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The microscopic and macroscopic versions of fluid mechanics differ qualitatively. Microscopic 
particles obey time-reversible ordinary differential equations. The resulting particle trajectories 
( q (  t ) )  may be time-averaged or ensemble-averaged so as to generate field quantities corre- 
sponding to macroscopic variables. On the other hand, the macroscopic continuum fields 
described by fluid mechanics follow irreversible partial differential equations. Smooth particle 
methods bridge the gap separating these two views of fluids by solving the macroscopic field 
equations with particle dynamics that resemble molecular dynamics. Recently, nonlinear 
dynamics have provided some useful tools for understanding the relationship between the 
microscopic and macroscopic points of view. Chaos and fractals play key roles in this new 
understanding. Non-equilibrium phase-space averages look very different from their equili- 
brium counterparts. Away from equilibrium the smooth phase-space distributions are replaced 
by fractional-dimensional singular distributions that exhibit time irreversibility. 

1. In~oduction 
An understanding of fluid mechanics [l,  21 requires 

the simultaneous acceptance of two seemingly disparate 
views, the atomistic microscopic view and the labora- 
tory-scale continuum macroscopic view. To follow Vol- 
taire, we begin here by describing these two versions of 
fluid mechanics. The microscopic version deals with 
moving particles while the macroscopic one describes 
developing fields. This difference is intrinsic. At a mini- 
mum, some kind of averaging process, either time aver- 
aging or ensemble averaging, over ( q p }  phase space, is 
required if the two types of mechanics are to correspond. 

The two views differ in time symmetry too. The 
microscopic version is time reversible while the macro- 
scopic one is almost always not, again suggesting 
intrinsic differences. At equilibrium, Boltzmann and 
Gibbs successfully formulated the phase-space averages 
necessary to achieve correspondence between the two 
mechanics. Such microscopic averages are the basis of 
‘statistical mechanics’. At equilibrium the phase-space 
probability densities f ( q ,  p ,  t )  characterized by 
Boltzmann and Gibbs vary smoothly, as exponentials 
of appropriate potential functions. Away from equilib- 
rium the phase-space probabilities become distributions, 
which are singular everywhere, making the averaging 
problem much harder [I ,  3---71. In the non-equilibrium 
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ease the phase-space trajectories become irreversible 
despite reversible motion equations! 

The problem of understanding the differences in time 
reversibility was emphasized by Loschmidt and repeat- 
edly attacked by Boltzmann. Computational research 
efforts over the past 20 years have made a further 
advance toward understanding non-equilibrium systems 
by showing that the irreversibility of non-equilibrium 
flows is linked closely to the concepts of chaos, 
Lyapunov instability, and fractals. 

Progress is siow. We start out here with Euler, 
Hamilton, Lagrange, and Newton, and we end up with 
very recent work. We dedicate this review to Dominique 
Levesque, whose work has influenced our own, both in 
the early days of molecular dynamics simulations [SI and 
much more recently [9]. Dominique has helped us in our 
efforts to understand the connections between time 
reversibility, computer simulations and chaos [4]. 

2. Microscopic mechanics 
The conventional microscopic mechanism for particle 

motion is the Hamiltonian function H(q,  p ) ,  which is the 
total energy expressed as a function of Coordinates and 
momenta. For simple fluids, described with Cartesian 
coordinates, the Hamiltonian may be separated into 
potential and kinetic energies: 

Mokrular Physics ISSN 00268976 print/lSSN 1362-3028 online 0 2003 Taylor & Francis Ltd 
http:/~www.tandf.~o.~kjjo~nals 

DOI: 10.1080/0026897021000026647 



1560 Wm. G. Hoover and C .  G. Hoover 

In this simple separable case, microscopic computer 
simulation can use the Newtonian representation of 
accelerations from forces given by the potential @: 

i, = mi, = mi: F = -V @( r I). 
Although textbooks often state that it is difficult to solve 
these equations, particularly if the force F is nonlinear, 
that view is obsolete. The simple two-step leapfrog 
algorithm is effective and easy to program: 

u ( t + F )  =u( t -$ t )  +%dt .  

Hamilton’s motion equations, in { q p }  phase space, 
are useful alternatives to Newtonian mechanics: 

d H  . dH q = +-; p = --. 

The generalized coordinates q in Hamilton’s equations 
of motion are especially useful for molecular systems or 
for systems with certain non-equilibrium constraints. 

See figure 1 for a simple ‘chaotic’ equilibrium applica- 
tion of the equations, the motion of a mass point con- 
fined in a ‘cell’ formed by the combined force fields of 
four fixed neighbours, the ‘correlated cell model’ [ 101. 
We call motion such as that exhibited by this model 
‘chaotic’: small perturbations 6 in the initial conditions 
have a tendency to grow exponentially quickly with 
time: 

s(t)/s(o) N e”. 

As we shall see, chaos plays a key role in connecting the 
microscopic and macroscopic descriptions of fluids. For 
a popular account of chaos and its impact on physics see 
Ford’s review [l 11. 

From the standpoint of understanding, the Hamilto- 
nian version has three advantages over the slightly sim- 
pler Newtonian formulation: (i) any convenient set of 
coordinates q may be used; (ii) quantum mechanics is 
Hamiltonian based; and (iii) the specific identity satisfied 
by the differentials of Hamilton’s equations of motion, 

aP a4 

has a useful and interesting corollary, namely Liouville’s 
theorem: the ‘comoving’ (meaning following the 
motion) time-dependent probability density in phase 
space f ( q , p ,  t )  is unchanged provided that the motion 
evolves according to Hamilton’s equations. Hamilton’s 
equations are appropriate for describing either ‘isolated’ 
or ‘closed’ systems, systems lacking external sources or 
sinks of mass, momentum, and energy. The heat trans- 
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Figure 1. Chaotic trajectory for 0 < t < 100 for a single par- 
ticle. The particle is confined to a ‘cell’ with periodic 
boundaries [l]. The cell centre is located at the origin. -0 < x < +o. -m < y < +m. The mov- 

article interacts with four fixed neighbours at lin:p 1/4, d=m} according to the pair potential shown 
in the figure: C(r )  = l O O ( 1  - r2)4. For the total energy 
E = ( p 2 / 2 m )  + E;=, C(lr0 - r,l) = 1 the motion is cha- 
otic, and shows Lyapunov instability for small changes 
in the initial conditions. 

fers and/or mass transfers that occur at ‘open’ systems’ 
boundaries cannot be described by Hamiltonian 
mechanics. 

Liouville’s theorem [3, 121 is most readily understood 
by considering the time-dependent probability of occu- 
pying a fixed infinitesimal phase-space volume element 
fl dq dp. This many-dimensional volume element has 
two dimensions for every q p  coordinatemomentum 
pair. The occupancy probability f ( q ,  p ,  t) n dqdp 
defines the phase-space probability density at time t ,  
f ( q ,  p ,  t). The time-rate-of-change of this probability, 
with the volume element fixed in phase space, is 

which is given in turn by the summed-up differences 
between the flows into and out of the element. Provided 
that f is differentiable, conservation of probability then 
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provides an exact partial differential equation for the 
time development off: 

As a consequence, j ,  the comoving time derivative of 
f (4, p ,  t), following the motion, is exactly zero: 

This consequence of Hamilton’s motion equations, that 
f following the motion is unchanged, is ‘Liouville’s 
theorem’. 

Because phase-space volume has a direct physical sig- 
nificance (its logarithm gives the entropy) it is worth- 
while to stress an equivalent version of the theorem. 
Let us describe the evolution of phase volume rather 
than evolution of density. To do so let us consider an 
infinitesimal comoving phase-space volume element, 
abbreviated @. Because the total probability within the 
moving element 8, f 8, is necessarily unchanged fol- 
lowing the motion, the theorem implies that the 
comoving volume, Gibbs’ ‘extension in phase’ @, is con- 
stant also: 

Liouville’s theorem is fundamental to statistical 
mechanics because it establishes the stationary time- 
independent form for &(q ,  p ) .  Along any trajectory 
satisfying Hamilton’s equations the ‘equilibrium’ (sta- 
tionary) form off can only be a constant. Liouville’s 
theorem is the ‘continuity equation’ in phase space. The 
more familiar continuity equation for the evolution of 
fluid (or solid) mass density p in ordinary space is dis- 
cussed in the next section. 

The coordinate evolution according to Hamilton’s 
equations of motion is time reversible [4, 51. This exact 
reversibility even carries over to some specially designed 
‘bit-reversible’ computer algorithms pioneered by Lev- 
esque and Verlet [9, 131. This reversibility means that 
either of the two time orderings t = f n d t  of a coordi- 
nate sequence solving the motion equations 

{q-ni  q - n + l >  . . . > qn-1,  q n )  or { q n ,  q n - 1 , .  . . i q-n- t l ,  4 - n ) )  

is an equally valid solution of the motion equations. The 
initial and final conditions simply exchange roles in the 
two solutions. 

The basis for this very restrictive property of time 
reversibility is phenomenological. It lies at  the heart of 
all the fundamental physical laws. And this same 
reversibility property is particularly useful for analysis 
[5], as we shall see. 

The microscopic mechanical equations also conserve 
energy, as must any macroscopic equations describing 
the behaviour of points aggregated together into a con- 
tinuum. The macroscopic continuum viewpoint is more 
aptly and simply described by the macroscopic 
mechanics developed to describe continua. Numerical 
continuum descriptions have an additional advantage 
over their microscopic cousins. Continuum simulations 
can employ a much longer timestep dt (the interval 
between successive particle- or field-variable evalua- 
tions) than do microscopic simulations. The continuum 
description is governed by the sound traversal time while 
the microscopic description is governed by the atomic 
collision time. 

3. Macroscopic mechanics 
From the macroscopic point of view, motion is con- 

trolled by ‘constitutive relations’ (including thermal and 
mechanical ‘equations of state’ as well as phenomenolo- 
gical relations like Fourier’s law for heat flow or New- 
ton’s corresponding law for viscous flow) that describe 
the dependence of the temperature, the pressure tensor 
and the heat flux on density, velocity, energy and their 
gradients. Provided that the continuum field properties 
vary smoothly in space and time, these resulting density, 
velocity and energy fields follow simple partial differen- 
tial equations. 

The time histories of the mass density (or composi- 
tion), velocity and energy are consequences of conserva- 
tion of mass, momentum and energy. The governing 
partial differential equations follow from analyses of 
the flows of mass, momentum and energy into and out 
of a fixed ‘control volume’ dxdydz, an infinitesimal 
volume element. By choosing the control volume suffi- 
ciently small, the net flows in and out may be expressed 
in terms of the gradients of the corresponding fluxes. 
The mass flow is simplest. The mass within the control 
volume dx dy dz changes due to the slight differences in 
the mass fluxes pu at opposite sides of the volume: 

dx  dY dz 
2 2 x f - - ,  y f 2 ,  zf--. 

During the short time interval dt the mass change due to 
flow in the x direction is 

[ - ( p u x ) x +  d x / 2  + ( p u x ) x -  dx /21  dy dz dt 



1562 Wm. G. Hoover and C. G. Hoover 

Thus the total density change due to velocity gradients, 
summed up over all three directions x, y, z, is described 
by the ‘continuity equation’ 

3 = -v ’ (pv), 
a t  

in the fixed Eulerian frame. The equivalent expression, 
following the motion with the local velocity v, gives the 
Lagrangian (comoving) form of the continuity equation: 

The momentum in the control volume pu dx dy dz 
itself responds to gradients in the force per unit area 
on the faces dxdy, dydz, and dzdx as well as to con- 
vective flows of momentum into and out of the element. 
The quotients, forces divided by area (defined in the 
(Lagrangian) coordinate frame moving with the 
material, where convective effects are eliminated) 
define the components of the pressure tensor P. The 
governing partial differential equation for the accelera- 
tion of a small mass in the comoving frame gives the 
Lagrangian ‘equation of motion’ 

The equivalent Eulerian equation of motion, in the fixed 
‘control-volume’ frame includes the convective flow of 
momentum also: 

a(P)  - = -v ’ ( P  + pvv) .  
at 

In either case note that changing the signs of the velocity 
u and the time t leaves both the continuity equation and 
the equation of motion unchanged, so that they look 
time reversible. 

But appearances can be deceiving. The explicit irre- 
versibility in the equation of motion becomes apparent 
when, as is often the case, the pressure tensor P depends 
on velocity gradients, so that the forces going forwards 
and backwards in time can differ. In a ‘Newtonian’ fluid 
the time-irreversible viscous forces are exactly propor- 
tional to the components of the velocity gradient tensor 
VU. 

Despite this overall irreversibility, the continuum 
equation of motion continues to conserve energy just 
as does its microscopic counterpart. But a new pair of 
variables, associated with heat transfer rather than 
work, is present in the continuum description of thermo- 
dynamics and hydrodynamics. These are temperature 
and entropy (section 5). Although strictly these thermal 
variables are defined only at equilibrium, it is tempting if 
not irresistible, and often even useful, to consider them 
for non-equilibrium processes too. 

In the non-equilibrium case the second law of thermo- 
dynamics states that the overall entropy S can only 
increase as time goes on. Because temperature is a 
state variable, independent of the direction of time, 
Fourier’s phenomenological law (that heat flows from 
hot to cold) also violates time reversibility, just as 
does Newtonian viscosity, which insists that work must 
be done to maintain a velocity gradient. Any time- 
reversible microscopic theory claiming to compute an 
analogue of the macroscopic thermodynamic entropy S 
must surmount the difficulty of dealing with irreversi- 
bility: the second law of thermodynamics, with Fourier’s 
law of heat flow and with Newtonian viscosity. Tem- 
perature carries over to non-equilibrium systems better 
than does entropy. For an introduction see sections 5, 9 
and 10 and for a thorough discussion see [4]. 

4. Smooth particle applied mechanics 
The macroscopic fluid equations are most often 

solved on an initially regular grid of points. The points 
are either fixed in space (Eulerian) or comoving with the 
fluid (Lagrangian). Both these approaches can become 
unstable in sufficiently irregular flows. To avoid such 
grid-based instabilities, at the price of introducing fluc- 
tuations, the grid points’ motions may be made to 
follow individual particle equations of motion, free of 
instabilities. In this ‘particle method’ the continuum field 
variables are represented as smoothly interpolated par- 
ticle properties. The interpolation is based on a short- 
ranged weighting function w(r < h) .  The range h and 
computational timestep dt govern the convergence and 
stability properties of this particle method in just the 
same way as do the space and time increments dx and 
dt in conventional continuum simulations. Figure 2 
shows a typical particle weight function. 

The continuum equation of motion, which gives the 
local fluid accelerations in terms of the pressure tensor 
gradient there, V .  P, can then be rewritten as a motion 
equation for particles, with each particle providing con- 
tributions to the continuum fields within a sphere of 
radius h centred on the particle. The interpolated sol- 
utions of the particle equations converge to the solution 
of the field or continuum equations in the limit that the 
number of particles increases without bound while the 
range h approaches zero in such a way that each par- 
ticle interacts with many neighbouring particles. This 
particle-field solution method, discovered independently 
by Lucy and by Monaghan, and since then applied to a 
wide variety of problems in fluid and solid mechanics, is 
smooth particle applied mechanics (SPAM) [14-191. 
‘Smooth’ refers to the differentiability of the associated 
particle weights and the continuum fields derived from 
them. 
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Figure 2. Lucy’s weight function, defined in section 4 and 
used in the free-expansion problem illustrated in figure 
3. Note the strong similarity between this weight function 
and the smooth repulsive pair potential shown in figure 1. 

In SPAM, each particle has a fixed mass m. This mass 
is to be visualized as distributed over space according to 
the normalized weight function w(r):  

Again see figure 2 for a typical example weight function 
[15]. The smooth particle mass density p ( r )  at a point r 
or p i  at particle i is given by the contributions of all 
nearby particles to the summed-up weights: 

More generally the continuum average C ( r )  of any par- 
ticle property Ci is given by the definition 

Notice that the continuum property at ri, C(r i ) ,  gener- 
ally is not the same as the particle property there, C,. 
Because w(r)  is to be chosen with at least two contin- 
uous derivatives, both VC and V V C  are continuous 
everywhere. 

SPAM conserves mass automatically. The integrated 
density distribution simply reproduces the total system 
mass. The fluid continuity equation, p / p  = -V . v, 
applied at the location of particle i, gives a useful expres- 
sion for the velocity divergence: 

xuij . V i w ( r i  - r j )  
pi -v . u 5 i - _  
Pi E w ( r i  - rj) ’ 

j 

where vu is the relative velocity of particles i and j ,  
0.. = u .  - v .  

IJ - 1 I ’  

Gradients { V C }  of other continuum field variables 
{ C ( r ) }  may be obtained by differentiating the definition 
of (Cp), given above: 

Let us apply this gradient definition to an exact par- 
tial differential equation for the motion in a continuum 
fluid, 

choosing the location r in V ( C p ) ,  occupied by particle i 
with velocity v i .  The gradient definitions, with C first 
equal to (l/p2) and second to 1, then provide the equa- 
tion of motion for the particle: 

Note that the gradient of the continuum pressure at the 
location of particle i is used to accelerate that particle’s 
velocity. The resulting particle equation of motion, 
although it does not necessarily correspond to central 
forces, does conserve momentum exactly. The smooth 
particle equation of motion reduces to ordinary molecu- 
lar dynamics (with a pair potential proportional to the 
weighting function w(r) )  whenever the pressure tensor P 
and the density p vary slowly in space, as is the case not 
too far from equilibrium. Using SPAM to solve the 
continuum equations reintroduces the fluctuations 
(through the relative motions of the particles) that are 
absent in the more usual grid-based continuum 
methods. 

Figure 3 shows a many-body application of SPAM in 
two space dimensions, a simulation of the expansion of 
a compressed gas into a surrounding vacuum [18, 191. 
The individual particle locations have been used to com- 
pute contours of density and kinetic energy using the 
simple weight function introduced by Lucy and shown 
in figure 2: 
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Figure 3. Expansion of 16 384 
particles into a surround- 
ing vacuum as treated 
with SPAM. Snapshots of 
the particle locations with 
corresponding density and 
kinetic energy contours 

. .  .... - . -_ . . .  
show that the system is 
essentially uniform after 
two sound traversal 
times. Gibbs’ microscopic 
entropy remains constant 
during the expansion pro- 
cess. See [18, 191 for 
details of the calculation. 

In the free-expansion problem of figure 3 we have used 
the ideal-gas equation of state appropriate to two space 
dimensions, P = pe c( p2, so that the internal energy per 
unit mass e is proportional to the mass density p. As 
a consequence, this simple example problem involves 
solving only the equation of motion. More complicated 
equations of state require keeping track of internal 
energy by also solving the ‘energy equation’, 

in addition to the equation of motion. The smooth par- 
ticle version of the energy equation contains both energy 
changes due to heat flux, associated with the heat-flux 
vector Q and energy changes due to work done, associ- 
ated with the pressure tensor P and the velocity gradient 
tensor Vu: 

This energy equation needs to be included in problems 
like Rayleigh-Btnard flow that involve heat transfer. 

5. Temperature and entropy 
In thermodynamics temperature and entropy are 

defined in terms of reversible (near equilibrium) pro- 
cesses involving heat transfer. Temperature is given by 
the ideal-gas thermometer. It is a measure of the (time or 
ensemble) averaged kinetic energy of the thermal bath 

particles making up the ideal-gas thermometer [4, 19, 
201: 

This kinetic energy temperature is defined under the 
equilibrium condition that the net heat transfer between 
system and bath vanishes, so that both the system being 
measured and the measuring bath share the same tem- 
perature T.  Equilibrium kinetic theory calculations, as 
introduced by Maxwell and Boltzmann, provide a 
detailed validation of this thermometer idea. They 
show that a heavy particle undergoing independent 
binary collisions with an equilibrium ideal-gas heat 
bath tends, on a time-averaged basis, towards the 
mean temperature of the bath [4, 201. 

And so long as the states linked by heat transfer are 
equilibrium states, the integrated heat absorbed in rever- 
sible processes linking such states is, when divided by the 
temperature of heat transfer, the differential of a state 
function, entropy, S = Qrev/T. The properties of 
entropy (an extensive state function, additive for inde- 
pendent systems) lead directly to a microscopic equiva- 
lent of the entropy, 

S(N, E ,  V )  = klnO(N, E ,  V ) ,  

where Q(N, E ,  V )  is the number of states available to an 
N-body fluid system with energy E confined to a volume 
V .  Classically, Q(N, E ,  V )  is the available { q p }  phase 
volume. Temperature then follows from the energy 
dependence of entropy. By maximizing the total entropy 
of a two-part system (by allowing heat transfer between 
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the two parts) the maximum-entropy state defines the 
equilibrium temperature: 

T =  (g) 
h;,v 

An equilibrium statistical mechanical calculation, based 
on the energy dependence of the ideal-gas phase-space 
states, shows that this entropy-based temperature is the 
same as the kinetic-theory-based ideal-gas-the~ometer 
temperature. The two temperatures are based on kinetic 
energy and probability density, respectively. For reasons 
explained in section 9, only the kinetic energy interpret- 
ation of temperature is useful far from equilibrium. 

6. Averaging, statistical mechanics 
The validity of the canonical phase-space distribution, 

f ( q , p )  0: e-H’kT, for fluids as well as gases was evidently 
discovered independently by Gibbs and Boltzmann 
around 1883 [4]. Both Gibbs [21] and Boltzmann [22] 
recognized that the complex particle description of 
microscopic many-body systems could be simplified by 
averaging, and both men expected that an average over 
time could be replaced by an average over possible 
phase-space states. Liouville’s theorem, as discussed in 
section 2, is consistent with this point of view. Liouville’s 
theorem, the equivalent of the continuity equation for 
the phase-space flow, states that j ( q ,  p, t ) ,  the prob- 
ability density in { q p }  phase space,. flows unchanged 
according to Hamilton’s equations: f z 0. This means 
that a constant phase-space density is unchanged by 
Hamilton’s motion equations, and so corresponds to a 
stationary thermodynamic state for an isolated system 
with a fixed composition, energy and volume. 

Liouville’s theorem made it possible to show that the 
macroscopic thermodynamic entropy S ( N ,  E ,  V )  can be 
computed by averaging the (~ogarithm of) the phase- 
space probability density, S / k  = -(ln j ) .  Because the 
density f ( q ,  p, t )  can be nothing more than a superposi- 
tion of Hamiltonian trajectories, there is a paradoxical 
logical difficulty in reconciling thermodynamics’ inexor- 
able increase of S with the time-reversibility of the 
underlying Hamiltonian mechanics. One aspect of 
the paradox may be clarified by studying the details of 
the free-expansion example of figure 3, the fourfold 
expansion of a low density ideal gas into a Iarger 
volume. Though the microscopic Gibbs’ entropy is 
necessarily unchanged for this expansion, the macro- 
scopic thermodynamic entropy, based on the local 
energy and density, shows the proper entropy increase. 
The SPAM calculation of the entropy increase [IS, 191 
includes the contributions of local velocity fluctuations 
to the internal energy density of the expanding gas, 
p((v2)  - ( ~ ) ~ ) / 2 .  It is these fluctuations (analogous to 

heat) that account for the increasing entropy. The 
smooth particle averaging of these fluctuations can be 
thought of alternatively as a spatial coarse graining. 
Evidently fluctuations and averaging are two essential 
microscopic ingredients of the macroscopic second law 
of the~odynamics .  

The other thermodynamic state-variable properties 
are straightforward and non-paradoxical, even far 
from equilibrium. The thermodynamic energy E is just 
the same as the total energy of the corresponding 
ensemble of phase-space energy states with energy E: 

E = {@) + ( K ) .  

Unlike energy, the temperature T and the microscopic 
pressure tensor P fluctuate. The temperature is com- 
puted from the mean value of the kinetic energy while 
the macroscopic pressure tensor may be related to 
the time-averaged or ensemble-averaged mechanical 
boundary forces exerted by the N particles inside the 
volume V :  

Thus, the basic thermodynamic equations of state, both 
thermal and mechanical, T ( N ,  V ,  E ) ,  P ( N ,  V ,  E )  may be 

I ’  t 1 

1.20 1.25 1.30 1.35 1.40 
A/& 

Figure 4. A two-body hard-disc system exhibits a van der 
Waals loop and realistic diffusion and viscosity coeffi- 
cients. The loop includes the density (three-fourths the 
close-packed density) at which the two discs can begin 
to diffuse. The dashed line indicates the equation of 
state for large systems of discs. A.  indicates the close- 
packed area. 
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considered as determined by the corresponding micro- 
scopic Hamiltonian. 

The averages themselves are evaluated by computer 
simulation ‘molecular dynamics’. Temperature is evalu- 
ated from the mean kinetic energy, T (2K/3Nk) in 
three dimensions and (K/Nk) in two, as may be 
shown by the equilibration with the ideal-gas thermo- 
meter of section 5,  and pressure is then evaluated from 
Clausius’ ‘virial’ (E r F ) .  Around 1970, computer simu- 
lations and supporting theoretical work established that 
realistic equations of state, including phase equilibria 
like van der Waals’ (even with the loop!), could be cal- 
culated according to Gibbs’ and Boltzmann’s prescrip- 
tion. 

It is less well known that the number of particles used 
in the simulations can be relatively small. As an extreme 
example, the equation of state for a two-particle system 
of hard discs, with periodic boundaries is shown in 
figure 4 [IO]. It is noteworthy that both the pressure 
and the density of the phase transition corresponding 
to the van der Waals’ loop are within 10% of values 
obtained from simulations with thousands of particles 
~ 3 1 .  

7. Linear response and nonlinear transport 
Green [24] and Kubo [25] extended Gibbs’ and 

Boltzmann’s equilibrium phase-space theory to treat 
non-equilibrium systems. Their ‘linear response’ theory 
is valid for non-equilibrium systems not too far from 
equilibrium. Green and Kubo discovered that the trans- 
port coefficients (such as Newton’s viscosity and Four- 
ier’s heat conductivity) are given by the rates of decay of 
appropriate fluctuations [I]. Pressure tensor fluctuations 
give the bulk and shear viscosities. For example, the 
shear viscosity depends upon the ensemble-averaged 
decay of the xy components of the pressure tensor: 

oc 

V k T P  = 1 ( p x y ( O ) p x , ( t ) )  dt. 
0 

Heat flux vector fluctuations give the conductivity. It is 
essential that these decays be averaged and it is again 
paradoxical that irreversible behaviour can be consistent 
with underlying reversible dynamics. 

When these Green-Kubo expressions were first tried 
out, using a pair potential expected to provide a rough 
description of inert-gas liquids, and compared with 
experimental results for those liquids, the agreement 
was quite disappointing [8, 261. Direct non-equilibrium 
simulations were developed as an alternative. Those 
helped to uncover the mistakes in the analysis of the 
equilibrium simulation work, and showed that Green 
and Kubo’s theory was quite correct. 

Two main types of non-equilibrium simulation were 
developed: externally driven flows, with boundary 

SnGichi No& 
Keio University 

Yokohama 
1987 

Figure 5. A system obeying classical Newtonian mechanics is 
sandwiched between two NosbHoover reservoirs. When 
the reservoirs have differing mean velocities or differing 
temperatures a non-equilibrium steady state, with a frac- 
tal phase-space distribution, can result, despite the formal 
time reversibility of the equations of motion in both the 
central Newtonian region and the NosbHoover res- 
ervoirs. Shear viscosity and heat conductivity may be 
‘measured’ by using simulations with this geometry. 

regions, and homogeneous flows [l,  26-29], driven by 
internal fields. Externally driven flows of momentum 
or heat could be driven through a central Newtonian 
region sandwiched between two boundary regions, 
with the boundary regions’ velocities and temperatures 
constrained to constant values. A caricature simulation 
is shown in figure 5. Special time-reversible ‘thermostat 
forces’, described in the next section, had to be devel- 
oped to impose the constraints in the external boundary 
regions. 

Homogeneous internal driving fields for non-equilib- 
rium momentum and heat flows also have been derived. 
The fields used are fully consistent with Green-Kubo 
theory [29]. Just as is the case for external driving, spe- 
cial thermostat forces are required to extract the heat 
generated internally by homogeneous irreversible flows. 
The non-equilibrium simulations not only showed good 
agreement with laboratory experiments. They also 
showed that only a few particles need be used to 
obtain good estimates for the transport coefficients. 

To illustrate the simplest possible small-system flow 
[ 1 ,  30, 3 11, consider again two hard discs, but this time 
with the periodic boundaries appropriate to a triangular 
lattice structure. In the absence of any driving field the 
dynamics are simple, with the discs moving along 
straightline trajectories between collisions. Beginning 
with a non-overlapping, but otherwise arbitrary, initial 
condition the discs may be advanced for a small time 
interval dt: 

~ ( t  + dt) = r ( t )  + ~ ( t )  dt; ~ ( t  + dt) = u ( t ) .  
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C l  as to maintain the system in a non-equilibrium steady, 
as opposed to transient, state. This can be done by 
constraining the kinetic energy, mu2/2 mui/2, by a 
velocity-rescaling procedure discussed in more detail in 
the following section. The kinetic energy is a useful 
non-equilibrium state variable, just as is temperature at 

The many more-general equilibrium thermostat ap- 
proaches [32-351 have a common defect when applied 
to non-equilibrium systems. They specify more than 
the minimum necessary about the form o f f ,  thereby 
adding artificial dissipation to the dynamics. Specify- 

-1 ing more than the instantaneous or time-averaged 
second moment, u2 or ( u 2 ) ,  unnecessarily breaks the 

sin(p) equilibrium. 

0 

Figure 6 .  The field-free motion of two hard discs leads to a 
collision sequence that fills the (a ,  sin p) plane uniformly. 
The two angles define the location and relative velocity of 
successive collisions, as shown in the inset. The dynamics 
have been simplified by choosing a coordinate system 
fixed on one of the particles, as is described in section 7.  

These dynamics conserve energy exactly, with the 
kinetic energy a constant of the motion. Whenever the 
two discs interpenetrate at the end of such a timestep, 
they are replaced at their previous coordinates with their 
relative velocities reversed. A sequence of just over 
150 000 equilibrium collisions obtained in this way, 
with no accelerating field, is shown in figure 6. The 
simulation is quite consistent with the theoretical result 
that all accessible phase-space states are eventually vis- 
ited by this simple two-disc system. 

Now imagine a more complicated situation in which 
an external field F drives one of the discs to the right and 
the other to the left. A corresponding simulation may 
be carried out readily, advancing the coordinates and 
velocities of each disc with simple leapfrog dynamics: 

r ( t  + dt) = r ( t )  + u t + - dt; ( 3 
u x ( t + g )  = v x ( t - : )  *;dt; F 

The simulation can be simplified by using coordinates 
fixed on one of the discs. Then the other one moves as 
before in response to the field, but with velocity 20 
rather than u and with the reduced mass m/2. Such a 
simulation, though stable, is far from well behaved, with 
large fluctuations of the discs’ kinetic energy superim- 
posed on a positive drift. 

To characterize a non-equilibrium stationary state it 
is necessary to prevent this long-term energy drift so 

microscopic-to-macroscopic connection that follows 
from the simple feedback form of the Nos&-Hoover 
thermostat. 

The constrained velocity rescaling dynamics reduce to 
a simple three-step algorithm: 

r ( t  + dt) = r ( t )  + 5 t + - dt; ( 3 

The last step guarantees that the kinetic energy main- 
tains its original value. Collision sequences generated in 
this stationary non-equilibrium situation are qualita- 
tively different from the smooth equilibrium distribution 
of figure 6. Figure 7 shows a two-disc example. This 
two-disc distribution is in fact fractal, with fractional 
dimensionality and singular everywhere. Fractal distri- 
butions are discussed in more detail in sections 9 and 10 

So far, there is no useful theoretical treatment of non- 
equilibrium systems that goes beyond Green and Kubo’s 
linear-response theory. That approach uses the smooth 
equilibrium distribution function f ( q ,  p ,  t )  as a basis for 
non-equilibrium averages. The singular character of 
non-equilibrium distributions makes them particularly 
hard to treat from a theoretical standpoint. The lack 
of a convergent perturbation theory about equilibrium 
suggests that non-equilibrium systems have to be treated 
on a case-by-case basis rather than on the basis of gen- 
eral deductive rules. 

Computer simulations of non-equilibrium systems are 
not so limited. Appropriate driving and thermostating 
forces make it possible to simulate a wide variety of non- 
equilibrium systems. Such simulations have a 50 year 

[ l ,  3-5, 30, 31, 361. 
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0 t l  n 
By adding (i) an accelerating field driving one disc 

to the right and the other to the left and (ii) an isokinetic 
(velocity rescaling) thermostat fixing the kinetic energy, 
the two-disc system of figure 6 becomes dissipative, with 
successive collisions defining a fractional dimensional 
strange attractor. The corresponding non-equilibrium 
phase-space volume is reduced in dimensionality, rather 
than in size. The information dimension is 1.8 and the 
correlation dimension is 1.6 for the field strength used 
here. 

Figure 7. 

history. Just after World War I1 Fermi analysed the 
dynamics of non-linear chains at Los Alamos [37] in 
an effort to measure equilibration rates. He was sur- 
prised to find no tendency towards equilibration. A 
few years later, at Livermore, Alder and Wainwright 
[38] found that hard discs and hard spheres equilibrate 
rapidly. Vineyard [39], at Brookhaven, used continuous 
potentials to model the equilibration of highly energetic 
copper atoms in the solid phase, carrying out innovative 
radiation damage studies. Shockwave studies at Liver- 
more and Los Alamos [40, 411 also indicated rapid con- 
vergence to a non-equilibrium steady state with realistic 
continuous potentials. The shockwave problem is the 
prototypical problem for studying nonlinear transport: 
the spatial scale of the phenomenon is small and the 
nonlinear effects are large, with the ratio of the long- 
itudinal and transverse temperatures as large as 2 [41]. 
Thorough analyses of these results from computer simu- 
lation are still beyond the reach of presentday theor- 
etical treatments, but the combination of computer 
simulation and theoretical analysis promises to clarify 
far-from-equilibrium behaviour. 

8. Time-reversible thermostats 
It is essential, in any steady-state non-equilibrium 

work, to use thermostats to extract the extra heat gen- 
erated. Shortly after 1900 Langevin developed stochastic 
forces that would drive an initial velocity distribution 
towards the equilibrium Maxwell-Boltzmann distribu- 
tion. In the presence of non-equilibrium driving forces 
the Langevin stochastic forces lack the feedback necess- 

ary to obtain a definite specified temperature. This limits 
the usefulness of the Langevin approach. Typically, 
numerical implementations of ‘stochastic’ forces lack 
the reproducibility so necessary for collaborative work. 
Straightforward ‘velocity scaling’, as illustrated in figure 
7, multiplying each velocity in a thermostated region by 
a constant to keep the overall kinetic energy fixed, is 
perhaps the simplest reproducible ‘thermostat’. The spe- 
cified temperature is reproduced exactly, in this way. 

In 1984 Nose developed a more general, but still com- 
pletely deterministic and reproducible, method based on 
Hamiltonian mechanics [42]. His approach made it poss- 
ible to follow changes in the comoving phase-space den- 
sityf as a function of time. The previous velocity-scaling 
work of Woodcock and Ashurst turned out to be a 
special case of Nose’s thermostat. That special case 
has been termed the ‘Gaussian thermostat’ because it 
can be generated using Gauss’ ‘principle of least con- 
straint’ [43]. Further and slightly more complicated 
generalizations, sufficient to thermostat an equilibrium 
harmonic oscillator, were developed later, by several 
groups of workers [32-351. These later thermostats, 
being based on the goal of reproducing the Maxwell- 
Boltzmann distribution at equilibrium, are not so suit- 
able for simulations far from equilibrium as are the 
Gaussian and Nose-Hoover thermostats. 

Like Langevin’s stochastic thermostat, Nose’s is 
directed towards enforcing a prescribed kinetic energy 
for each Cartesian degree of freedom. Though Nose’s 
thermostat is perfectly consistent with the equilibrium 
velocity distribution it does not attempt to impose this 
distribution far from equiilibrium. Particles thermo- 
stated with the simplest ‘Nos&-Hoover’ form of Nose’s 
thermostat are acted on with a non-Hamiltonian ther- 
mostat force that incorporates an arbitrary response 
time r: 

K e q ( T ) 2 j  = K - Keq(T) .  

These Nose-Hoover motion equations are, like Hamil- 
ton’s equations, time reversible. However, they exhibit 
a new feature: the comoving phase-space density 
f ( q ,  p ,  C, t )  changes with time, as heat is exchanged 
through the thermostat friction coefficient C. Evidently 
the rate at which heat is extracted by the Nose-Hoover 
thermostat forces is 

EQ = T S  = <p2/m, 

where the sum includes all thermostated degrees of 
freedom. Because the time-averaged time derivative of c2 must vanish in any stationary state, 
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and the 
simplified: 

Nos&-Hoover entropy production S N ~  can be 

This simple link between the microscopic thermostat 
variable < and the macroscopic entropy production S 
is a special advantage of the Nose-Hoover thermostat. 
Despite the changing phase-space probability density, 
any coordinate sequence satisfying the Nos-Hoover 
equations can have its time order reversed and is still a 
solution of the equations. In the reversal process both p 
and < change sign. 

In the absence of external forces driving the system 
away from equilibrium, these ‘Nose-Hoover’ equations 
of motion incorporating the feedback forces { - < p }  are 
perfectly consistent with Gibbs’ canonical distribution. 
At equilibrium f also has a Gaussian dependence on the 
friction coefficient <: 

where # is the number of thermostated degrees of 
freedom. Although Nose’s goal was dynamics which 
could reproduce Gibbs’ equilibrium phase-space distri- 
butions, exactly the same approach also may be applied 
away from equilibrium too. This approach turns out to 
have fundamental importance for the interpretation of 
the fractal distributions that arise away from equilib- 
rium. The changing phase-space density, due to the pres- 
ence of the friction coefficient <, makes fractal solutions 
possible. 

9. 
instability 

When the NosC-Hoover equations of motion are 
applied in a non-equilibrium situation (the simplest 
case is the two-reservoir sandwich system shown in 
figure 5), we have seen that the phase-space flow is no 
longer phase-volume preserving. In fact, in a stationary 
non-equilibrium situation, the comoving phase volume 
approaches zero, as we detail next. 

The probability density change following a Nos& 
Hoover flow in the ‘extended’ { q p c }  phase space is 
still given by a phase-space continuity equation, but 
with a p / a p  equal to -< rather than 0 and with 

Fractal phase-space distributions and Lyapunov 

a(/x = 0: 

= -f E [O - < + 01 

If the boundary conditions driving the system away 
from equilibrium are stationary then the time-averaged 
derivative f/f) = (E <) must be either positive or nega- 
tive. The positive sign corresponds to a singular diver- 
gent probability density, like that shown in figure 7. 
Evidently the negative sign would correspond to a van- 
ishing probability density, impossible in any finite region 
of phase space. (The excluded alternative, u/f) = 0, 
corresponds to thermal equilibrium.) 

Because f must change, away from equilibrium, with 
the sign of f/f) given by the sign of (<), a steady state 
can be characterized by only two values of (f), zero and 
infinity. Because zero probability density is impossible in 
any finite phase volume, the distribution induced by 
heat transfer must instead converge, infinitely densely, 
(f) --t 00, and singularly, onto those attracting phase- 
space states describing a macroscopic stationary non- 
equilibrium state. Thus any non-equilibrium stationary 
state occupies a vanishingly small region of the equi- 
librium phase space. In this small region at least one 
of the non-equilibrium fluxes (mass, momentum, 
energy) has a non-vanishing average. The collapse of 
the probability density onto a non-equilibrium attractor 
is driven by the boundary (thermostat) interactions, 
which transfer heat from the non-equilibrium system 
to its surroundings. The collapse rate, which turns out 
to be a direct instantaneous measure of the entropy 
production, is best described through the instantaneous 
Lyapunov spectrum X or its time average (A). For a 
step-by-step illustration of the collapse process for the 
Galton board fractal distribution, shown in figure 7, see 
[ 11, figure 1 1.4. 

The deformation of the phase volume ~3 defines the 
spectrum of local and global (or time-averaged) ‘Lya- 
punov exponents’ X and (A), respectively. These are 
instantaneous logarithmic strain rates of the local rates 
of stretching or shrinking of the principal axes of a 
comoving hyperellipsoid in phase space, and their 
long-term averages. The total number of Lyapunov 
exponents corresponds to the number of distinct dimen- 
sions in the phase space where the motion is described, 
with the sum of all the exponents giving the rate at 
which the comoving phase volume changes with time: 
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The Lyapunov exponents, depending as they do on per- 
turbations of model equations of motion, are not 
directly available from laboratory experiments. There 
are ways to extract these exponents from time series of 
experimental data (assuming that the boundary con- 
ditions on the experiment are stationary), but the lack 
of precision and the lack of stationary boundary con- 
ditions characterizing any real experiment renders this 
approach impotent. 

During the past 15 years considerable effort has estab- 
lished the nature of these non-equilibrium distributions: 
most typically they are ergodic (visiting all the accessible 
phase space from any initial condition). The distribu- 
tions are also ‘fractal’ objects (with the integrated den- 
sity about a point varying as a fractional power of the 
distance from that point) [ l ,  3, 4, 30, 31, 361. 

Let us consider the two-particle Galton board ex- 
ample of section 7 [I, 4, 30, 31, 441. If the fractal 
phase-space cross-section shown in figure 7 is decom- 
posed into K2 cells with dimensions n6 x 26, this grid 
of cells allows the attractor to be characterized by the 
size-dependent cell probabilities (~~(6)). For an 
ordinary probability density, such as that shown in 
figure 6, the cell probabilities would all vary as 62 for 
small 6 and the ‘information’ (the negative of the 
entropy in units of Boltzmann’s constant) would be 
computed as the small4 limit of the sum 
Cpc In (pJfi2). For the fractal distribution shown in 
figure 7 this sum over infinitesimal cells, 

does not converge, and instead varies as -0.21116, so 
that the information entropy diverges, to minus infinity, 
for zero cell size. Accordingly, the ‘information dimen- 
sion’ of this fractal attractor is said to be Dinfo = 
2 - 0.2 = 1.8 rather than the dimensionality of the 
sample space 2.0. 

In most cases this information dimension is also equal 
to the Kaplan-Yorke dimension DKY [36], the (linearly 
interpolated) number of exponents at which the sum of 
DKY long-term averaged Lyapunov exponents changes 
sign, from positive to negative: 

Any phase-space object with a dimensionality less than 
DKY grows without bound, while any phase-space object 
with a higher dimensionality vanishes after long times. 

For an ordinary probability density in two dimen- 
sions, the probability of finding two points sampled 

according to the density within a small distance 6 of 
one another is proportional to S 2 .  For the fractal dis- 
tribution shown in figure 7 a double logarithmic plot of 
probability as a function of separation indicates that the 
probability varies as the 1.6 power of the separation 6. 
Accordingly, the attractor is said to have a ‘correlation 
dimension’ 0 2  of 1.6. Additional dimensions D,, D 4 , .  . . 
can be defined by considering triples, quadruples, . . . of 
points. The fractal nature of a fractal distribution may 
be characterized, in part, by these fractal dimensions 
[36]. For small deviations from equilibrium the fractal 
dimensions vary quadratically with the magnitude of the 
gradient or external force driving the system away from 
equilibrium. 

We have seen that the rate at which the comoving 
phase volume contracts onto the fractal attractor is 
closely related to the external entropy production when- 
ever Nos$-Hoover thermostats are used. The non- 
equilibrium version of Liouville’s theorem in this case, 

establishes the connection. It has been argued that the 
generality of this relation in its application to large 
systems still needs to be established [35]. However, simu- 
lations based on Nod-Hoover dynamics establish very 
clearly, despite the formal time-reversibility of the 
underlying microscopic equations of motion, that there 
is a paradoxical irreversible flow from a fractal repellor 
to a mirror-image strange attractor [45]. Though both 
these phase-space objects are unstable, the repellor is 
invariably even less stable than is the attractor, so that 
only the attractor is ever observed. 

Thus the microscopic phase-space continuity equation 
f/f = C = S / k  makes contact with nonlinear 
dynamics, as well as with the entropy production of 
macroscopic irreversible thermodynamics. It is possible 
to understand the difference in time symmetry between 
the microscopic and macroscopic view in detail by 
considering the Lyapunov spectrum description of the 
phase-space dynamics. The Lyapunov spectrum is sym- 
metric at equilibrium, with the exponents occuring in 
pairs {&A}. This symmetry is broken away from equi- 
librium. 

10. Irreversibility from reversible dynamics 
The time symmetry of Hamilton’s (equilibrium) equa- 

tions of motion guarantees that every phase-space di- 
rection corresponding to expansion (with a positive 
Lyapunov exponent +A) is paired with a corresponding 
orthogonal phase-space direction (with reversed mo- 
menta) for which the Lyapunov exponent is negative, 
-A. In accordance with the second law of thermody- 
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namics, this Lyapunov exponent symmetry is lost away 
from equilibrium. Instead the dynamics, while formally 
reversible, become irreversible in fact, and in an inter- 
esting way. The phase-space motion forward in time is 
more stable numerically than is the reversed motion. For 
this reason the reversed motion is not observable. The 
summed-up spectrum of Lyapunov exponents, zero at 
equilibrium, becomes negative away from equilibrium 
(indicating collapse to a fractional-dimensional distribu- 
tion). The reversed trajectory, which would have a posi- 
tive Lyapunov sum, is simply unobservable. In some 
simple homogeneous cases the shift of each separate 
pair of Lyapunov exponents towards more negative 
values is uniform, with the same shift for every pair of 
exponents. This shift has been explained in quantitative 
detail by Dettmann and Morriss [46]. 

For a good illustration of this exponent shift consider 
the many-body analogue of the field-driven problem of 
section 7 [47, 481. If the kinetic energy of the system is 
constrained to a constant value by using a Nos&-Hoover 
thermostat, the non-equilibrium spectrum looks very 
much like the equilibrium one, with each exponent 
shifted towards more negative values. The total 
summed-up spectrum is identically equal to minus the 
overall rate of dissipation, S / k .  This equality provides a 
chain of identities linking together the microscopic Lya- 
punov exponents, the changing phase volume, the diver- 
ging phase-space probability density and the 
macroscopic entropy production: 

Figure 8 illustrates the shift of a 32-body Lyapunov 
spectrum from symmetric to more negative values in 
response to dissipation. Figure 9 illustrates a structural 
phase transition in a much larger system of 25,600 par- 
ticles. Here the larger of the two fields for which results 
are shown is enough to separate the two types of particle 
from one another. 

It seems likely that generally the connection between 
the Lyapunov exponents of a properly thermostated 
non-equilibrium flow, the fractal character of the 
phase-space distribution function, and the macroscopic 
entropy production is valid in an appropriate large- 
system limit, with the most straightforward approach 
being based on the Nos&-Hoover motion equations. It 
is to be expected (an article of faith rather than a the- 
orem) that other types of thermostat lead to essentially 
similar results [49] even though poor choices, which 
unduly restrict the distribution at the system boundary, 
can destroy the exact correlation by adding additional 
spurious dissipation within the boundaries themselves. 
The entropy production, or the Lyapunov exponents 

1 

A 
2 

0 

Figure 8. Lyapunov spectrum of a 32 particle system with 
‘realistic Lennard-Jones’ forces. Half the particles are dri- 
ven to the right and half to the left by an external field. 
Both the equilibrium (zero field) and non-equilibrium 
spectra are shown in this figure. This pioneering simula- 
tion was carried out in 1987 [48]. 

I .  ., 

Figure 9. Snapshots of a many-body system of N = 25600 
particles, half of which are driven to the right and half to 
the left by an external field, as in figure 7. At the higher 
field strength the two species are separated by the field. 
The kinetic temperature is thermostated by continuous 
velocity rescaling. The symmetric spectrum, obtained 
with the field off, is shifted towards more negative values 
with the field turned on, indicating a loss of phase-space 
dimensionality away from equilibrium. In the upper 
example the dimensionality loss is about 170. 
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themselves, give some novel information about the 
phase-space distribution. It converges onto a strange 
attractor with a dimensionality, not just a volume, 
smaller than the equilibrium one. Thus the rarity of 
non-equilibrium states is qualitative in nature, not just 
quantitative. 

The change of phase volume is fundamental for a 
mechanical understanding of irreversibility. The irrever- 
sibility is the result of instability, with the forward direc- 
tion of time less unstable than the backward one. The 
future is more nearly predictable than is the past. This is 
yet another way to express the second law of thermo- 
dynamics. The difficulty of retrodiction, relative to pre- 
diction, can be quantified through the Lyapunov 
spectrum. Any attempt to reverse a non-equilibrium tra- 
jectory, lacking perfect knowledge of it, fails due to the 
very rapid growth of non-equilibrium fluctuations. 

11. Present understanding of fluid mechanics 
Fifty years of computer simulation have given us a 

good understanding of fluids, not only from Newton’s 
and Hamilton’s atomistic point of view, Gibbs’ and 
Boltzmann’s ensemble point of view and Euler’s and 
Lagrange’s continuum point of view, but also from an 
intermediate smooth particle view. SPAM introduced a 
kind of averaging additional to and complementary to 
time averaging, space averaging and ensemble aver- 
aging. The old puzzle of irreversible behaviour from 
strictly time-reversible motion equations has been 
solved too. It is the presence of chaos that makes the 
observable motion-equation solutions forward in time, 

41 1 q2r . . . 1 q n - 1 , q f l r  

less unstable than the corresponding unobservable time- 
reversed trajectories, 

4 n ,  % - I >  . . . > 42>41’ 

The classic particle, ensemble and continuum formula- 
tions of fluids have all been enriched by contributions 
from chaos and fractal geometry, leading to a new 
understanding of the irreversibility underlying the 
second law of thermodynamics. 

This work was performed at  the Lawrence Livermore 
National Laboratory under the auspices of the United 
States Department of Energy through University of 
California Contract W-7405-Eng-48. Rainer Klages, 
Harald Posch, John Ramshaw, Ruth Lynden-Bell and 
Jean-Pierre Hansen provided the stimulation and oppor- 
tunity required to prepare this review. We very much 
appreciate the encouragement of these colleagues. 
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