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Chaos, ergodic convergence, and fractal instability for a thermostated
canonical harmonic oscillator
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The authors thermostat aqp harmonic oscillator using the two additional control variablesz and j to
simulate Gibbs’ canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermo-
stated oscillator motion is completely ergodic, covering the full four-dimensional$q,p,z,j% phase space. The
local Lyapunov spectrum~instantaneous growth rates of a comoving corotating phase-space hypersphere!
exhibits singularities like those found earlier for Hamiltonian chaos, reinforcing the notion that chaos requires
kinetic—as opposed to statistical—study, both at and away from equilibrium. The exponent singularities
appear to have a fractal character.
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I. INTRODUCTION

Nonequilibrium statistical mechanics is undergoing ra
change, driven by computer simulation, withthermostated,
time-reversiblesimulation techniques and nonequilibriu
boundary conditions suggesting novel theoretical analy
The classic background@1#, dating back to Poincare´ and
Lyapunov, is too closely tied to two-dimensional models a
to Hamiltonian systems to provide an understanding of c
rent nonequilibrium work. Nevertheless, notions from d
namical systems theory—in particular the study of t
Lyapunov instability~exponential error growth}elt) of the
chaotic dynamics and the characterization of the fractal
mensionality of the resulting statistical distributions—ha
proved seminal in understanding the irreversibility of t
second law of thermodynamics in terms of an underly
time-reversible, but non-Hamiltonian, dynamics@2#.

There are two distinct approaches to solving thermom
chanical problems involving irreversible processes:~i! trajec-
tory analysis based on time averages and~ii ! phase-space
distribution function analysis. The dynamical trajecto
methods have been employed ever since nonequilibr
methods were first developed, in the early 1970s. Dyna
methods are relatively simple to implement and to und
stand @2–4#. More recently, statistical methods have be
applied to these same problems. The corresponding sta
cal tools ~such as maps, Poincare´ surfaces, periodic orbits
and equilibrium escape rates! entail more formal structure
and have a mathematical, as opposed to physical, orienta
@4–6#.

We abandoned our initial plan to study the chaotic Ham
tonian Hookean pendulum problem@7# when dynamical
tests, of the type described in the next section, revealed
1063-651X/2001/63~2!/026209~5!/$15.00 63 0262
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existence of several Lyapunov-stable regions surround
periodic orbits in addition to the unstable chaotic sea wh
comprises most of the phase-space probability density for
pendulum. The existence of the periodic orbits is stron
suggested by the Kolmogorov-Arnold-Moser theorem@1#.
The complex structures of phase-space flows for conse
tive Hamiltonian systems, like the pendulum, have been
plored in great depth for a century. Some non-Hamilton
systems exhibit much simpler behavior which we believe
be typical of nonequilibrium systems. In the present work
study what we believe to be the simplest ‘‘ergodic’’—
meaning covering the entire phase space—dynamical sys
relevant to statistical mechanics, an harmonic oscillator. T
oscillator is stabilized bytwo thermostat-control variables,
generalization of the simpler one-variable Nose´-Hoover con-
trol. An alternative method of thermostating an harmon
oscillator, with quartic feedback forces, has also been inv
tigated recently@8,9#.

The plan of the present paper is as follows: first, we
troduce the doubly thermostated oscillator. Next, we stu
its ergodicity under the influence of simple quadratic fee
back forces. We then characterize its chaotic charac
through the mean values and fluctuations of the lo
Lyapunov exponents$l%, and their associated offset vecto
$d%. Finally, we list the conclusions to which we have com
as a result of this work.

II. THERMOSTATED HARMONIC OSCILLATOR

Simulations of nonequilibrium systems require ‘‘therm
stats’’ able to extract the heat generated by irreversible p
cesses. Integral and differential feedback forces, usually
the form $ ṗ[2zp%, have been developed to satisfy th
©2001 The American Physical Society09-1
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FIG. 1. Distribution of 1000 trajectory-averaged moments,^q2,p2& on the left-hand side, and̂z2,j2& on the right-hand side. Initial
conditions were chosen randomly within the four-dimensional hypercube21,$q,p,z,j%,11 with the trajectories followed for 108 time
steps of length 0.01 each.
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need@10#. In our work here, a conventional Hamiltonianqp
oscillator interacts with a heat reservoir—represented by
two control variables, or ‘‘thermostat variables,’’$z,j%:

q̇5p; ṗ52q2zp; ż5p2212jz; j̇5z221.

Notice that the friction coefficientz is itself controlled by a
second thermostat variable,j. More-complex many-body
versions of this thermostating scheme were first introdu
by Martyna, Klein, and Tuckerman@11#.

The time evolution of the trajectory motion can also
expressed as an equivalent phase-space-probability flow
terms of the probability densityf (q,p,z,j):

ḟ [~] f /]t !1v•“ r f 52 f ~“ r•v !5 f ~z1j!,

r[$q,p,z,j%; v[$q̇,ṗ,ż,j̇%.

In the steady~equilibrium! state, where (] f /]t) vanishes, the
thermostated oscillator motion equations give the solut
corresponding to Gibbs’ canonical ensemble for an oscilla
at unit temperature:

f equilibrium}e2(q21p21z21j2)/2.

The form of this stationary distribution suggests an effect
‘‘Hamiltonian’’ He :

He[~q21p21z21j2!/2.

The strong mixing properties induced by the quadratic for
in the equations of motion cause changes in the nume
value of He as time goes on,Ḣe[2z2j, so that all the
‘‘energy shells’’ of constantHe , with 0,He,`, are in-
cluded in the resulting distribution.

It is remarkable that the entire canonical distributi
eventually results fromany smooth initial choice forf. In
previous work this fact was inferred from a study of lon
time Lyapunov exponents~average rate of divergence of tw
nearby phase-space trajectories!. Here we have confirmed
this finding by studying the convergence of the avera
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^$q2,p2,z2,j2%& with time, using an ensemble of 1000 ra
domly chosen initial conditions. The entire ensemble of a
erages converges to the expected canonical average, uni
each of the quadratic forms, with deviations of ordert21/2 for

^$q2,p2,j2%& and t21 for ^z2&. Direct integration of theq̇
and j̇ equations, giving

Dq[t^p&, Dj[t@^z2&21#,

establishes that the two averages,^p& and ^z2&, converge
rapidly, with linear corrections in 1/t rather than the much
larger ‘‘statistical’’ central-limit-theorem corrections of or
der t21/2. To see this rapid convergence it is only necess
that the sampling timet be long relative to the oscillato
period of.2p. Figure 1 shows the ensemble averages at
5106, using 108 fourth-order Runge-Kutta time steps of 0.0
each. Any regions associated with periodic orbits, or pa
tions of the occupied phase space into disjoint parts, wo
be revealed by persistent clustering, away from the full
nonical averages, in such ensemble plots.

III. LOCAL LYAPUNOV EXPONENTS

With the ergodicity of the oscillator motion confirmed, w
next studied the dependence of thelocal Lyapunov expo-
nents, and their associated directions, on phase-space
tion. These ‘‘local,’’ or ‘‘instantaneous,’’ exponents describ
the linear deformation of a comoving corotating phase-sp
hypersphereat the location$q,p,z,j% where the exponents
are evaluated@2,3#. In general, they depend upon the pa
history of the system, as opposed to the future. Hamilton
systems behave in a much simpler way, as a consequen
their symplectic nature~with symmetric contributions from
the past and future!. The Hamiltonian exponents obey a
instantaneous pairing rule, with each positive exponent1l
‘‘paired’’ with its opposite negative exponen
2l @1#. The thermostated oscillator displays a much rich
variety of behavior, typical of nonequilibrium systems. T
four local Lyapunov exponents$l%5$l1 ,l2 ,l3 ,l4%, where
the subscripts indicate the order~largest to smallest! based
on long-time averages,
9-2
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FIG. 2. Variation of the local~instantaneous! Lyapunov exponentsl1(u) along two circles in phase space. At the left bothq andz are
0.1 cosu while p andj are 0.1 sinu. At the right q and2p are20.1 sinu while z and2j are20.1 cosu. In both cases the phase-spa
location parameteru varies from2p to 1p. Each of the 104 points represents a reversed trajectory of 106 time steps withdt50.001.
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^l1&.^l2&>^l3&.^l4&,

have instantaneous fluctuations an order of magnitude la
than the long-time-averaged exponent^l1&. The time-
averagedexponentsdo satisfy a pairing relation:

^1l1&50.0665^2l4&, ^1l2&50.0005^2l3&.

The instantaneousexponents only satisfy the identity

l11l21l31l4[2z2j,

which follows from the equations of motion. There is n
simple identity linking the separate pairs (l1 ,l4) and
(l2 ,l3). Because the fluctuations in these local instan
neous exponents are so large, accurate calculations of
require a somewhat shorter Runge-Kutta time step~0.001!
than do the averages discussed in the last section.

We found that not only did the four local exponents e
hibit all possible (24516) sign combinations—of which a
paired Hamiltonian system could have only four—the fo
exponents also could appear, locally, with all possible
524) orderings, while a Hamiltonian system could ha
only eight of these. The observed orderings of the therm
stated oscillator’s exponents include even the most extr
fluctuation, with the instantaneous exponents reversed:

l1,l2,l3,l4 .

Likewise, locally, the exponents canall be positive orall be
negative, for a short while. These features suggest that
dynamical view of fixed stable and unstable manifolds s
gested by the study of two-dimensional hyperbolic ma
@1,5,6#, cannot be applied to the present relatively sim
four-dimensional situation.

Figure 2 indicates that the spatial dependence of
Lyapunov exponents is wildlysingular, just as was the cas
for the Hamiltonian systems studied earlier@7#. The figure
was generated by~i! integratingbackwardin time from a set
of 10 000 equally spaced initial conditions, saving the res
ing four-dimensional ‘‘reference’’ trajectories;~ii ! integrat-
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ing each of the corresponding sets of four ‘‘satellite’’ traje
tories forward in time, with the four vectors

$d[~q,p,z,j!satellite2~q,p,z,j!reference%

constrained to remain orthogonal, with a fixed length
0.000 01 or 0.000 001. The constraints were imposed by
caling, as originally suggested by Benettin@12# following
related work carried out by Stoddard and Ford@13#. The rate
of rescaling of the vector lengths$d%, on reaching the initial
conditions once more, gives the local Lyapunov spectru
The directions of the vectors are those of a comoving co
tating hyperellipsoid’s principal axes, with the fou
dimensional hyperellipsoid centered on the reference tra
tory. The results of the local-exponent analysis, for two sm
phase-space circles centered on the origin, are shown in F
2 and 3. The angle2p,u,1p there parametrizes the cir
cumference of the phase-space circles. Figure 2 suggests
the variation of the largest Lyapunov exponent is singular
the phase space. In the next section we investigate this
gular variation in detail. The behavior of the other expone

FIG. 3. Variation, in thej direction, of the projections of the
eigenvector corresponding to the local Lyapunov expone
$l1(u)% with q5p50.1 cosu; z5j50.1 sinu. The parameteru
varies from 2p to 1p. Because thesign of the projections is
arbitrary, both the positive and negative choices are shown he
9-3
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is similar. Figure 3 shows that the projections of t
principal-axis vectors are likewise singular. We used four
order Runge-Kutta integration throughout, choosing
timestep small enough that errors from the numerical in
grator were dominated by those from the finite~double-
precision! computer word length. Although generalized sym
plectic methods might appear to offer advantages for s
studies we were unable to develop an approach subject to
instantaneous constraint which follows from Liouville
theorem,

ḟ [2 f ~“ r•v ![ f ~z1j!.

IV. SPATIAL FLUCTUATIONS OF THE LYAPUNOV
EXPONENTS

The look of the wildly fluctuating local Lyapunov expo
nents is reminiscent of ‘‘fractal’’ curves~curves of ‘‘un-
bounded variation’’!. To check the validity of this idea we
have studied the dependence of the summed-up ver
jumps of the curve,

D~l![^ulu1(du/2)2lu2(du/2)u&,

as a function of the coarsening intervaldu separating adja-
cent phase-space sampling points. It is necessary to
double-precision~14-digit! arithmetic, because two separa
differencing operations are required:~i! analyzing the offset,
of order 1025 or 1026, between the reference and satell
trajectories and~ii ! analyzing the dependence of these sm
differences on similarly small changes in the initial con
tions. We were able to study samples of 80 000 initial co
ditions, all of equal Gibbs’ measure, lying on a circle in t
four-dimensional phase space. The results show that ov
1024-fold change in interval length,

~2p!/80 000<du<~211p!/80 000,

the jumps$D% in the local values ofl1 vary roughly as a
fractional power of the interval lengthdu. The data shown in
Fig. 4 indicate a ‘‘fractal dimension’’ near 1.7, suggesting
underlying simplicity in the chaotic structure. It is interestin
to find traces of fractal character, usually associated w
dissipative systems, at equilibrium. This is reminiscent of
equilibrium fractals found in the ‘‘escape-rate’’ theory
transport developed by Dorfman, Gaspard, and Nicolis@6#.

V. CONCLUSIONS

The thermostated oscillator, despite the simple analy
though nonlinear, nature of its quadratic forces, exhibits
namical variety far beyond the capability of analytical me
ods, with rapidly changing directions for the$d% and rapidly
changing magnitudes of the local growth rates$l%. The nu-
merical data considered here suggest that the spatial de
dence of the local Lyapunov exponents is fractal, with
characteristic exponent near 1.7 in the case detailed in Fi

D~l!}uduu1.7.
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Nevertheless, the dynamics faithfully generates the sim
smooth Gibbs’ distribution characteristic of the canonical e
semble. This oscillator model, and its properties, suggest
the smoothtime development of trajectories, rather than t
irregularspatialstructure of distributions, is the more fruitfu
route toward theoretical understanding of chaotic system

Whether or not a generalization of the symplectic integ
tors, satisfying the local constraint,ḟ [ f (z1j), can be found
for this simplest of ergodic chaotic models, remains an int
esting open problem. The present work suggests a variet
investigations designed to classify possible forms of
phase-space dependence of local Lyapunov spectra. The
tension of these results to nonequilibrium systems is com
cated by the lack of a useful Gibbs’ measure away fr
equilibrium. For nonequilibrium systems it is tantalizing@14#
to try to express phase-space measures in terms of l
Lyapunov spectra. Corresponding approaches can be re
tested with the present model. In the equilibrium case, w
kT[1, there is an exact relationship@2,3#:

d ln f /dt[( 2l[z1j→ f ~ t !/ f ~0![e1t^z1j&

[eHe(0)2He(t),

where ^z1j& gives the dissipationtime-averagedover the
time interval from 0 tot. The nonequilibriumcase could be
explored by making the imposed mean kinetic temperat
^T&[^p2/mk& an explicit function of the coordinateq @2,9#.
Off hand, it appears that the fractal character of the sp
trum’s spatial dependence will present insuperable diffic
ties for these formal phase-space-measure approaches.
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