the
203 phase-space dimensionality associated with the thermostat-
204 ing particles, a fractal distribution for the interior Newtonian
205 part of a driven nonequilibrium system is implied by these
206 results. We use the ¢* model here to elucidate and compare
207 the kinetic and configurational candidates for nonequilibrium
208 temperature.

209 Though the mechanical models we consider are small,
210 with only a few dozen degrees of freedom, we firmly believe
211 that the analysis of such very specific manageable models is
212 the only reliable guide to an understanding of thermometry
213 and temperature. The pitfalls and complexities associated
214 with large systems, and with large thermometers, are the gra-
215 dients and inhomogeneities already seen in Baranyai’s work
216 [15,16].

217 The paper is organized as follows: first, a discussion of
218 mechanical thermometry, using the ideal-gas thermometer,
219 with simulations corresponding to ideal gases of disks (two
220 dimensions) and spheres (three dimensions); next, a descrip-
221 tion of the computer experiment suggested by Jou as applied
222 to the ¢* model. After discussing and illustrating the ¢*
223 model, numerical results, and conclusions based on them,
224 make up the final sections of this work.

225 II. IDEAL-GAS THERMOMETRY

226  Hoover, Holian, and Posch [9] described the mechanics of
227 a one-dimensional ideal-gas thermometer in detail. They
228 considered a massive particle, with momentum MV, interact-
229 ing with a Maxwell-Boltzmann bath of ideal-gas particles
230 with momenta {mv}. Here we will consider the same situa-
231 tion in detail for two- and three-dimensional thermometers.
232 A typical collision can be viewed in the center-of-mass
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frame, a coordinate frame with the center-of-mass velocity

_MV+mv

v
For an instantaneous hard-sphere impulsive collision the di-
rection of the relative velocities in this frame, averaged over
all possible collisions of the two velocities,

{Ubefore}= * (V_ U),

is directed randomly after collision. This simplification leads
to a systematic expansion [9] of the energy change of the
massive particle in half-integral powers of the mass ratio

m/M. To second order in \m/M,
—{(dIdt)(MV?12)) o« (MV*12) = {(mv*/2))
= (MV?/2) — (3kT/2),

where Ty is the ideal-gas kinetic temperature.

For the details of other models (soft spheres, square wells,
etc.) of the interaction between the massive particle and an
ideal-gas-thermometer heat bath, a solution of the corre-
sponding Boltzmann equation would be required. Neverthe-
less, on physical grounds it is “obvious” that a massive par-
ticle with (above/below)-average energy will (lose or gain)
energy, on the average, as a result of its collisions with the
equilibrating bath,

<E> -~ Sgn(<E>eq - E) .

It is an interesting exercise in numerical kinetic theory to
confirm this expectation in two and three dimensions. Con-
sider first a hard disk with unit radius and mass M with unit
velocity V=(1,0). Scattering for disks is anisotropic. On the
average a disk retains a memory of its original velocity in the
center-of-mass frame. To model the interaction of a massive
disk with a heat bath of unit-mass-point particles at kinetic
temperature Ty requires choosing Maxwell-Boltzmann bath-
particle velocities {v}={v,,v,} as well as an angle 0<a
<27 for each collision, which specifies the location of the
colliding bath particle relative to the massive disk. See Fig. 2
for typical results. These were obtained by using a random
number generator [23] to simulate the collisions.

The velocity changes of the disk, AV, and the bath par-
ticle, Av, are as follows for a collision described by the angle
a:

AV =(V-0)(R - r)(cos(a),sin(a))[2m/(M + m)],

Av = (v = V)(R - r)(cos(a),sin(a))[2M/(M + m)].

A sufficiently long series of velocity changes {AV}, com-
puted in this way, can be used to find the averaged hard-disk
energy change shown in the figure.

Results for m=1, M=100, and 5 X 10° randomly-chosen
hard-disk collisions for each ideal-gas temperature are shown
in Fig. 2. In analyzing these simulations it is necessary to
weight the summed-up contributions of all the observed col-
lisions with the relative velocities corresponding to each col-
lision c:
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2
AE
1

0 < kT < 100

FIG. 2. Energy change, due to collisions, for a hard disk of mass
M and unit speed with an equilibrium bath of point particles with
mass m=M/100 and temperature Tk. Zero energy change corre-
sponds precisely to that temperature (50 for disks, 33.333... for
spheres, open circles in the figure) for which the disk kinetic energy
equals the mean bath energy (mv?/k). Also shown are analogous
results for a hard sphere immersed in a hard-sphere ideal-gas
thermometer.

> (jv - VIAE),
(AEy= =TT
282 > (jv=V).

283 The speed |v—V| is included because the collision rate for
284 two randomly located particles with velocities v and V' is
285 directly proportional to the magnitude of their relative veloc-
286 ity, v—-V.

287  As expected, the temperature at which the disk kinetic
288 energy, for M equal to 100, is equal to the averaged mass-
289 point thermal energy is 50:

MV?
<A 5 > % 2k Tyu — MV?.

291 The analogous averaged mass-point thermal energy is
292 33.333... for hard spheres. Energy changes for both disks
293 and spheres are shown in Fig. 2. The simplicity of such a
294 mechanical model for a thermometer—which “measures
295 temperature” in terms of the kinetic energy per particle—
296 recommends its use in analyzing nonequilibrium simulations.
297  The configurational temperature, on the other hand, has
298 no corresponding mechanical model and also requires that
299 the quotient of two separate averages be computed to find the
300 temperature associated with a particular Cartesian degree of
301 freedom:

290

(F?)
kTe= 5.
302 (V'H)
303 Kinetic temperature is simpler, requiring only a single aver-
304 age because V,%H:l/m is constant:

305 kT = ((V,H)D((VH)) = (p*)im = m(v?).

306 Unlike the kinetic temperature the configurational tempera-
307 ture is nonlocal (through its dependence on forces).
308 It should be noted that the “Langevin thermometer,” as
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implemented by Hatano and Jou [12], appears to be based on 309
a similar application of kinetic theory. But the Langevin ther- 310
mometer, if viewed as a “thermostat” designed to impose the 311
temperature 7T} ypgevin, Suffers from the defect that its “tem- 312
perature” (given by the ratio of the time-integrated correla- 313
tion function of the fluctuating force to the drag coefficient) 314
is not equal to (mv?/k) (or to any other oscillator-based tem- 315
perature) except at equilibrium. The ideal-gas thermometer, 316
on the other hand, maintains its temperature both at and 317
away from equilibrium, and can easily be implemented in 318
numerical simulations by using either Gaussian (constant ki- 319
netic energy) or Nosé-Hoover (specified time-averaged ki- 320
netic energy) mechanics. Both these thermostats employ 321
feedback forces to maintain the specified kinetic temperature 322
Tk even away from equilibrium. 323

Baranyai’s thermometer [15,16], with hundreds of degrees 324
of freedom, contains within it both stress and temperature 325
gradients. His minicrystal thermometer translates, rotates, 326
and vibrates as well. This complexity destroys the local in- 327
stantaneous nature of temperature that is so valuable for ana- 328

lyzing inhomogeneous systems with large gradients. 329
II1. JOU AND CO-WORKER’S THERMOMETRIC 330
EXPERIMENT 331

In order to explore the concept of nonequilibrium tem- 332
perature, Jou and Casas-Vazquez suggested [8], and Hatano 333
and Jou ultimately tested [12], the setup shown in Fig. 1. As 334
indicated in that figure, an equilibrium thermometer mea- 335
sures the “real,” or “thermodynamic,” or “operational” tem- 336
perature Ty when it is connected to a nonequilibrium system 337
with a temperature intermediate to T}, and 7,4 The con- 338
straint on individual particles’ velocities imposed by the heat 339
current in the nonequilibrium system suggests that the non- 340
equilibrium temperature 7, will turn out to be lower than the 341
local thermodynamic equilibrium temperature T} g (the tem- 342
perature based on mass, momentum, and energy through the 343
equilibrium equation of state) [8,11]. “Extended irreversible 344
thermodynamics” [17] provides an estimate for this tempera- 345
ture difference: 346

Time—Ty= 0%, 347

where Q is the heat flux and the proportionality constant in 348
this relation is a temperature- and-density-dependent mate- 349
rial property. Although Hatano and Jou [12] confirmed that 350
the kinetic temperature for a simple two-oscillator model ac- 351
tually is less than the temperature measured by a Langevin 352
thermometer, the configurational temperature for this same 353
model behaved oppositely, exceeding the Langevin tempera- 354
ture. This discrepancy led Hatano and Jou to conclude that 355
the zeroth law of thermodynamics is unlikely to be obeyed 356
away from equilibrium, once again shedding doubt on the 357
existence of a nonequilibrium entropy. 358

In the present work we implement an extension of the 359
Hatano and Jou simulation to a two-dimensional few-body 360
system based on the ¢* model [19,22], as described in the 361
following section. 362
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FIG. 3. Particle trajectories for 20 000 time steps. The cold par-
ticle kinetic temperature 7?1d=0.01 and the hot particle kinetic tem-
perature T;°t=0.03 are constrained with Nosé-Hoover friction coef-
ficients. The corresponding measured configurational temperatures
are 0.0159 and 0.0265. The long-time-averaged kinetic and configu-
rational temperatures of the five Newtonian particles are (from bot-
tom to top) {0.0207,0.0237,0.0238,0.0238,0.0242}  and
{0.0218,0.0229,0.0229,0.0229,0.0234}, respectively. See Table II.
The heat flux is 0.002 69.

363 IV. ¢* MODEL FOR NONEQUILIBRIUM THERMOMETRY

364 We consider a simple heat-conducting nonequilibrium
365 system in two space dimensions. See Fig. 3 for a time expo-
366 sure of the corresponding dynamics. There is a cold particle
367 obeying the Nosé-Hoover equations of motion

368 x=(pdm), y=(p/m),
369 Dy =Fy— LeoaPys p'y=Fy_§coldpy’
370 écold & (pgzc + p}z - 2kacnld) .

371 Both the cold particle and an analogous hot particle (with .
372 and Tj,,) are connected to a Newtonian particle with qua-
373 dratic nearest-neighbor Hooke’s-law bonds:

K
374 PHooke = Ez(r - d)2~

375 See again Fig. 3.

376  The Newtonian particle through which the flux Q flows,
377 from the hot particle to the cold one on the average, lies at
378 the end of a chain of similar Newtonian particles. This chain
379 of Newtonian particles acts as a thermometer through which
380 no heat flows.

381  To validate the chain idea we carried out preliminary
382 equilibrium simulations, with the “hot” and “cold” particles
383 thermostated at a common temperature: Ti="T%=0.07. Simu-
384 lations with 10° time steps (beginning after first discarding
385 0.5 10° equilibration time steps) were carried out for 7-,
386 14-, and 21-particle systems. These three simulations each
387 provided time-averaged configurational and kinetic tempera-
388 tures for all particles lying in the range (0.0698<<T
389 <0.0701). These simulations indicated consistent equilibra-
390 tion along the chains and between the configurational and
391 kinetic temperatures within a reasonable tolerance of
392 +(.0001. We conclude from these equilibration runs that the
393 ¢* model is a sufficiently mixing and conducting system for
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042 Kinetic Configurational
) KT(<x>) KT(<x>)
008 | | |

0.04

| I

Particle Index 1 ... 21

0.00

Particle Index 1 ... 21

FIG. 4. Long-time-averaged temperature profiles for nonequilib-
rium systems of n={7,14,21} particles. Nosé-Hoover kinetic con-
straints control the kinetic temperatures of a “cold” particle, with
7€K=O.OOS, Particle n—1, and a “hot” particle, with 7‘;2:0.095, Par-
ticle n. Particle 1 lies between the “cold” particle and the “hot”
particle. Both the kinetic and the configurational temperatures are
shown for all » particles. These simulations used 1 X 10° time steps
after discarding an equilibration run of 0.5%10° time steps. dt
=0.005.

use in nonequilibrium thermometry simulations.

This convincing equilibration suggests that a chain of ¢*
particles is a suitable thermometer. How long should the
chain be away from equilibrium? To find this out we next
carried out an exactly similar series of three nonequilibrium
simulations with an extreme factor-of-19 difference between
the constrained cold and hot kinetic temperatures:

T =0.005, T&=0.095.

The long-time-averaged temperature results for 7-, 14-, and
21-particle systems, shown in Fig. 4, are essentially the
same, so that a simple 4-particle chain of thermometric par-
ticles is sufficient.

Each of the particles in this nonequilibrium system is teth-
ered to its lattice site r, with a quartic potential:

Ky 4
¢lelher = Z(r - rO) .

With 7 particles there are 30 ordinary differential equations
to solve (14 coordinates, 14 momenta, and 2 friction coeffi-
cients). For convenience we choose all of the particle
masses, Boltzmann’s constant k, the force constants «, and
K4, the Hooke’s-law equilibrium spacing d, and the cold and
hot proportionality constants determining the Nosé-Hoover

friction coefficients, all equal to unity. For the cold particle
we solve the following equations:
X=py Y=Dys
Px=Fy— Lol py = Fy p gcoldpyv

écold = (pgz( + p)Z - 2Tcold) .

We have carried out many other simulations, using configu-
rational or one configurational and one kinetic thermostat, as
well as different particle numbers, but the results are quali-
tatively similar to those obtained with kinetic thermostats
and are therefore not reported here. Likewise we do not ex-
plicitly consider here the possibility of separately thermostat-
ing the x and y directions (by using two friction coefficients
7 and &P).
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0.15

K/N
0.10

K/E ~ 0.588

0.05

0.00

0 < EN < 0.20

FIG. 5. Variation of kinetic energy with total energy for a 100-
particle ¢* chain at equilibrium. For each of the 20 points which the
line connects here 107 time steps were used after discarding 5
X 106 equilibration time steps. df=0.005. To an excellent approxi-
mation, K=0.588E.

428 It should be noted that the Hooke’s-law nearest-neighbor
429 potential leads to discontinuous forces whenever particle tra-
430 jectories cross one another. This is a common occurrence in
431 either one or two dimensions, at sufficiently high tempera-
432 tures. In one or two dimensions the force changes from *1
433 to ¥ 1 as two particles pass through one another. To avoid (or
434 at least minimize) these discontinuities in the present two-
435 dimensional simulations we have only considered simula-
436 tions with average temperatures less than or equal to 0.1.

437  In discussing the applicability of irreversible thermody-
438 namics to nonequilibrium systems several workers have sug-

PHYSICAL REVIEW E 77, 1 (2008)

gested the use of a “local thermodynamic equilibrium” tem-
perature [5,8,11,17,20,24]. For the present model the relation
between the local thermodynamic equilibrium temperature
and the kinetic temperature is nearly linear. Figure 5 shows
the variation of kinetic energy with internal energy for a
periodic chain of 100 particles (results for 7- and 14-particle
chains are essentially the same). To an accuracy better than a
percent,

Ty Ty rg.

V. NUMERICAL RESULTS AND CONCLUDING
REMARKS

Exploratory simulations of the type illustrated in Figs. 3
and 4 suggested that the kinetic and configurational tempera-
tures are a bit different (away from equilibrium) and also that
these temperatures vary slightly along the length of the New-
tonian thermometric chain. At the same time the heat flow
between the hot and cold particles closely follows Fourier’s
law. To show this explicitly Table I gives the kinetic and
configurational temperatures for an average temperature 7%
=(T°+T")/2=0.05 and a broad range of temperature differ-
ences AT=T"-T¢.

The tabulated results for temperature differences which
are not too large,

ATITY < 1,

show a relatively small variation of the effective thermal
conductivity for the three-particle (cold-Newton-hot) system,

TABLE 1. Averages for runs of length =5 000 000 with the fourth-order Runge-Kutta time step d¢r=0.005. The kinetic and configura-
tional temperatures are listed, along with the heat flux Q (all accurate to the last figure). The first seven columns correspond to the
temperatures of the cold and hot particles, followed by the temperature of the Newtonian particles (the Newtonian particles are the five
shown in a vertical column in Fig. 3 and labeled from bottom to top).

Ty Tk Tk Tk Ty Tk Ty 0
0.045 0.055 0.0504 0.0507 0.0507 0.0507 0.0507 0.0020
0.040 0.060 0.0512 0.0524 0.0526 0.0526 0.0528 0.0039
0.035 0.065 0.0526 0.0554 0.0558 0.0559 0.0560 0.0057
0.030 0.070 0.0542 0.0588 0.0593 0.0594 0.0595 0.0076
0.025 0.075 0.0559 0.0622 0.0628 0.0629 0.0631 0.0094
0.020 0.080 0.0574 0.0648 0.0655 0.0657 0.0659 0.0113
0.015 0.085 0.0588 0.0671 0.0678 0.0682 0.0681 0.0132
0.010 0.090 0.0603 0.0681 0.0689 0.0692 0.0690 0.0146
0.005 0.095 0.0643 0.0698 0.0706 0.0710 0.0707 0.0143

Te Te Te Te Te Te Te 0
0.0471 0.0537 0.0506 0.0506 0.0506 0.0506 0.0506 0.0020
0.0445 0.0578 0.0519 0.0522 0.0523 0.0522 0.0524 0.0039
0.0423 0.0623 0.0540 0.0548 0.0550 0.0550 0.0552 0.0057
0.0400 0.0672 0.0563 0.0578 0.0581 0.0581 0.0583 0.0076
0.0378 0.0723 0.0587 0.0608 0.0611 0.0610 0.0614 0.0094
0.0353 0.0775 0.0606 0.0631 0.0635 0.0635 0.0638 0.0113
0.0327 0.0831 0.0624 0.0655 0.0659 0.0659 0.0660 0.0132
0.0298 0.0886 0.0638 0.0669 0.0671 0.0670 0.0671 0.0146
0.0285 0.0937 0.0670 0.0694 0.0695 0.0695 0.0693 0.0143
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TABLE II. Kinetic temperatures (above) and configurational temperatures (below) are shown as functions of the long-time-averaged (
1% 10° time steps) heat flux Q induced by the temperature difference T’IQ—Y} between two thermostated Nosé-Hoover particles. The first
seven columns correspond to the temperatures of the cold and hot particles, followed by the temperature of the Newtonian particles (the
Newtonian particles are the five shown in a vertical column in Fig. 3 and labeled from bottom to top).

T Tk Tk Tk Tk Tk Tk 0
0.001 0.003 0.00134 0.00146 0.00146 0.00146 0.00147 0.00002
0.002 0.006 0.0029 0.0031 0.0031 0.0031 0.0031 0.00008
0.005 0.015 0.0089 0.0100 0.0100 0.0100 0.0101 0.00064
0.010 0.030 0.0207 0.0237 0.0238 0.0238 0.0242 0.00269
0.020 0.060 0.0447 0.0504 0.0508 0.0508 0.0509 0.00736
0.050 0.150 0.1066 0.1132 0.1142 0.1148 0.1152 0.01858

: I 2 3
T Te Te Te Te Te e 0
0.00125 0.00217 0.00135 0.00142 0.00140 0.00142 0.00145 0.00002
0.0025 0.0043 0.0029 0.0030 0.0030 0.0030 0.0031 0.00008
0.0075 0.0120 0.0095 0.0098 0.0097 0.0097 0.0099 0.00064
0.0159 0.0265 0.0218 0.0229 0.0229 0.0229 0.0234 0.00269
0.0311 0.0570 0.0470 0.0490 0.0492 0.0491 0.0494 0.00736
0.0673 0.1497 0.1104 0.1125 0.1133 0.1136 0.1138 0.01858
465 K= 2Q/(T},'< -T%), which heat flows. On the other hand, simply reducing the 497

' ' ) V4 force constant (from 1.0 to 0.3) linking that Newtonian par- 498
466 with the imposed temperature gradient. There are significant  ticle to the thermometric chain (and leaving all the other 499

467 differences between the (local) kinetic and (nonlocal) con-  force constants unchanged) gives different inequalities 500
468 figurational temperatures of the two thermostated particles.
469 Similarly, the kinetic and configurational temperatures of the Te>Ty> Tk. 501

470 Newtonian particle linking them also differ somewhat. On . ) o
471 the other hand, the near proportionality of the internal energy ~ Whether or not the conducting Newtonian particle is “hotter” 502

472 and the kinetic energy at equilibrium implies that local- ~ or “colder” than the thermometric chain depends on the defi- 503
473 thermodynamic-equilibrium temperature profiles and kinetic ~ hition of temperature at that particle. The anistropicity of the 504
474 temperature profiles are essentially the same. Newtonian particle’s temperature is relatively small in these 505

475  In every case the difference between the temperature of ~ simulations and tends to decrease as the force constant link- 506
476 the Newtonian particle wirh a heat flux (particle 1) and the ing that particle to the thermometric chain is decreased. For 507

477 temperatures of the thermometric Newtonian particles with- ~ instance, T =Ty is reduced from 0.012 to 0.006 as the link- 508
478 out a heat flux (particles 2, ...,5) is rather small, but signifi- ing force constant is reduced from 1.0 to 0.1. The sign of this 509
479 cant. This difference is explored systematically in Table II,  disparity, T¢'> Ty, is nicely consistent with the intuitive rea- 510
480 where a relatively large kinetic temperature difference soning of Jou and Casas-Vazquez [8,11]. 511

Evidently the predictions of extended irreversible thermo- 512
481 TJ,'(= 3Ty — ATITY =1 dynamics are not particularly useful in understanding the 513

temperature differences which result from small-system ther- 514

482 is imposed. Symmetry suggests that the temperature differ- mometry with relatively large thermal gradients. The detailed 515

483 ence should depend quadratically on the heat flux (this same
484 dependence is also predicted by “extended irreversible ther-
485 modynamics” [8-11,17,20,24]). These simple arguments are
486 wrong. In fact, the data in Table II suggest a square-root
487 rather than a quadratic dependence. Figure 6 shows the de-
488 pendence of the temperature differences T%— T} and T3~ T} 0.005|-
489 on the heat flux Q.

490 The data in both tables, calculated with all the Hooke’s-

0.010

Configurational

491 law force constants equal to unity, are consistent with the set 0.000
492 of nonequilibrium inequalities 0 < Q < 0.02
493 Ty>Te> Tk, FIG. 6. Variation of the kinetic-temperature and configurational-

) ) ] temperature differences with heat flux, using the data from Table II.
494 where Ty is the thermometric temperature of the Newtonian A quadratic variation in this plot (rather than the apparent square

495 thermometer while 7 and T are the configurational and  o0r) corresponds to the “predictions” of extended irreversible
496 kinetic temperatures of the Newtonian particle through  thermodynamics.
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516 results depend upon the details of the thermometric linkage.
517 Note that the configurational temperature of the hot (cold)
518 thermostated particle lies below (above) the Kinetic tempera-
519 ture, a symptom of the configurational temperatures’ nonlo-
520 cality. Because the sign of Tx—T can vary, both mechanical
521 and thermodynamical effects are involved.

522  In order to show that the qualitative features of thermom-
523 etry for the ¢* model are insensitive to temperature, we col-
524 lect typical results in Table II for sets of cold and hot tem-
525 peratures varying over two orders of magnitude. In each case
526 the kinetic temperatures of the cold and hot particles are
527 imposed by Nosé-Hoover thermostats. Then the long-time-
528 averaged temperatures, both kinetic and configurational, are
529 measured for all of the particles. The averaged heat flux is
530 included too. The configurational temperature of the “cold”
531 particle is uniformly higher than its kinetic temperature,
532 while the configurational temperature of the “hot” particle is
533 uniformly lower. This complexity is due to the nonlocal char-
534 acter of configurational temperature.

535  In summary, let us reiterate our findings. First, numerical
536 kinetic theory simulations (Fig. 2) demonstrate the local in-
537 stantaneous dynamical basis of kinetic temperature. Next,
538 stationary heat flows demonstrate an insensitivity of the non-
539 equilibrium temperature to system size (Fig. 4) and also
540 show that the kinetic and configurational temperatures shift
541 away from equilibrium can differ by more than a factor of 2.
542 This disparity occurs despite the near equivalence (Fig. 5) of
543 the kinetic temperature to the local-thermodynamic equilib-
544 rium temperature. Although it is possible to imagine and

PHYSICAL REVIEW E 77, 1 (2008)

compute many “temperatures” away from equilibrium, none
of which satisfies a zeroth law, we see no reason to prefer
any definition more complicated than that of the ideal-gas
thermometer. A mechanical, local, and instantaneous physi-
cal thermometer (which also corresponds well to a local ther-
modynamic equilibrium thermometer in the present case) is
appealing. It is the simplest choice.

A particularly interesting problem where locality is impor-
tant for nonequilibrium thermometry is the stationary shock-
wave. There the differences between the longitudinal and
transverse kinetic temperatures are extremely large (as mea-
sured by an ideal-gas thermometer) and the relaxation times
are determined by the atomic vibration frequency rather than
diffusive processes [13]. The extreme spatial gradients asso-
ciated with strong shock waves make the smoothing associ-
ated with configurational temperature undesirable.
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