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Fluctuations, convergence times, correlation functions, and power laws from many-body Lyapunov
spectra for soft and hard disks and spheres
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The dynamical instability of many-body systems is best characterized through the time-dependent local
Lyapunov spectrum$l j%, its associated comoving eigenvectors$d j%, and the ‘‘global’’ time-averaged spectrum
$^l j&%. We study thefluctuationsof the local spectra as well as theconvergence ratesandcorrelation functions
associated with thed vectors as functions ofj and system sizeN. All the number dependences can be described
by simplepower laws. The various powers depend on the thermodynamic state and force law as well as system
dimensionality.
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I. INTRODUCTION

Since dynamical instabilities are quantified by the tim
dependent local Lyapunov exponents$l j% @1,2# and because
these quantities are, in favorable cases, simply related to
thermodynamic entropy production@3,4,5#, there is consider-
able interest in their accurate characterization. The simp
way to visualize the local and global~time-averaged!
Lyapunov exponents is to imagine the deformation of
infinitesimal j-dimensional volume^ j in N-body phase
space. The phase-space volumes$ ^ j% are all ‘‘comoving,’’
centered on an evolving trajectory that obeys the usual e
tions of motion. The instantaneous and the time-avera
rates at which the volumes grow or decay,

$ ^̇ j / ^ j% and $^ ^̇ j / ^ j&%,

define thesumsof the first j local and global Lyapunov ex
ponents,

(
i 51

j

l i[ ^̇ j / ^ j ; (
i 51

j

^l i&[^ ^̇ j / ^ j&.

For instancel1 describes the instantaneous stretching~or
shrinking! rate of aline joining two nearby trajectories;^l1&
is the long-time-averaged value of this quantity;l11l2 de-
scribes the growth~or decay! rate of anareadefined by three
nearby trajectories, etc. Note that the local Lyapunov ex
nents are well defined point functions in phase space.

It is apparent that the local growth rates,( il i< j

[ ^̇ j / ^ j depend on theorientationsof the corresponding
j-dimensional volumes inN-body phase space. Because t
initial choice of such volumes is arbitrary it might appe
that the local growth rates are ill defined. But after a ‘‘co
vergence time’’t—which we define and determine in th
1063-651X/2002/65~5!/056216~7!/$20.00 65 0562
-

he

st

n

a-
d

-

r
-

present work—the initial choice becomes irrelevant, and
results for different choices all come to agree at sufficien
long times. The detailed time dependence of the converge
to unique orientations can be described by correlation fu
tions defined and characterized in the work that follows. T
time-dependent ‘‘converged orientation’’ of the volumêj
has to be found by following the evolution ofj 11 neighbor-
ing trajectories for a sufficiently long convergence time.

One might expect—naı¨vely as it turns out—that̂ 1, for
instance, will turn into the direction of the fastest grow
exponentially fast as

e2t/t; t.1/l1 .

Instead, we are able to argue, and confirm, that correlat
appear at a rate determined by thedifferenceof the first two
Lyapunov exponents,l12l2. The directional error ind1 de-
cays roughly as 12e2Dlt whereDl5l12l2. We explore
and evaluate possible generalizations of this idea to the
mainder of the spectrum. We find, in fact, that the detai
convergence of the orientations is a relatively slow, a
highly number-dependent (t}Np), collective phenomenon.

For N-body systems with continuous force laws, such
the soft disks and soft spheres described in Sec. II, nume
investigations of Lyapunov spectra require computatio
work of orderN3 or N4 per time step, with the power law
depending on the chosen algorithm. The first numeri
method to be discovered@6,7#, with work }N3, is still the
one most commonly used. It relies on frequently repea
Gram-Schmidt orthonormalizations in the phase spa
These orthonormalizations rescale, rotate, and orthogona
a set of offset vectors that link a ‘‘reference’’ trajectory
nearby ‘‘satellite’’ trajectories. Together, these satellite traj
tories span a small phase-space neighborhood of the r
ence trajectory.
©2002 The American Physical Society16-1
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Hoover and co-workers discovered an elegant Lagra
multiplier method@3,4,8# that prevents the growth or deca
of the offset vectors$d j% while automatically incorporating
the proper rotations of these vectors to maintain their
thogonality. The Lagrange multiplier method corresponds
a continuous~rather than frequently repeated! orthonormal-
ization applied as a constraint on, rather than a correction
the Hamiltonian motion of thej satellite trajectories, which
define d vectors spanning the hypervolumêj . This con-
straint method, combined with additional small-scale Gra
Schmidt orthonormalizations~to alleviate the small remain
ing errors due to computer roundoff! provides the bes
possible means for an accurate computation of the spect
The Lagrange multiplier method consumes computer t
proportional toN4. Despite the disadvantage of increas
computer time, we adopt this method here in order to o
mize theaccuracyof our results for continuous soft-disk an
soft-sphere systems.

Hard disks and spheres, for which the main contributio
to the Lyapunov exponents are singular ones, occurrin
each successive two-body collision, require special meth
@9–11#. Without taking special precautions, such as neigh
or cell lists, the computational cost of integrating a sing
trajectory for particles with hard elastic collisions scales
N2. In addition, the calculation of Lyapunov spectra requi
the integration of the equations of motion of a complete
of infinitesimal displacement vectorsd i .

Because inD dimensions each of these vectors has 2DN
components and the total number of collisions per unit ti
is proportional toN, the CPU time required to follow the
dynamics of all 2DN d vectors is of orderN3. The number
of operations required to carry out a Gram-Schmidt orthon
malization is of the same order. In a typical calculation o
Lyapunov spectrum for a hard-particle system approxima
equal amounts of CPU time are expended for Gram-Schm
orthogonalization and propagation of alld vectors. In gen-
eral, the integration of a hard-sphere trajectory can be car
out with considerably higher efficiency than a trajectory fo
system with continuous interactions. When, however, Gra
Schmidt orthonormalization becomes the dominant fac
the computational effort required for the calculation
Lyapunov spectra in systems of hard and soft spheres i
the same order.

We apply the Lagrange multiplier method here to man
body systems of soft disks and spheres in a dense-fluid t
modynamic state. We establish the rates of convergenc
the local exponents and their correspondingd vectors. The
soft-particle systems chosen for investigation are descr
in Sec. II. We carry out analogous simulations for systems
hard disks and hard spheres. These hard-particle system
described in Sec. III. Calculations for both the soft and
hard particles, followed by our conclusions, based on co
paring them, make up the balance of this work.

II. SOFT-DISK „DÄ2… AND SOFT-SPHERE „DÄ3…
MANY-BODY SYSTEMS

We continue here our study of square parallel system
soft-disk fluid @12–15#. In all these systems any two disk
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separated by less than unit distance interact with each o
according to the short-ranged pair potential,

f~r ,1!5100~12r 2!4; F5(
i , j

f~r i j !.

In three dimensions we use cubic systems, with exactly
same pair potential and with periodic boundary conditio
In both two and three dimensions we vary the total num
of particles N, keeping the number density, the mass p
particle, and the total energy per particle all equal to un
Thus the soft-particle systems studied here all correspon
dense fluids.

In the two-dimensional thermodynamic equilibrium sta
the time-averaged potential energy is about 30% of the t
energyE5F1K,

^F/N&.0.30; K K

NL 5 K p2

2mL .0.70.

In three dimensions the potential energy is about 25% of
total. An effective hard-particle collision diameters for the
soft particles can be estimated by considering the line
centers turning-point energy, 2kT for a typical thermal col-
lision,

f~s!52kT5S 2K

N D→sD5250.810S V

ND 1/2

;

f~s!52kT5S 4K

3ND→sD5350.827S V

ND 1/3

.

Apart from 2D12 vanishing coefficients, which corre
spond to constants of the motion@8,14#, the long-time-
averaged Lyapunov spectrum for the soft-disk equilibriu
state is a well-known featureless continuous curve, ill
trated in Fig. 1. The soft-sphere spectrum—a sample
shown in the same figure—is very similar. The largest of
2ND2(2D12) nonvanishing Lyapunov exponents,^l1&,
defines an effective ‘‘collision rate’’ or ‘‘bifurcation rate’’ for
these systems.

FIG. 1. Spectrum of time-averaged Lyapunov exponents for
soft disks~the data for 1024 show no noticeable differences! and for
125 soft spheres. In both cases the largestDN2D21 of the
2DN22D22 nonvanishing exponents are shown.
6-2
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For all the two- or three-dimensional soft-particle syste
we use the classic fourth-order Runge-Kutta integrat
@3,4,16# algorithm. For the work described here, accurate
sults are obtained with a time stepdt50.002. The resulting
single-step integration error for sufficiently smooth solutio
is of orderdt5/5!.10215, about the same as the comput
tional roundoff error. Such precise convergence can be ea
spoiled by force functions with low-order discontinuous d
rivatives. Consider, for example, the Weeks-Chand
Andersen potential, with forces that vanishlinearly at the
potential cutoff. Integrating the differential equation for th
momentump, ṗ5F, for a time step during which the inter
particle forceF(r .1) enters~or leaves! the interaction re-
gion, incurs a coordinate error of orderF@r 51
2(pdt/m)#dt2/m}dt3 rather thandt5. In the present work
we use forces that incur force errors that arecubic in
(pdt/m), with corresponding coordinate errors thatquintic
in dt. Thus our errors from force-law singularities do n
exceed the inherent Runge-Kutta numerical errors, which
themselves at the level of computational roundoff errors.

III. HARD-DISK „DÄ2… AND HARD-SPHERE „DÄ3…
MANY-BODY SYSTEMS

In all our systems with impulsive disk or sphere elas
collisions time is measured in units of (ms2N/K)1/2, where
m is the particle mass~unity for convenience!, s is the par-
ticle diameter, andE5K is the total~kinetic! energy of the
system. Periodic boundary conditions apply. The only r
evant parameter is the densityr[Nm/V5N/V, whereV is
the volume~area, in two dimensions! of the simulation box.
For our hard-disk simulations we use a box with an asp
ratio of 2/A3 commensurate with the lattice structure at clo
packing. In three dimensions our simulation box is cubic.
simulations are carried out at densities corresponding
dense fluid.

For the calculation of full Lyapunov spectra, the time ev
lution of a complete set ofd vectors must be determined
Between collisions, the smooth evolution of thed vectors
can be calculated analytically. The vectors change abrupt
collisions. Appropriate collision rules for the evolution of th
d vectors in tangent space can be derived from a collisio
approximation which is linear in both the time and the pha
space coordinates@9#. Periodically the system ofd vectors is
orthonormalized and the Lyapunov exponents are obtaine
time averages of the growth rates of thed vectors. The larg-
est Lyapunov exponent, for instance, can be written as

l15
1

ntw
(
i 51

n

ln s1~ t i ,tw![^l1~ t,tw!&,

wheres1(t i ,tw) is the length of delta vectord1 just before
the i th orthonormalization,tw is the timewindow between
orthonormalizations andntw is the total simulation time. The
above equation defines a ‘‘local’’ Lyapunov expone
l1(t,tw)[ ln s1(t,tw)/tw averaged over timetw . While the
fluctuationsŠ(l2^l&)2

‹ of the local Lyapunov exponent
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are well defined for systems with smooth interactions,
fluctuationsŠ„l(t,tw)2^l&…2‹ diverge, as 1/tw , as the win-
dow time tw approaches 0.

The most positive halves of Lyapunov spectra for ha
disks (D52) and hard spheres (D53) appear in Fig. 2.
Both numerical@10# and theoretical@11# results indicate that
for N→` Lyapunov spectra converge towards a finite th
modynamic limit. The conspicuous gap between zero and
first nonvanishing Lyapunov exponent, which is absent
systems with smooth interactions, vanishes in the limitN
→` yielding a spectrum approaching zero with infinite slo
@17#.

IV. CALCULATIONS AND RESULTS

The phase space for all of ourN-bodyD-dimensional sys-
tems is 2ND dimensional so that the complete Lyapun
spectrum consists ofND ‘‘pairs’’ of exponents6l. TheND
pairing relations,

^l j1l2ND112 j&[0,

are consequences of the underlying time-reversible Ha
tonian mechanics.

One might expect that the largest Lyapunov exponent,l1,
would converge, very roughly speaking, with an error of o
der e2^l1&t. The second-largest exponent would likewi
converge, but more slowly, with an error of ordere2^l2&t, if
its convergence is essentially independent of the larger ex
nent ^l1&. Alternatively, the second exponent might have
wait for the convergence of the first, leading to a long
estimate for the convergence time,

t.~1/̂ l1&!1~1/̂ l2&!.

For a spectrum that approaches zero smoothly, as do
spectra for soft disks and spheres, this latter point of vi
suggests, evidently correctly, adivergent time for conver-
gence as the system size increases. It is a major focus o
present work to determine how the convergence times
fluctuations of the Lyapunov exponents vary with the indej
and the number of particlesN.

FIG. 2. Spectrum of time-averaged Lyapunov exponents for
hard disks and 256 hard spheres. In both these cases the la
DN2D21 of the 2DN22D22 nonvanishing exponents ar
shown.
6-3
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There are many ways, different in detail, to assess
convergence rates ofd1 or of the entire spectrum. A glimps
of the complexity such assessments could describe ca
gleaned from Fig. 3, which shows a typical time develo
ment of 32d-vector dot products. The vectors chosen for t
computation come from the two independent orthogonal
‘‘1’’ and ‘‘2.’’ Corresponding vectors~those describing the
same Lyapunov exponent, one from each set! are multiplied:
$d j

1
•d j

2%. The dot products shown in the figure correspond
the 32 largest Lyapunov exponents in a 64-disk system.
tice that the time required for the first dot productd1

1
•d1

2 to
reach unity is of order 90 for a 64-particle system,many
orders of magnitude larger than the straightforward gu
0.3.1/̂ l1&.

A. Convergence times

The long times required for convergence of the full set
vectors suggest a more modest goal—quantifying the c
vergence of the vector associated with the largest Lyapu
exponent. This problem is feasible for system sizes up
about 1000 particles. Because convergence depends o
initial conditions, it is evident that someaveragingprocedure
must be part of any accurate assessment of the numbe
pendence. Here we average by first choosing 16 orthog
phase-space vectors,$d1

1 , . . . ,d1
16%. We then follow the sum

Sdot of all their dot products,

Sdot[
2

15316 (
i 51

15

(
j 5 i 11

16

d1
i
•d1

j ,

in time. From the initial value zero, the sum will eventua
increase to unity. We tabulate the time at which the sum fi
reaches half of that value,12 , and repeat this process te
times to improve the statistics. The resulting relaxation
convergence times$t(N)% are displayed in Fig. 4.

The convergence times vary sufficiently regularly as
suggest the form of the large-system behavior. See again
4. t(N) increases strongly, but not quite linearly, withN. A
rough description of these results is that the vectors conv

FIG. 3. Time evolution of$d j
1
•d j

2% for 64 soft disks. The dot
products link corresponding members of two sets of 32 orthogo
vectors, 1< j <32 initially chosen randomly. Completely uncorre
lated orthogonal vectors correspond to a vanishing dot prod
while completely converged dot products have either of the va
61.
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in a time of orderNa, wherea lies between 0.2~for hard
spheres! and 0.9 ~for soft ones!. The time is significantly
longer in three dimensions than in two~though the Lyapunov
exponents are similar!. In all cases, the convergence tim
increases with system size, as afractional power somewhat
less than unity.

In our preliminary exploratorysoft-particle work we were
surprised to find that the full sets of vectors fail to conver
without specially matching the vectors corresponding to
constants of the motion. Evidently the differin
curvatures—as well as differences in phase-space fl
velocities—on the energy surfaces of the satellite trajec
ries, are responsible for differences in the local values of
the negative-exponent vectors. By imposing constraints id
tifying the correspondingd vectors from the two sets, th
curvature and velocity differences could be eliminated w
the result that all the remainingd vectors coincide in pairs a
long times. The corresponding convergence times for
complete set ofd vectors are very similar to those found fo
the positive-exponent vectors alone or for the negative v

al

ct
s

FIG. 4. Number dependence of the convergence of 16 ortho
nal phase-space vectors. The time at which the sum first rea
half of its long-time value is plotted as a function of the number
particlesN. The points correspond to systems of up to 1024 p
ticles in two dimensions and 1000 particles in three dimensio
The filled symbols refer to soft-particle results and the empty sy
bols refer to hard-particle results. For the hard-particle results
densities werer50.8s22 ~disks! and r50.85s22 ~spheres!. The
convergence times grow asN2a, where a;0.4 ~disks! and a
;0.2 ~spheres! for hard particles anda;0.8 ~disks! and a;0.9
~spheres! for soft particles.

TABLE I. Soft-disk convergence times for the 2N23 positive
Lyapunov exponents and the 2N23 negative Lyapunov exponent
for independent sets ofd vectors. In calculating the negative expo
nents all thed vectors for non-negative exponents were identical
the two sets. The data represent average convergence times
many as 100 different sets of vectors.

N ^t1& ^t2&

4 1.58 0.58
9 7.14 6.18
16 15.77 13.72
25 26.56 25.98
6-4
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tors alone with the non-negative ones constrained to ma
For example, soft-disk numerical values for these t
choices are given in Table I. We found that hard-parti
systems behave in a simpler way, with a pairing of expone
unaffected by the constants of the motion. Evidently
purely kinetic energy of hard particles simplifies the conv
gence.

B. Correlation function for d vectors

The form of the correlation function describing the co
vergence of an arbitraryd vector to the direction describe
by d1 can be estimated by ignoring the contributions of tho
Lyapunov exponents smaller than the largest two. If we
d i andd' for the components of an arbitraryd vector paral-
lel and perpendicular tod1, the equations of motion for the
two kinds of components are

ḋ i5l1d i2ld i ; ḋ'5l2d'2ld' ,

where the Lagrange multiplierl maintains the total length
d i

21d'
2 [1,

l[d i
2l11d'

2 l2 .

The time dependence of the dot productd•d1[cos(u) fol-
lows from the differential equation for the angleu,

u̇52Dl sin~u!cos~u!,

whereDl[l12l2. To solve the equation, note the identit

~d/dt!ln tan~u!5 u̇/@sin~u!cos~u!#.

Thus theu̇ equation has the simple solution

tan~u!5tan~u0!e2Dlt.

FIG. 5. Correlation functions 12^cos(u)& ~see Sec. IV B! for
initially random d vectors as a function of (l12l2)t. The solid
lines indicate results obtained for different particle numbers at v
ous densities for hard and soft disks and spheres. The dotted
indicates the results of the simple theory presented in Sec. IV
Rescaling time by the difference between the two largest Lyapu
exponents makes all the numerical curves essentially identical.
Lyapunov exponents required for such a rescaling were obtaine
separate simulations.
05621
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Exactly this same differential equation~with this same solu-
tion! results from Moran and Hoover’s analysis of the tw
dimensional isokinetic Galton board problem@3#. The anal-
ogy between thermostated momenta and constrained
vectors is in fact precisely what led Posch and Hoover to
Lagrange multiplier method discussed in Ref.@12#.

The analytic result for thedot-product correlation func-
tion, 12cos(u) is shown as the dotted line in Fig. 5. Th
dot-product correlation functions obtained numerically f
hard spheres and hard disks at various densities and pa
numbers are shown as a heavy line, the superposition o
the separate data. The simple analytical result reproduce
convergence time approximately, but clearly differs in sha
from the numerical results.

It is remarkable that scaling of time by 1/Dl yields es-
sentially identical curves for all conditions. This result ind
cates that the differenceDl between the largest and th
second-largest exponent determines the time required fo
relaxation ofd vectors, as predicted by the simple consid
ations presented above. The curves shown in Fig. 5 can
described quite well with either of two analytic approxim
tions,

f ~x!5a/~b1ecx!,

f ~x!5ae2bx1ce24bx,

i-
ne
.
v
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FIG. 6. Lyapunov spectra and corresponding convergence ti
for N536 hard disks~top panel! andN532 hard spheres~bottom
panel!. The densities werer50.8s22 andr50.8s23, respectively,
corresponding to a dense fluid in both cases. Only positive ex
nents and corresponding convergence times are shown. The r
ation times for conjugate pairs of exponents are identical.
6-5
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wherex is a dimensionless time,x5Dlt. We have no theo-
retical justification for either form. Relaxation times for com
plete sets of hard-disk and hard-sphered vectors are plotted
in Fig. 6, along with their corresponding Lyapunov exp
nents.

C. Number dependence ofŠl1‹ and its fluctuation

For the soft particles, we have also computed the m
values and thefluctuationsin the local Lyapunov exponent
by computing corresponding long-time averages:

FIG. 7. Mean square fluctuations of the Lyapunov exponents
16, 64, 256, and 1024 soft disks and for 27 and 125 soft sphe
Fluctuations for the negative exponents are identical to those fo
positive exponents shown here.

FIG. 8. Mean square fluctuations of the largest Lyapunov ex
nent for series of soft-disk and soft-sphere systems. The curva
in the two-dimensional fluctuations can be removed by subtrac
a constant. This indicates that the two-dimensional fluctuations
not vanish in the large-system limit.
05621
n

^l j&[
1

t E0

t

l j~ t8!dt8; ^l j
2&[

1

t E0

t

l j
2~ t8!dt8.

Our goal here is to characterize the variation of these fl
tuations with the exponent indexj. See Fig. 2 for the time-
averaged spectra and Fig. 7 for the fluctuations. The d
indicate power-law dependences of the spectra, as is
scribed in more detail below.

For simplicity we confine our analysis here to the larg
Lyapunov exponentl1, and its fluctuation,

F[^~l12^l1&!2&.

In both two and three dimensions these fluctuations conve
much more rapidly than does the dot-product correlat
function discussed in Sec. IV B.

The log-log plot in Fig. 8 shows fluctuations forN
542,82,122, . . . ,322 particles in two dimensions andN
523,33,43, . . . ,103 in three dimensions. The three
dimensional data indicate that the fluctuations vanish
N20.86 while the two-dimensional data show a considera
curvature. This curvature indicates aresidual fluctuationin
l1, which persists in the large-system limit in two dime
sions. If a constant is subtracted from the two-dimensio
fluctuations, the data then become consistent with the pow
law relation:

~F21.6!}N20.84.

Similar persistence of fluctuations of local exponents h
been recently observed in one-dimensional lattices
coupled logistics maps@18#.

D. Number dependence of contributors tod1

The maximum Lyapunov exponent has been observe
be correlated with spatially localized trajectory perturbatio
@13#. To investigate this localization phenomenon further,
computed the number of particles contributing tod1, the d

r
s.

he

-
re
g
o

FIG. 9. Number of particles contributing tod1 by more than the
average as a function of particle numberN for a variety of different
systems. The straight lines fitted to the data indicate that the num
of contributors increases as a power of the number of particles
exponents in the range from 0.57 to 0.97.
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vector associated with the largest Lyapunov exponent. M
precisely, we have determined the number of particles
which thei th contribution

Ci[dxi
21dyi

21dpx,i
2 1dpy,i

2

is larger than the average value 1/N. In all cases we have
found that the average number of such particles grows m
slowly than linearly, indicating that, in the limitN→`, a
vanishing fraction of the particles contributes tod1. This is
quite consistent with existing results for hard disk and dum
bell systems@19#. As shown in Fig. 9 for a variety of soft
and hard-particle systems, the number of contributors gr
asNa, where the exponenta depends on the dimensionalit
the form of the interaction potential, and the thermodynam
state.

V. CONCLUSIONS

The local Lyapunov exponents, as well as their fluctu
tions, converge relatively rapidly to simple featurele
curves. The number dependence of the exponents, and
fluctuations, the relaxation times, and the number of partic
associated with particulard vectors, all follow simple power
laws. The precise alignment of thed vectors that define thes
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exponents is slow to converge, as might be expected fo
collective phenomenon linking all the particles in a man
body system.

So far very little is known about the mechanisms gove
ing convergence. Existing theoretical efforts@20,21# point
out possible approaches, but have so far been unable to
tinguish the dependence of Lyapunov spectra on~i! phase,
~ii ! dimensionality, and~iii ! strength of the pair potential. I
is very gratifying that a single universal form appears
describe both the soft and the hard-particle correlations, b
in two dimensions and in three dimensions.

ACKNOWLEDGMENTS

C.D.’s work at Rochester was supported by a grant fr
the donors of the Petroleum Research Fund, administere
the American Chemical Society. W.G.H’s work in Car
Hoover’s Methods Development Group at the Lawrence L
ermore National Laboratory was performed under the a
pices of the United States Department of Energy throu
University of California Contract No. W-7405-Eng-48
H.A.P.’s work at Vienna was supported by a grant from t
Fonds zur Fo¨rderung der wissenschaftlichen Forschun
Grant No. P15348-PHY.
ett.

M.
@1# W. G. Hoover, C. G. Hoover, and H. A. Posch, Phys. Rev
41, 2999~1990!.

@2# G. Paladin and A. Vulpiani, Phys. Rep.156, 147 ~1987!.
@3# W. G. Hoover,Computational Statistical Mechanics~Elsevier,

New York, 1991!.
@4# W. G. Hoover,Time Reversibility, Computer Simulation, an

Chaos~World Scientific, Singapore, 1999!.
@5# K. Aoki and D. Kusnezov, e-print nlin. CD/0204015~2002!.
@6# G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Mec

canica15, 9 ~1980!.
@7# I. Shimada and t. Nagashima, Prog. Theor. Phys.61, 1605

~1979!.
@8# W. G. Hoover, H. A. Posch, and S. Bestiale, J. Chem. Phys.87,

6665 ~1987!.
@9# C. Dellago, H. A. Posch, and W. G. Hoover, Phys. Rev. E53,

1485 ~1996!.
@10# C. Dellago and H. A. Posch, Physica A250, 68 ~1997!.
@11# R. van Zon, H. van Beijeren, and C. Dellago, Phys. Rev. L
80, 2035~1998!.

@12# W. G. Hoover, Phys. Rev. A37, 252 ~1988!.
@13# W. G. Hoover, K. Boercker, and H. A. Posch, Phys. Rev. E57,

3911 ~1998!.
@14# H. A. Posch and W. G. Hoover, Phys. Rev. A39, 2175~1989!.
@15# W. G. Hoover, H. A. Posch, C. Forster, Ch. Dellago, and

Zhou, J. Stat. Phys.~to be published!.
@16# F. J. Vesely,Computational Physics—An Introduction, 2nd ed.

~Plenum, New York, 2001!.
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