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Abstract.
Nonequilibrium Molecular Dynamics requires an extension of Newtonian and Hamiltonian me-

chanics. This new extended mechanics includes Gauss’ and Nosé’s thermostatted equations of mo-
tion. Here I review the past 20 years’ history of the various formulations, solutions, interpretations,
and further extensions of these “new" motion equations. I emphasize the fractal nature of the result-
ing phase-space distributions. I describe the connections of these fractal distributions to irreversibil-
ity, to time-symmetry breaking (from reversible motion equations), and to entropy production and
the Second Law, far from equilibrium.

1. INTRODUCTION

Molecular dynamics, the numerical solution of atomistic-scale equations of motion, was
developed by Enrico Fermi (at the Los Alamos Laboratory), George Vineyard (at the
Brookhaven Laboratory), and Berni Alder (at the Livermore Laboratory), about fifty
years ago. This usual molecular dynamics, a numerical solution of Newton’s equations,
{mq̈ = F}, provides a solid foundation for Gibbs’ and Boltzmann’s statistical mechanics.
Molecular dynamics has provided direct numerical verifications of the detailed statistical
theories of bulk behavior which Gibbs and Boltzmann based on smooth equilibrium
phase-space distributions. Newton’s equations of motion and Gibbs’ microcanonical
(constant-energy) phase-space distributions were found to be completely compatible in
the earliest days of constant-energy molecular dynamics. Molecular dynamics became a
reliable method for the determination of equations of state. Gas, fluid, and solid phases
were all explored, as were also the phase transitions linking them.

That exploratory work on the microscopic basis for equilibrium thermodynamic prop-
erties was finished off by the development of equilibrium perturbation theory. This was
very much a joint effort, with about a dozen different investigators collaborating on sev-



eral numerical formulations of a perturbation theory for Helmholtz’ free energy. The
perturbation theories were based on combining Gibbs’ and Boltzmann’s ideas with
results taken from computer simulation. This body of perturbation theories made it
possible to compute equilibrium equations of state for a wide variety of relatively-
general systems in terms of the entropic and structural properties of a “reference system”
of hard spheres. The hard-sphere properties were available from the results of computer
simulation, both Monte Carlo and molecular dynamics.

By 1972 it was high time to concentrate on nonequilibrium properties. Fortunately
for me I found a graduate student, both willing and able to take on this challenge. Bill
Ashurst had just joined Sandia’s Livermore Laboratory, across the street from the “Rad
Lab" where I worked, and was eager to take on the challenging doctoral program at
“Teller Tech", the graduate Department of Applied Science. This Department, though
a part of the University of California’s Davis Campus, was an oasis of unclassified
research excitement, located within the Livermore Laboratory’s boundaries. Though by
now the founders of the Department are all either dead or retired, a vestige of it remains
in Livermore today.

Bill Ashurst and I set out to develop nonequilibrium molecular dynamics. Our un-
derlying goal at the start was to understand the large discrepancies between the Green-
Kubo transport coefficients found by Levesque, Verlet, and Kürkijarvi and the corre-
sponding transport coefficients for that simplest of the real fluids, argon. We measured
the transport coefficients by setting up computer simulations of both viscous and heat
flows. In order to do this, we developed both local thermostats at system boundaries
and global homogeneous thermostats, which operated throughout systems described by
periodic boundaries. In either of these cases the computational “thermostats” extracted
the irreversibly-generated heat associated with nonequilibrium flows of momentum and
energy.

These thermostatted systems generated steady nonequilibrium flows. The thermostats
could constrain either the kinetic energy or the internal energy of a set of thermostatted
particles to a fixed value. The kinetic-energy thermostats rely on Boltzmann and Gibbs’
identification of the kinetic energy per particle with the mean thermal energy,

〈mv2/2〉 ≡ 3kT/2 .

In either the isokinetic or the isoenergetic case we used “velocity rescaling" to impose
the constraint. In England, Les Woodcock had used exactly this same kind of temper-
ature control. In the isokinetic case Ashurst multiplied every thermostatted particle’s
velocity by a factor chosen to return the current kinetic energy of the thermostatted set
to its initial value. The resulting modification of Newtonian mechanics was “isokinetic"
molecular dynamics. Here the thermostatted set’s kinetic temperature was a constant of
the motion.

A couple of years later we found that this velocity rescaling was formally equivalent
to applying a frictional force −ζ p proportional to each particle’s momentum. I spent
considerable time in the libraries at Livermore, looking for a link between our “ad hoc”
thermostatting recipe and classical mechanics. I found a description of Gauss’ Principle
(of Least Constraint), in one of Sommerfeld’s books. The Principle states that any cons-



traint, including “nonholonomic constraints” involving momenta, should be imposed
with the least possible constraint forces. Gauss’ Principle turned out to be exactly
equivalent to our isokinetic thermostatting idea.

Gauss’ thermostat turned out to be specially useful far from equilibrium, where it
could provide stress-strainrate relations under extreme shockwave conditions. In the
isokinetic case, the equations of motion which result from Gauss’ Principle include
constraint forces {FC} linear in the momenta:

{dp/dt = F(q)+FC(q, p) ; FC = −ζ p} ;

ζGauss = ∑F · p/∑ p2 .

At about this same time (1982) Shuichi Nosé discovered a more general means of
thermostatting, based on integral feedback control (as opposed to Gauss’ differential
feedback control). Nosé was born 17 June 1951 in the small town of Mineyama and
attended high school there. His thesis work (D. Sc. in Chemistry, 1981) at Kyoto
University involved Monte Carlo simulation. After three years of postdoctoral work in
Ottawa, during which he developed his revolutionary thermostatting ideas, he moved
back to Japan to teach at Keio University in Yokohama. He married Ibuki Kushida in
April 1985, and his son Atsushi (“temperature”) was born in January 1986.

It was in summer 1984 that I met Shuichi by accident, on a Paris train platform,
several days in advance of a meeting we both planned to attend. My hotel, the Hôtel
California at 32, rue des Ecoles, was some distance from Nosé’s thoroughly-Japanese
hotel. We arranged to meet outside the Notre Dame cathedral for several hours of
intense technical conversations. I learned enough from these to write a paper during the
next few weeks, while visiting Philippe Choquard in Lausanne[1]. My study of Nosé’s
methods[2] (applied to a single harmonic oscillator) made it clear that the coordinate-
space (q, q̇,ζ ) version of Nosé’s dynamics (now called “Nosé-Hoover dynamics) was
useful, while his alternative (q, p,s, ps) “time-scaled” phase-space version was not. At
Nosé’s invitation, I was in Japan for sabbatical leave 1989-1990, when IBM recognized
his work with an elaborate dinner and a ceremony awarding him its Japan Science Prize
in 1989.

Nosé’s thermostat forces depend on the system’s past history rather than on its instan-
taneous state. With # degrees of freedom the Nosé-Hoover motion equations are these:

{ṗ = mq̈ = F(q)+FC ; FC = −ζ p = −mζ q̇} ;

ζ̇ = (1/#)∑[(p2/mkT )−1]/τ2 = (1/#)∑[(mq̇2/kT )−1]/τ2 .

The coordinate-space form of this dynamics follows directly from Nosé’s ad hoc Hamil-
tonian:

HNosé = (K/s)+ s[Φ+(p2
s/2M)+#kT lns] ≡ 0 .

where M = #kT τ2. K is the usual kinetic energy, expressed in terms of the {p} and ps
is the action variable (which turns out to be proportional to the friction coefficient ζ )
conjugate to s. Evidently the friction coefficient ζ depends on the past:



ζNH(t) = ζNH(0)+(1/#)

∫ t

0
∑[(p2/mkT )−1]/τ2dt ′ .

Despite the apparent dependence on the past, the motion equations are themselves
precisely time-reversible. Any time-ordered set of coordinates satisfying them provides
an alternative solution when the time ordering of the coordinates is reversed. In the
reversed solution of the equations the momenta {p}, velocities {q̇}, and the friction
coefficient(s) ζ all change signs.

In the equilibrium case Nosé’s thermostat variable ζ has a Gaussian distribution with
zero mean value,

f (ζ ) ∝ exp(−#ζ 2τ2/2) .

His thermostats were capable of reproducing Gibbs’ entire canonical distribution,
f (q, p) ∝ exp(−H /kT ), not just the isokinetic one. Analogous equations of motion
provided either instantaneous or time-averaged control of the momentum flux (or “stress
tensor") and heat flux. By 1985 the various generalizations of mechanics needed for a
detailed understanding of Gibbs’ statistical mechanics were just about complete. The
only piece still missing is a variational principle like Gauss’ on which to base Nosé’s
approach to canonical dynamics.

The pedagogical benefits of Nosé’s thermostats should be a part of any physicist’s
education. This review summarizes the main consequences of his work from my per-
spective as an actively-involved observer. The consequences for simulation, for statisti-
cal mechanics, for thermodynamics, and for nonlinear dynamics make up Secs. 2, 3, 4
and 5. Sec. 6 is devoted to an example problem, a nonequilibrium oscillator exposed to
a temperature gradient induced by an extension of Nosé’s thermostat ideas.

I have resisted including all of the dozens of literature references germane to this
review, expecting that the interested reader can find them on his own through an internet
search. Many of the older references can be found in my books[3, 4]. It gives me pleasure
to dedicate this manuscript to Shuichi Nosé.

2. CONSEQUENCES FOR SIMULATION

Nosé’s main research goal was to make equilibrium simulations more relevant to exper-
imental studies. He wanted to use temperature and pressure as independent variables,
rather than energy and volume, facilitating comparisons with experimental equilibrium
data. I was much more interested in nonequilibrium phenomena, because perturbation
theory had made the “problem” of determining simple-fluid properties into a relatively
pedestrian nonproblem. Provided that the composition of the system is fixed, Nosé’s me-
chanics can be applied to any reasonable isothermal or isobaric ensemble. It was natural
to apply these same ideas to nonequilibrium systems, systems driven from equilibrium,
and even “far” from equilibrium, by velocity gradients, temperature gradients, or by the
performance of mechanical work.

Because Green and Kubo had formulated transport processes in terms of Gibbsian
fluctuations, any credible nonequilibrium algorithm had to reduce to the proper equilib-



FIGURE 1. Plastic flow using thermostatted nonequilibrium molecular dynamics. The indentor is
pressed into the thermostatted workpiece at a speed somewhat less than the sound speed.

rium one so as to reproduce the Green-Kubo results. Ashurst and I and Lees and Edwards
independently used homogeneous periodic shear to measure viscosity. Evans and Gillan
independently invented an energy field to generate thermal flows consistent with Green-
Kubo thermal conductivity.

The thermostats were also applied to a host of interesting problems in materials sci-
ence. Shockwaves are the simplest of these because the boundary conditions are purely
equilibrium ones. But fracture, viscous flows, heat flows, and plastic deformation were
also being studied. Nosé’s feedback controls were ideally suited to these nonequilib-
rium problems too, and have since then undergone extensive development, resulting
in a detailed foundation for understanding nonequilibrium systems. By 1990 a host of
simulations, some with as many as a million particles, had verified many of the simple
engineering rules of thumb. Fig. 1 shows a two-dimensional indentation simulation from
those days. The new mechanics, besides opening up these new fields of simulation, had
profound conceptual consequences for statistical mechanics.

3. CONSEQUENCES FOR STATISTICAL MECHANICS

Gibbs’ statistical mechanics is based on following the many-body flow in “phase space”,
the many-dimensional (q, p) space in which a single point corresponds to all the coordi-
nates q and momenta p of the degrees of freedom composing the system. For a Hamil-



tonian system the flow equations are:

H (q, p) −→ {q̇ = +∂H /∂ p = p/m ; ṗ = −∂H /∂q = F} .

They have the consequence (Liouville’s Theorem) that the flow of probability density
f through the space occurs at constant density. The only possible stationary solution of
this flow law is that the density has a common value throughout the accessible part of
the phase space:

ḟ = 0 −→ feq = constant .

Liouville’s Theorem also implies that the (hyper)volume of a comoving phase volume
element ⊗, does not change with time:

d ln⊗/dt ≡ 0 .

This constant “microcanonical" distribution implies that any system coupled mechani-
cally to an ideal-gas thermometer obeys the “canonical" distribution, ∝ exp(−H /kT ),
where T is the kinetic-theory temperature of the ideal gas.

Now consider flows in phase space governed by Nosé-Hoover thermostats. To char-
acterize them it is specially convenient to rewrite the second-order motion equation in
their equivalent “Nosé-Hoover” form:

{mq̇ = p ; ṗ = F −ζ p} ; ζ̇ = (1/#)∑[
p2

mkT
−1]/τ2 .

These motion equations are fully consistent with Gibbs’ distribution. To see this, it is
only necessary to apply Liouville’s Theorem, appropriately generalized to a (2# + 1)-
dimensional space which includes the friction coefficient ζ :

∂ f/∂ t = −∑∂ ( f q̇)/∂q−∑∂ ( f ṗ)/∂ p−∂ ( f ζ̇ )/∂ζ .

Substituting the equations of motion, along with the trial solution,

f ∝ exp[−∑ p2

2mkT
]exp[−

Φ
kT

]exp[−
#ζ 2τ2

2
] ,

we can evaluate all the partial derivatives needed to apply Liouville’s Theorem:

∂ f/∂ t ≡ 0 ;

−∑∂ ( f q̇)/∂q = ∑(−F · p/mkT ) f ;

−∑∂ ( f ṗ)/∂ p = ∑[(F −ζ p) · (p/mkT) f +ζ f ] ;

−∂ ( f ζ̇ )/∂ζ = +ζ ∑ f [
p2

mkT
−1]/τ2 .

Evidently the trial solution satisfies the theorem identically. This is a direct proof that



the Nosé-Hoover equations of motion are consistent with the canonical distribution,
extended to include a Gaussian distribution in the friction coefficient. It establishes also
that the probability density f and the infinitesimal phase volume ⊗ both vary following
the flow:

d ln f/dt = −d ln⊗/dt =

∂ ln f/∂ t +∑[q̇ ·∂ ln f/∂q+ ṗ ·∂ ln f/∂ p]+ ζ̇ ∂ ln f/∂ζ =

−∑[∂ q̇/∂q+∂ ṗ/∂ p]−∂ ζ̇/∂ζ =

−∑[0−ζ ]−0 = ∑ζ 6= 0 .

For statistical mechanics the introduction of motion equations leading to changes of
phase volume ⊗, with those changes directly linked to heat transfer −ζ ∑ p2/m, and to
entropy production, was fundamental, opening up connections to thermodynamics and
nonlinear dynamics which were totally new.

4. CONSEQUENCES FOR THERMODYNAMICS

From the pedagogical standpoint it is extremely interesting to see irreversible behavior
arising from time-reversible equations of motion[5]. The one-way behavior that results
from the either-way Nosé-Hoover motion equations is the microscopic analog of the
macroscopic Second Law of Thermodynamics. It is significant that the microscopic
version, based on limiting the growth of phase volume, involves time averages. One
can only argue against an increase in phase volume if that increase were to apply in
perpetuity, that is, in either a “steady state” or a cyclic process. In either case Nosé-
Hoover mechanics provides a definite sign for the (time-averaged) friction coefficient
sum:

〈∑ζ 〉 = 〈d ln f/dt〉 = −〈d ln⊗/dt〉 > 0 .

The opposite sign, corresponding to an inexorably increasing ultimately diverging phase
volume is ruled out, for stable flows.

The friction coefficient sum is precisely equal to the rate at which entropy is generated
in the external reservoirs with which the thermostatted system interacts:

〈d(Sext/k)/dt〉= −〈(dQint/dt)/kText〉 = 〈∑ζ p2/mkText〉 = 〈∑ζ 〉 ,

where the last equality follows from the motion equations:

ζ̇ = ∑[(p2/mkT )−1]/τ2 −→ 〈∑ζ ζ̇ 〉 = 0 −→

〈∑ζ [(p2/mkT )−1]〉 = 0 −→ 〈∑ζ (p2/mkT )〉 = 〈∑ζ 〉 .

Nosé-Hoover mechanics leads directly to the conclusion that the external entropy change
associated with a stationary or cyclic process is positive. The corresponding thermody-
namic relation,



FIGURE 2. A Newtonian region in thermal contact with two Nosé-Hoover reservoirs. For a stable
stationary state to exist it is necessary that the positive friction coefficient sum (at the cold reservoir)
exceed the negative friction coefficient sum (at the hot reservoir). This guarantees a net flow of heat from
hot to cold, in accord with (one of) Clausius’ forms of the Second Law of Thermodynamics discussed in
Sec. 4.

−〈(dQint/dt)/kText〉 = 〈(dSext/dt)/k〉> 0 ,

is one of Clausius’ forms of the Second Law.
Thermodynamics does not discuss the length of time required to make measurements.

Once entropy has been defined [as the reversible integral of heat transfer divided by
temperature dS ≡ dQrev/T ] the Second Law of Thermodynamics can be stated in many
alternative ways[6]. The simplest of these, also attributed to Clausius, is the statement
that heat cannot flow from a cold body to a hot one. This particular statement requires a
bit of care far from equilibrium: in certain shockwaves the flow of heat is indeed opposite
in direction to that predicted by Fourier’s law[7]. But in the simple case of Fig. 2, where
a Newtonian system interacts with two Nosé-Hoover reservoirs at TC and TH > TC, it
is easy to prove that the time-averaged friction coefficient sums are consistent with this
form of the Second Law also:

〈∑ζC〉 > 0 ; 〈∑ζH〉 < 0 .

The proof is as follows: (i) evidently energy balance requires that the absolute value of
the cold sum exceeds that of the hot sum:

〈∑ζCTC〉+ 〈∑ζHTH〉 = 0 → |〈∑ζC〉| > |〈∑ζH〉| .

(ii) If, as is required for stability of the phase volume, the overall sum, ∑ζC +∑ζH , is to
be positive, the cold sum must be the positive one, corresponding to heat extracted at the
cold reservoir and heat inserted at the hot end. Again, Nosé-Hoover mechanics implies
the validity of a time-averaged Second Law of Thermodynamics.



FIGURE 3. Lyapunov spectra, both at (full curve) and away from (dots) equilibrium, for a dense-fluid
system of 32 Lennard-Jones particles exposed to an external field. This constant field accelerates half the
particles to the left and the other half to the right. The symmetry breaking associated with the shift of the
spectrum to more negative values signals the collapse of the ergodic phase-space distribution to a zero-
volume strange attractor. The dimensionality loss is about 16. There are 96 pairs of Lyapunov exponents
in the 192-dimensional phase space.

5. CONSEQUENCES FOR NONLINEAR DYNAMICS

Nonlinear dynamics studies general “flows”, the solutions of sets of ordinary differential
equations in general spaces. Time-reversible flows, such as those following the Nosé-
Hoover equations, are much less studied than irreversible “dissipative” flows which
generate “strange attractors”. In nonlinear dynamics the Lyapunov instability of flow
equations is characterized by the spectrum of Lyapunov exponents, the time-averaged
rates of growth (or decay) associated with an infinitesimal hypersphere that moves
with the flow. Evidently the number of Lyapunov exponents is equal to the number of
dimensions in which the flow occurs.

Hamiltonian systems have a special either-way symmetry, with any phase-space di-
rection corresponding to expansion converted into a compression in the time-reversed
version of the same flow. The symmetry of the Lyapunov spectrum can be seen in Fig.
3. The effect of dissipation, even time-reversible dissipation, gives a qualitative change.
Because the flow volume can only decrease (to a strange attractor) the Lyapunov spec-
trum must have a negative sum:

∑λi ≡ 〈d ln⊗/dt〉 = 〈−d ln f/dt〉 < 0 .



The specimen calculation in the figure[8] illustrates this shift for a simple system ex-
posed to an accelerating field. We have seen that the consequence of this decreasing
phase volume is the microscopic version of the Second Law of Thermodynamics.

There is a vast literature on chaos, nonlinear dynamics, and fractals, much of which
can be applied directly to nonequilibrium molecular dynamics. This work has been
carried out for the past twenty years by hundreds of interested researchers. An example
problem, quite well suited to student exploration, is described in the following section.

6. DOUBLY-THERMOSTATTED ERGODIC NONEQUILIBRIUM
OSCILLATOR

Here we consider a simple model system to illustrate the ideas discussed in the text[9].
Because the simple Nosé-Hoover oscillator is not ergodic, we generalize Nosé’s ap-
proach to control the fourth moment of the oscillator’s momentum, as well as the sec-
ond. The additional control variable is ξ . Choosing all of the various problem parameters
equal to unity and using a thermostat relaxation time τ equal to the corresponding un-
perturbed oscillator period, τ = 2π , the set of four ordinary differential equations we
solve is as follows:

q̇ = p ; ṗ = −q−ζ p−ξ (p3/T ) ;

ζ̇ = [(p2/T )−1]/τ2 ; ξ̇ = [(p4/T 2)−3(p2/T )]/τ2 ;

T = 1+ tanh(q) .

As shown in Fig. 4, the temperature varies from 0, as q approaches −∞ to 2, as q
approaches +∞. Had we instead used a constant temperature of unity throughout the
equilibrium Gaussian distribution would result:

f ∝ exp(−q2/2)exp(−p2/2)exp(−τ2ζ 2/2)exp(−τ2ξ 2/2) .

In the nonequilibrium case the projections of the motion into the (q, p) and (ζ ,ξ ) planes
are shown as Fig. 5. Their appearances suggest fractal character, with a singular depen-
dence of probability density on location. These fractals are typical of nonequilibrium
states, reflecting the rarity of these states in the equilibrium phase space.

The Lyapunov exponents for the four-dimensional flow are:

{λ} = (+0.059,0.000,−0.018,−0.256) .

These provide the time-averaged rate of phase-volume change along with the corre-
sponding rate of probability density divergence:

〈d ln⊗/dt〉 ≡ −〈d ln f/dt〉 = +〈∑λ 〉 = −0.215 .

As an independent check,

〈d ln f/dt〉 = 〈ζ +(3p2ξ/T )〉 = 0.215 .



FIGURE 4. The hyperbolic tangent temperature profile for the thermostatted oscillator of Sec. 6 is
shown here.

The total heat transfer in this stationary process, must vanish, on average:

〈dQ/dt〉= 〈−ζ p2 − (ξ p4/T )〉 = 0.0 ,

while the associated entropy change, obtained by dividing by the thermostat temperature,
matches the dissipation, as expected:

〈(1/T )dQ/dt〉= 〈−ζ p2/T −ξ p4/T 2〉 =

〈−ζ − (3p2ξ/T )〉 =

〈−d ln f/dt〉 = −0.215 .

Fig. 4 shows the temperature profile. The densities of the heat transfer and entropy
change, as well as their integrals with respect to the coordinate q are shown in Fig.
6. All these thermodynamic data were obtained as averages over a run of 109 timesteps
of 0.001 each while the Lyapunov spectrum was obtained using 108 such timesteps.



FIGURE 5. Projections of the motion of the thermostatted oscillator into the (q, p) and (ζ ,ξ ) sub-
spaces. The thermostat variables are smaller than the oscillator variables by roughly a factor of the oscil-
lator relaxation time, τ = 2π . The Kaplan-Yorke dimension of the strange attractor is 3.16, significantly
less than that of the four-dimensional phase space in which the motion takes place.

FIGURE 6. The four curves show the densities and their integrals (
∫
) for both the heat transfer (Q)

and the entropy production (S). The total time-averaged heat transfer, 〈dQ/dt〉 ≡ 0 and the total entropy
production 〈dSint/dt〉= 〈(dQ/dt)/T 〉 = −0.215 are the large-q limits of the two integrated curves.

7. OUTLOOK

Friction coefficients able to control temperature have provided simulators with a useful
tool in studying systems far from equilibrium. The discovery that the result of this time-



reversible dissipation is the formation of dissipative fractal strange attractors in phase
space, with dimensionality reduced below the equilibrium dimensionality, was surpris-
ing. As a consequence, it became clear that a consistent nonequilibrium entropy based
on Gibbs’ (or Shannon’s) S/k ∝ ln f would not be possible. This seems not to be such
a serious loss, as the utility of a nonequilibrium entropy is not at all clear. On the other
hand, a focus on the structure of nonequilibrium attractors, their homogeneity and frac-
tal dimensions, suggests that further understanding of highly nonequilibrium systems
is desirable. The isotropy and homogeneity of these attractors remains to be explored,
as does also their connection to Green-Kubo linear response theory. Simple models,
such as the four-dimensional oscillator problem mentioned here, can prove very helpful
in evaluating and interpretting theoretical advances such as the Fluctuation Hypotheses
and Finite-Rate Thermodynamic procedures currently under intense investigation.

8. AFTERWORD

I thank Francisco Uribe, Leopoldo García-Colín, and Enríque Diaz for all their work
in organizing and executing the Segunda Reunión Mexicana sobre Física Matemática y
Física Experimental in Mexico City. Leopoldo’s gentle persistence was responsible for
my emphasis here on the Second Law of Thermodynamics. The science and ambiance
of the Segunda Reunión Mexicana would be hard to match anywhere. Here is to the goal
of achieving more such successes!
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