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Smooth-particle boundary conditions
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We study the relative usefulness of static and dynamic boundary conditions as a function of system dimen-
sionality. In one space dimension,dynamicboundaries, with the temperatures and velocities of external mirror-
image boundary particles linked directly to temperatures and velocities of interior particles, perform qualita-
tively better than the simplerstatic-mirror-image boundary condition withfixed boundary temperatures and
velocities. In one space dimension, the Euler-Maclaurin sum formula shows that heat-flux errors with dynamic
temperature boundaries vary ash24, whereh is the range of the smooth-particle weight functionw(r ,h).
Geometric effects~lack of a simple sum formula! frustrate a corresponding exact analysis in higher-
dimensional problems. We illustrate all of these ideas here for the two-dimensional Rayleigh-Be´nard flow.
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I. SMOOTH-PARTICLE SIMULATIONS

Lucy and Monaghan discovered the smooth-particle te
nique for solving continuum problems in 1977@1,2#. Their
idea was to compute continuum averages of particle pro
ties according to a weight functionw(r ,h) which is nor-
malized ~spatial integral of unity! and has a finite rangeh.
Any continuum propertyC(r ) is an average of nearby pa
ticle values:

C~r ![( Cjw~r 2r j !Y ( w~r 2r j !.

Likewise, the mass density at any point in spacer(r ) is the
sum of contributions from all nearby particles~particles
within a distanceh):

r~r ![m( w~r 2r j !,

where each of the particles has a massm distributed in space
according to the weight functionw. These averaging ideas
applied to thepartial differential equations of continuum me
chanics, lead directly to sets ofordinary differential equa-
tions for the time development$ ṙ 5v,v̇,ė% of all the particle
coordinates, velocities, and energies$r ,v,e%. The smooth-
particle equations of motion,

H v̇ i5m(
j
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look very much similar to the motion equations of molecu
dynamics@3,4#, but involve the individual particle stress ten
sors $s% in place of the more usual interatomic forces. B
using this approach one can solve complex continuum pr
lems with a simple particle technique.

Many of the early applications were devoted to ast
physical problems in which boundary conditions were n
important. But continuum problems involving surfaces
penetration, fracture, or heat transfer, for example—requ
algorithmic implementations of realistic boundary cond
tions. A simple problem, the formation of convective ro
due to a temperature gradient in a gravitational field~the
‘‘Rayleigh-Bénard’’ problem!, is prototypical. Temperature
and velocity have specified boundary values on a box c
taining the fluid under investigation. A ‘‘good’’ boundary a
gorithm is the one that minimizes the dependence of
results on the number of degrees of freedom used to desc
the problem.

We noticed that a simple averaging technique could
applied to smooth-particle simulations, sometimes with re
tively small errors~of the order ofh24). It turned out to be
possible to demonstrate this result analytically in one dim
sion. We explain this in the following section. Our furth
investigations of this idea established that boundary effe
are larger, and more complicated, in two space dimensio
This Brief Report summarizes our findings.

II. HEAT TRANSFER IN ONE DIMENSION

The simplest boundary-driven problem is heat transfer
tween a hot and a cold reservoir. For equally spaced parti
with a constant temperature gradient and a constant the
diffusivity, the simplest versions of the correspondin
smooth-particle equations are@5#
©2003 The American Physical Society01-1
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H Ṫi}2(
j

@Qi1Qj #
dwi j

dxi
J ;

H Qi}1(
j

@Ti2Tj #
dwi j

dxi
J ,

where T is temperature andQ is heat flux. The sums an
differences on the right-hand sides of these relations gua
tee two desirable properties of their solution:~i! energy is
conserved exactly and~ii ! the heat flux vanishes when all th
particle temperatures are identical.

Provided that the rangeh of the weight functionw(r
,h) is sufficiently large, a constant temperature gradi
should lead to the heat flux from Fourier’s lawQ52k¹T.
We arbitrarily choose the proportionality constants equa
unity. We further choose the particle temperatures to co
spond to unit temperature gradient,$T(x)[x%, so that unit
thermal diffusivity should give a large-h limiting heat flux of
21. We use a nearest-neighbor particle spacing of unity
the one-dimensional problem, which sets the distance sc
With unit temperature gradient the temperatures of bound
particles ‘‘outside’’ the system take on integer values w
Tn5Tn2111. A numerical evaluation of the heat flux usin
the one-dimensional form of Lucy’s weight function

wS r̃ 5
r

h
,1D5

5

4h
~12 r̃ !3~113r̃ !,

gives the results

Qh5252
15

16
; Qh5352

80

81
; Qh5452

255

256

for weight-function ranges of 2,3, and 4. This suggests
exact result

Q~h!5211h24.

In fact, this surprisingly simple result can be derived fro
the Euler-Maclaurin sum formula@6#, which relates the sum
over particles to an integral plus Bernoulli-number corre
tions CBN involving the derivatives of the integrand at th
integration end points:

( xw85E
2h

1h

xw8dx1CBN5211h24.

The polynomial form of the weight function guarantees th
only a finite number~exactly one in this case! of Bernoulli-
number corrections to the integral contribute to the sum
heat fluxes. This very favorable convergence of the part
sum to the continuum flux suggests trying the same te
nique in two and three space dimensions. We studied ne
two-dimensional problem, using the two-dimensional fo
of Lucy’s weight function

wS r̃ 5
r

h
,1D5

5

ph2
~12 r̃ !3~113r̃ !.
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This Rayleigh-Be´nard problem is described in the followin
section.

III. THE RAYLEIGH-BE ´ NARD PROBLEM

In our prior investigations of the Rayleigh-Be´nard prob-
lem @7,8# using smooth particles we used external mirro
image particles at the system boundaries, giving each mi
particle the temperature (TH or TC) and velocity (v50) as-
sociated with the nearby boundary. This approach lead
flow fields agreeing with accurate continuum solutio
within a few percent when the number of particles used i
few thousand. This ‘‘static mirror’’~with static indicating
fixed values of temperature and velocity! is illustrated in the
middle of Fig. 1, and is evidently an improvement over usi
fixed particles to form a boundary layer. The fixed-partic
approach appears at the top of the figure. In two dimensio
we typically set the mass and distance scales by choo
particle masses of unity and a mass density of unity.
details, see Refs.@7,8#.

Our experience with the one-dimensional heat flow
Sec. II suggested that we instead use dynamic-mirror-im
temperatures and velocities which provide the correct te
perature and velocityon the boundary:

~T,v !mirror1~T,v ! interior[2~T,v !boundary.

These choices for the mirror properties ensure that the t
perature and velocity on the boundary have their prescri
values. This choice for the temperature also implies that
heat fluxes parallel and perpendicular to the boundary sa
the two relations

Qmirror
i 1Qinterior

i [0; Qmirror
' 5Qinterior

' .

The dynamic mirror approach is illustrated at the bottom
Fig. 1.

In the Rayleigh-Be´nard problem, convective rolls ar
driven by applying a temperature gradient across an enclo
system in the presence of a gravitational field. A snapsho
a smooth-particle simulation, using 5000 particles a
Lucy’s weight function, appears in Fig. 2. Numerical impl
mentations of~i! static and~ii ! dynamic-mirror boundary
conditions do lead to significantly different results. See F
3. But the difference, illustrated here for the total kine
energy of the flow field as it approaches the steady-s
value, is small with respect to the deviation from an accur
continuum simulation based on a converged square grid.
again Fig. 3 for the comparison.

We conclude that the dramatic improvement in conv
gence found in one dimension has no simple analog in
space dimensions. We confirmed this conclusion numeric
by studying pure conductive heat flow in two space dime
sions for a constant temperature gradient, using both sq
and triangular lattices of fixed particles, but with dynam
mirror temperatures. Although convergence to the continu
limit occurs smoothly and stably in either case, there is
simple power law dependence of heat flux on the gradie
Oscillations~as a function ofh) above and below the correc
1-2
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continuum result can be observed. We checked that a we
function with threevanishing derivatives ath,

wS r̃ 5
r

h
,1D

2D

5
7

ph2
~12 r̃ !4~114r̃ !,

FIG. 1. Three types of smooth-particle boundary conditions.
the top the boundary particles are fixed, as are also their temp
tures and velocities. In the middle static view, the moving mir
exterior particles have temperatures and velocities correspondin
fixed boundary values. In the bottom dynamic view, the mov
mirror exterior particles have instantaneous temperatures and
locities, providing correct averages when combined with cor
sponding interior particles.
01770
ht

rather than just the two given by Lucy’s form, made n
qualitative change to these results.

IV. CONCLUSIONS

Despite the advantages of the dynamic-mirror boundar
the deviations of fluid flow fields in two dimensions are n
significantly improved over those obtained by using sta
mirror boundary conditions. Our investigation of simp
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FIG. 2. The Rayleigh-Be´nard flow for 5000 smooth particles
The simulation corresponds to the exterior static-boundary mir
~above! though an illustration with exterior dynamic-boundary m
rors ~below! looks almost the same. The aspect ratio of the sya
is 2. For details, see Ref.@7#.

FIG. 3. Time history of the kinetic energy for a Rayleigh-Be´nard
flow. The solid line is an accurate grid-based solution of the c
tinuum equations of motion. The dashed and dotted lines co
spond to the exterior static-boundary mirror particles and the e
rior dynamic-boundary mirror particles described in the te
Reduced units for kinetic energy and time are used, as is expla
in Refs.@7,8#.
1-3
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heat-flow problems in two dimensions suggests that ther
no analog of the simple Euler-Maclaurin sum formula
sponsible for the enhanced convergence of dynamic mir
in one space dimension. More complicated mesh-depen
weight functions could conceivably improve convergen
We leave such speculation for others to investigate.
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-
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