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Forward and backward trajectories from time-symmetric equations of motion can have
time-asymmetric stability properties, and exhibit time-asymmetric fluctuations. Away from
equilibrium this symmetry breaking is the mechanical equivalent of the second law of
thermodynamics. Strange attractor states obeying the second law are time-reversed versions of
(unobservable) repeller states which violate that law. Here, we consider both the equilibrium and the
nonequilibrium cases for a simple deterministically thermostated oscillator. Az equilibrium the
extended phase-space distribution is a smooth Gaussian function. Away from equilibrium the
distribution is instead a fractal strange attractor. In both cases we illustrate local time-symmetry
breaking. We also quantify the forward—backward fluctuation asymmetry for the thermostated
oscillator. © 2001 American Institute of Physics. [DOI: 10.1063/1.1401158]

I. INTRODUCTION

Conservative mechanics, whether Newtonian, Lagrang-
ian, or Hamiltonian, is time-reversible. To any set of time-
ordered coordinates {¢} satisfying the dynamical equations
at times {0.dt2dt, . .. ,t} corresponds a second coordinate
set, with the time ordering reversed, which satisfies the same
motion equations. This time symmetry has been much
discussed.!"® We illustrate time symmetry here with a dis-
crete set of coordinates {¢}, equally spaced in time, to em-
phasize our interest in understanding the results of time-
reversible computer simulations.

A robust treatment of stationary nonequilibrium systems
requires thermostat forces.">® These extract the heat gener-
ated by irreversible processes and are also useful for simu-
lating equilibrium systems. For systems at equilibrium the
time direction is not important. Nonequilibrium systems are
different. Despite the formal time reversibility of these ther-
mostat forces the forward time direction inevitably generates
a strange attractor, while the reversed direction generates an
unobservable mirror-image repeller. This suggests, correctly,
that the time reversibility of the nonequilibrium equations is
a bit illusory. We investigate and reinforce this viewpoint
here by quantifying the Lyapunov instability of both equilib-
rium and nonequilibrium systems. Significant stability differ-
ences do distinguish the forward and backward time evolu-
tions, and their corresponding fluctuations as well, even in
the simplest of nonequilibrium stationary states. Previous in-
vestigations which established the lack of symmetry’~ are
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extended here by making a quantitative measure of the asym-
metry, based on nonequilibrium fluctuations.

In the present work we review the definition of the ““lo-
cal” instantaneous Lyapunov instability spectrum. This spec-
trum is the fundamental measure of stability. We stress the
importance of time’s arrow to the fluctuations in this spec-
trum, even for a time-reversible dynamics. Though our con-
clusions are generally valid, we illustrate them for a simple,
stationary, nonequilibrium model, the doubly thermostated
harmonic oscillator in a temperature gradient.

The equilibrium version of this oscillator was first stud-
ied by Martyna, Klein, and Tuckerman.'” Their interest was
to induce canonical-ensemble ergodicity for the oscillator by
generalizing Nosé’s singly thermostated approach. Holian,
Posch, and Hoover'! then used an elaboration of the model to
study several alternative simulation techniques for determin-
ing free-energy differences. A different approach to the ca-
nonical ensemble was pursued by Hoover and Holian,'> who
controlled not only the kinetic energy, as did Nosé¢, but also
its fluctuation. Subsequently, nonequilibrium versions of this
latter thermostat and the earlier one were studied in an effort
to characterize the fractal distributions arising far from
equilibrium."*'* The present work is a continuation of these
efforts to understand simple systems out of equilibrium.

We consider relatively long unstable periodic orbits as
well as averages over the entire ergodic phase space. We
show that the equilibrium behavior of this oscillator on an
unstable periodic orbit exhibits part of the complex behavior
associated with ergodic nonequilibrium attractors.

© 2001 American Institute of Physics
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Il. LYAPUNOV INSTABILITY

Lyapunov instability is the exponential growth, propor-
tional to e, of the separation between neighboring phase-
space trajectories. This instability is the common feature of
“chaotic” dynamical systems, both at and away from equi-
librium. In equilibrium Hamiltonian mechanics, both the
“local” (instantaneous) Lyapunov exponents and their “glo-
bal” long-time averages occur in “pairs” {+N\,—\};
{{+N\),(—N\)}. There is a local and a global Lyapunov pair
for each coordinate—momentum pair in the Hamiltonian. The
pairing symmetry follows directly from Hamilton’s equa-
tions of motion. It guarantees that Hamilton’s equilibrium
equations contain no “‘arrow of time.”

Most nonequilibrium systems exhibit Lyapunov instabil-
ity t00.>!® It was an unexpected consequence of particular
time-reversible forms of nonequilibrium motion equations
that a ““pairing” reminiscent of equilibrium Hamiltonian me-
chanics could be established. The circumstances under which
pairing occurs away from equilibrium are rather restricted.'®

lll. THERMOSTATED MECHANICS

In the early 1970s Ashurst developed thermostated com-
puter simulations of nonequilibrium steady states.'” At that
time, and even 10 years later, most of the corresponding
formal mathematical activity was concerned with promoting
ergodicity in equilibrium systems.'® Nosé introduced a
breakthrough in 1984. He used an extended phase space,
with an extra friction variable, to simulate Gibbs’ equilib-
rium canonical ensemble.'” Nosé’s thermostated mechanics
has turned out to be even more useful away from equilibrium
than ar equilibrium.’

Typically, deterministic dynamical thermostats are used
to control either the instantaneous or the long-time-averaged
temperature, T= (pz/mk>, where p is a Cartesian momen-
tum component. It is also possible, as shown by Hoover and
Holian,12 and elaborated by Liu and Tuckerman ,20 to control
the fluctuations of the kinetic energy by thermostating other
moments, such as (p*). Because the positive moments of the
kinetic energy all converge, even for simple one-dimensional
systems, we choose to focus on the temperature 7" rather than
on the alternative inverse temperature S=1/kT. Thermostat
forces, such as those used by Ashurst and Nosé, though for-
mally “‘time reversible,” can effectively destroy the
forward—backward time symmetry, at least in the case of the
local Lyapunov exponents, even at equilibrium, where there
is no long-term tendency for phase volume to decrease.

We accept here the physicist’s definition of ““‘time revers-
ibility:”” motion equations generating a time-ordered coordi-
nate set

{qO sddr-92dt > - - »(It}’

and time-ordered sets of ‘“momentum-like” variables

{pO’pdt’pZdI" .. ’pt}’

are said to be time reversible provided that the sets {+¢,
—p} satisfy exactly the same motion equations but with the
time order of the sets reversed [so that the reversed motion
proceeds from (g, ,—p,) back to (go,— po)]-
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IV. NOSE-HOOVER OSCILLATOR

The simplest mechanical model including time-
reversible deterministic thermostat forces is the Nosé—
Hoover oscillator,?' an oscillator with its mean-squared mo-
mentum ““‘controlled” by the friction coefficient {. For
simplicity we choose the oscillator mass and force constant,
as well as the relaxation time governing the friction coeffi-
cient, all equal to unity. In this (typical) case, the oscillator is
governed by the time-reversible motion equations

{g=p:p=—q—ip:{=p°—1}.
From the stationary long-time average of the { equation we
infer that (p?),_..=1. Note that in the time-reversed motion
both the momentum p and the “control variable,” the fric-
tion coefficient ¢, change sign. The friction coefficient ¢
gives directly the instantaneous time rate of change of an

infinitesimal element of phase volume ®, Gibbs’ “extension
in phase”

&/®@=(9q/dq)+ (dpldp)+(9L1dL)=—¢.

Though relatively simple, the Nosé—Hoover oscillator mo-
tion is not ergodic. Instead, the (gq,p,{) oscillator phase
space is partitioned into infinitely many Lyapunov-stable
(“regular”) regions surrounding individual stable periodic
orbits. The stable regions are embedded in an unstable cha-
otic sea which fills the rest of the space.’!

V. DOUBLY THERMOSTATED HARMONIC
OSCILLATOR

In the present work we illustrate the loss of time sym-
metry with time-reversible motion equations by exploring a
slightly more-complicated example, a doubly thermostated
harmonic oscillator based on the thermostating ideas of
Martyna, Klein, and Tuckerman.'® For simplicity we again
choose all the arbitrary parameters in this model equal to
unity. The usual oscillator equations

{g=+p:p=—q},
which generate a constant-energy circle in phase space
q*+p*=2E,

are augmented by adding two control variables, { and &. In
the simplest isothermal case, with the temperature every-
where equal to unity, the two controls together generate
Gibbs’ canonical phase-space distribution

f(q,P,§,§)O<e_(‘12+112+42+§2)/2’

in the four-dimensional augmented phase space. The aug-
mented equations of motion,

q=p;
P=—q—{p;
{=p*~T(q)- &
E=0-T(q):

T(q)=1+ etanh(q),
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are time reversible. This means that simultaneously reversing
the time order of (¢,p,{,&€) points along the trajectory while
changing the signs of the time and the momentum-like vari-
ables (p,{,&) also gives a solution of the same motion equa-
tions.

These motion equations, which focus on controlling
fluctuations in the instantaneous kinetic temperature, could
alternatively be formulated in terms of B=1/kT, but we
choose not to do so. An approach'?~'* stabilizing not only the
kinetic energy, through (p?), but also its fluctuation, through
(r*)

q=p;

p=—q—ip—&p’;

{=p*’~T(q);

E=p*=3p°T(q);

T(q)=1+ etanh(q),

could also be used. At equilibrium a time average of the ¢
equation shows that {(p>)=T, a desirable property not shared
by the Martyna—Klein—Tuckerman equations. But, away
from equilibrium the time average guarantees only that the
spatially averaged kinetic temperature agrees with the spa-
tially averaged T. Explicit calculations (kindly suggested to
us by Brad Holian) show that the time-averaged kinetic tem-
perature has a complicated space dependence, with large os-
cillations about the specified temperature 7(g). For tempera-
ture gradients (€>0.2632) larger than those we treat here the
solution of the equations is a stable limit cycle. These stable
cycles persist, at least in all those cases which we have in-
vestigated, even for (e>1) and correspond to negative tem-
peratures for sufficiently negative coordinate values.

Three simple mathematical considerations suggest that
the Martyna—Klein—Tuckerman (MKT) oscillator is a better
choice for analysis than is the Hoover—Holian oscillator:
first, the quadratic equations have two unstable fixed points'°
to which a mathematical analysis could be tied; second, qua-
dratic forces, as opposed to quartic Hoover—Holian forces,
should be simpler to treat; finally, the effective Hamiltonian

Hyxr= 1(¢°+p*+ P+ &),
satisfies an interesting identity”

Hukr=—({+T(q),

for the local dissipation at ¢ analogous to the thermodynamic
relation, E=ST. For these reasons of simplicity, here we
have adopted the quadratic motion equations rather than the
quartic alternative. Likewise, we have refrained from intro-
ducing explicit symbols for the oscillator mass, the force
constant, the two relaxation times for the thermostat vari-
ables, and a scale length in the temperature variation. We
focus our attention on the simplest possible interesting case,
choosing all these parameters equal to unity. Our main em-
phasis is on the time symmetry of the solutions and we be-
lieve that the symmetry properties of the oscillator would
have no surprising dependence on the additional parameter
values.

Hoover, Posch, and Hoover

Away from equilibrium the ground rules for thermostat-
ing are not clear, with different types of thermostats giving
different stationary states. It is sensible, whenever possible,
to maintain the fundamental ideal-gas temperature definition,
(p*/mk)=T. It is not at all clear how p* or p® or even p?
should be constrained away from equilibrium. Simplicity is
the only guide. For the hyperbolic-tangent temperature pro-
file isothermal equilibrium, with 7=1, corresponds to the
choice €=0. In the nonequilibrium case there is a tempera-
ture gradient, with the maximum gradient (at g=0) equal to
€. The equations of motion are still time reversible. It is easy
to see that reversing the time (by setting +dr to —dt in the
algorithm solving the equations) results in exactly the same
motion equations provided that the symmetry operations

{p——pil——0é——&Et——t},
are simultaneously applied. Physically this means that not
only p but also the control variables { and & behave like
momenta.

Although the long-time-averaged Lyapunov exponents
are necessarily independent of the initial condition (because
the motion is ergodic), numerical simulations’~? have shown
that the local Lyapunov exponents af the phase point {q,
+p,+{,+ & are not simply related to those at the corre-
sponding time-reversed phase point {g,—p,— {,— &}. This is
a symmetry breaking. In view of the fact that the equations
governing the motions of neighboring trajectories are strictly
time reversible, the lack of correlation between the forward
and backward local Lyapunov exponents may come as a sur-
prise. But, it can be understood. The lack of symmetry is the
result of the local Lyapunov exponents’ dependence on the
past and not the future. This dependence is sufficiently
strong that the spatial variation of the local exponents is
typically fractal.”® We describe the local exponents’ calcula-
tion next.

VI. LOCAL LYAPUNOV EXPONENTS

The local Lyapunov exponents quantify the expansion
and contraction rates which contribute to X, \;=®/® at ev-
ery phase-space point. The directions in which these rates are
measured represent the integrated past history in the neigh-
borhood of the trajectory passing through the point. There
are several algorithms for the numerical evaluation of the
local exponents. Here, we describe an elegant Lagrange-
multiplier approach'™!'> which is the limiting differential-
equation representation of finite-difference algorithms devel-
oped earlier by Stoddard, Ford, and Benettin.

The four local (instantaneous) Lyapunov exponents

NN N33 =N N NG N

for the thermostated oscillator can be found by solving the
four sets of differential equations for the evolution of four
nearby oscillator trajectories separated from the reference
trajectory by the infinitesimal offset vectors {8, .8, ,85,04}

51:D'51_7\1151§

8,=D- 8= N126, = A
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8;=D- 63— N30, = N30~ N3365;

84=D- 64— N146,— N340~ N3403— N6

The “dynamical matrix™ D is the first derivative of the equa-
tions of motion with respect to the phase-space directions.
For the doubly thermostated oscillator with quadratic forces,
D is as follows:

0 1 0 0

-1 ¢ —p 0
—ecosh™2gq 2p —& —¢
—ecosh™2g 0 27 0

D:

The constraining multipliers {\} are chosen to maintain
the orthonormality of the separation vectors {&}

Ni=0,-D-8,;\;j=8;-D-8+8;-D-5;.

It is easy to verify that simultaneously changing the signs of
p, ¢, and &, along with the signs of the corresponding com-
ponents of the {8} gives a second set of separation vectors
satisfying exactly the same equations. Thus, any solution of
the equations going “forward” in time corresponds to an-
other solution with the signs of p, ¢, and & and the signs of
the four Lyapunov exponents changed too. The Lagrange
multipliers—identical to the local Lyapunov exponents—
satisfy the local sum rule

2 Ni=2 N=0/8.

The long-time-averaged values
Lagrange multipliers, are the
Lyapunov exponents

{Niay =)

VIl. TIME REVERSIBILITY

of the exponents, or
conventional “‘global”

Backward trajectories— ““time reversed” relative to the
usual forward-in-time trajectories—for time-reversible mo-
tion equations can in principle be generated in any of three
ways. The usual algorithm generating the forward trajectory,
with dt>0, can be applied to the final state, but with d¢
everywhere changed in sign (negative). This sign change de-
stroys the stability advantage of contracting (dissipative)
flows, replacing the overall contraction by expansion and
instability. This sign-change approach (dr<<0) is the stan-
dard mathematicians’ way to generate the Lyapunov-unstable
repeller states which correspond to a map or to a set of dif-
ferential equations generating an attractor with (d¢>0).

In Fig. 1 we show projections of two relatively long
trajectories for the nonequilibrium doubly thermostated os-
cillator described in Sec. V. The upper plot shows the tran-
sition from repeller to attractor which invariably results with
a positive time step. The lower plot represents an exactly
similar transition, but from the attractor to the repeller, in-
duced by using a negative time step. For the doubly thermo-
stated oscillator the solutions with positive and negative drt
are mirror images of one another, with the values of {p,{,&}
differing only in sign.
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& | | | | d‘t>0

-2

-3

<3 2 -1 0 1 2 3

FIG. 1. (££)-plane projection of two mirror-image trajectories for the doubly
thermostated oscillator with e=1 and a fourth-order Runge—Kutta time step
of dt=%x0.002. The upper plot, with a positive time step, begins on the
repeller and ends on the attractor. The lower plot, with a negative time step,
begins on the attractor and ends on the repeller. The points generated in the
two plots are precise mirror images of each other. The order in which the
points are generated is indicated by arrows.

An alternative approach to the generation of a backward
trajectory can be based on the physical notion of time
reversibility —using the same equations but different initial
conditions—the final phase-space state(after a time interval
t) can first be inverted

{p——-p.l——-(.6——¢}.

Next, the algorithm can be applied for the same interval with
dt>0. Finally, a second inversion can be applied to generate
the original initial state. Just as in the other approach (+dt
— —dt) an initial attractor state is converted to a repeller
state by inversion.

Evidently neither of the two approaches just described is
capable of precisely recapturing the past. Because the time-
reversed motion is even less stable than the original trajec-
tory, the past history is limited by Lyapunov instability. The
number of oscillations which can be followed backward in
time is of the order of the number of digits carried in the
simulation, typically between 10 and 20. In the absence of a
quantitative criterion for ‘“near reversibility”” we can make
no more-precise estimate for corresponding ‘‘reversal
times.”

In the nonequilibrium case the past can only be obtained
by storing a trajectory generated in the forward direction.
Thus, a third brute-force approach to backward trajectories is
actually the only effective numerical method: except in very
special circumstances, Lyapunov-unstable backward trajecto-
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ries can only be constructed from stored forward data. Un-
stable periodic orbits provide a special circumstance. It
should be noted that the time-averaged Lyapunov exponents
for strictly periodic orbits must obey the symmetry require-
ment

{ + <)\forward>} = { - <)\backward>} :

Surprisingly, other moments can differ. In particular, the sec-
ond moments of the Lyapunov exponents, forward and back-
ward, turn out to be different in the examples treated here.
The second moments for the Martyna— Klein—Tuckerman
oscillator are detailed in the tables.

VIIl. FLUCTUATIONS

Fluctuations away from equilibrium are of intense inter-
est because they should help to understand the time-
symmetry breaking responsible for the formation of multi-
fractal strange attractors in the nonequilibrium phase space.
The differences, due to time direction, in local Lyapunov
exponents suggest that the fluctuations of these exponents
are of particular significance. In the forward direction of time
it is easy enough to integrate the time averages {()\12)} In the
present problem these averaged second moments are rela-
tively large, so that there is no important difference between
them and the time-averaged fluctuations {{(\;—(X\;})?)}.
Before proceeding with numerical evaluations of the expo-
nents and their fluctuations, let us consider periodic orbits,
which simplify the numerical work by reducing the time re-
quired for averaging.

IX. UNSTABLE PERIODIC ORBITS

Poincaré’s recurrence theorem establishes that any cha-
otic ergodic system must necessarily exhibit unstable peri-
odic orbits. We examine such orbits in order to make precise
“long-time averages” with a finite amount of computer time.
Although such periodic orbits are thought to be common-
place, with the number of them increasing exponentially in
their length, it was in fact relatively difficult to find them. We
believe that a reason for this difficulty is that the number of
such orbits is in fact very restricted. In studying the numeri-
cal periodic orbits induced by the finite computer wordlength
Dellago and Hoover® followed up and extended earlier work
of Kruskal’s, which established that the actual number of
periodic orbits is about half the natural logarithm of the num-
ber of accessible phase-space states, In JQ. This result,
though true, is a bit surprising. Because a randomly gener-
ated orbit will intersect itself in a number of steps on order of
the square root of the number of states,g’22 ), one might
expect that an exhaustive sampling of all () phase-space
states would reveal \/ﬁ different orbits, each with about as
many states as the others. In fact, the periodic orbits found
by exhaustive enumeration have very different sizes.® Typi-
cally, the basin of attraction of the largest orbit is huge, on
order of () rather than of the order of the periodic-orbit
length, \/ﬁ . The number of additional periodic orbits is rela-
tively few. Here, we study two different periodic orbits for
the Martyna—Klein—Tuckerman oscillator, one at equilib-
rium and one away from equilibrium. For the numerical

Hoover, Posch, and Hoover

work we have adopted the method developed by Diakonos,
Schmelcher, and Biham and applied by them to the Hénon
23
map.
We follow Diakonos, Schmelcher, and Biham by consid-
ering the unstable Poincaré map P:

Xn+1 :P(xn) + /'LC [P(xn) _xn] .

Here, C is a matrix, 3 X3 in our case, selected from a set of
48 orthogonal matrices with only one element equal to =1 in
each row or column and all other elements vanishing. C
equal to the unit matrix turned out to be the most useful
choice in our case. The small parameter u, of order 0.01 to
0.1, selectively stabilizes those periodic orbits with
Lyapunov exponents smaller than a critical value. For u
=0 the same orbit is unstable. In our oscillator work we use
the ¢ =0 plane for constructing the map P.

Despite the relative rarity and special nature of unstable
periodic orbits, these orbits do have useful conceptual con-
sequences. At equilibrium, for instance, any unstable peri-
odic orbit with different numbers of positive and negative
Lyapunov exponents has an equally likely twin with these
numbers reversed. Therefore, despite the asymmetric distri-
bution of Lyapunov exponents on periodic orbits, any fully
ergodic phase-space average must lead to equal numbers of
positive and negative exponents. Our results for the doubly
thermostated oscillator, detailed in the next section, are in
accord with this conclusion.

X. NUMERICAL RESULTS

As usual, we use the classic fourth-order Runge—Kutta
integrator in our numerical work, choosing the time step dt
sufficiently small to avoid influencing our results. Strictly
time-reversible algorithms, of the type discussed by Branka
and Wojciechowski**** and by Jang and Voth,*® cannot be
formulated so as to capture the many-to-one contracting dy-
namics associated with dissipative nonequilibrium states.'

A. Exponents for periodic orbits

Figures 2 and 3 show the local Lyapunov exponents A ;
and A4 for short trajectory segments along both equilibrium
and nonequilibrium unstable periodic orbits. The curves
marked ‘““forward” correspond to the usual solution of the
equations of motion. The curves marked ‘““backward” corre-
spond to mirror-image periodic orbits in which the p, {, and
& values are changed in sign and the ordering of the points is
reversed. The time-averaged exponents of the forward and
backward trajectories have identical magnitudes but differ in
sign. The local values show no such simple correspondence.
The fluctuations of the local values are given in Table I. To
eliminate transients in the orientations of the offset vectors it
is necessary to follow the orbits several times. The forward—
backward differences are significant, both at and away from
equilibrium. We were surprised to find that two of the four
offset vectors associated with the local Lyapunov exponents
changed sign in the course of a periodic orbit. This corre-
sponds to a systematic rotation in phase space in the neigh-
borhood of the periodic orbit. Thus, the time period required
for all four & vectors to regain their original orientations is
twice the periodic-orbit time.
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+A ,+A for e=0
1 4

0 +t 143

-A ,—A for e=0
"
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FIG. 2. Local Lyapunov exponents, both forward and backward in time, on
an unstable periodic orbit for an equilibrium thermostated harmonic oscilla-
tor. There is no simple relationship between the two spectra other than the
time average, {+\; forwara) =~ N5— i backwara) - The initial values of ¢.,p,¢,
and ¢ are, respectively, 0.000 000 000 0, +1.204 114 940, +0.055 232 430,
and +0.202910916. The period is 142.699 121. The time-averaged
Lyapunov exponents, and their fluctuations, appear in Table I.

B. Exponents for ergodic trajectories

Exponents for fully ergodic flows, at and away from
equilibrium, were generated using the Lagrange-multiplier
technique described in Sec. VI. As discussed in Sec. VII, the
reversed flow could only be generated by storing these tra-
jectories, with the momentum-like variables changed in sign,
and processing the data in the reversed direction. At equilib-
rium there are no significant differences. This follows from
the fact that the measures of any forward—backward pair of
periodic orbits (which can approximate ergodic orbits arbi-
trarily well) are equal. Away from equilibrium the measure of
a long backward orbit is negligibly small so that such an
orbit is not observable. The data of Table II show that not
only the magnitudes of the Lyapunov exponents, but also
their fluctuations, differ away from equilibrium. Thus, the
fluctuations in the local Lyapunov exponents provide a use-
ful tool for distinguishing nonequilibrium strange attractors.

XI. CONCLUSIONS

Although the equilibrium thermostated equations of mo-
tion are time reversible, the forward and backward distribu-
tions of the local Lyapunov exponents are distinct. This dif-
ference, familiar in the attractors and repellers characterizing
nonequilibrium systems, is due to the asymmetry of memory,
with the local Lyapunov exponents reminiscent of the past,
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+x1, +7”4 for e=0.25

-2

-4

o

+t 105
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FIG. 3. Local Lyapunov exponents, both forward and backward in time, on
an unstable periodic orbit for a nonequilibrium thermostated harmonic os-
cillator. There is no simple relationship between the two spectra other than
the time average, {+\; forwara)={ = N5_;packwara)- The initial values of
q.p,{, and ¢ are, respectively, 0.000000 0000, +0.607 8552833,
+0.492 479 609, and +0.876 059 268. The maximum temperature gradient
€ is 0.25. The period is 104.885 807. The time-averaged Lyapunov expo-
nents, and their fluctuations, appear in Table I.

but not the future. Symmetry breaking can be quantified
through the dependence of spectral fluctuations on time’s
arrow.

The most dramatic way to visualize the time asymmetry
is to compare parametric plots (with time as the parameter)

TABLE I. Time-averaged Lyapunov exponents, and their squares, for the
unstable periodic orbits of a doubly thermostated harmonic oscillator at
thermal equilibrium (e=0.00) and away from equilibrium (e=0.25). For
the initial conditions see the figure captions. The initial conditions for the
“forward” and “‘backward” orbits differ only in the signs of p, {, and &. The
exponents sum to zero in both these equilibrium cases, €é=0.00. In the
corresponding nonequilibrium cases the exponent sum forward in time is
negative, like that of a strange attractor, while the exponent sum of the
orbit’s symmetric twin has a positive exponent sum.

€ (A1) (A2) (A3) (As)
0.00f +0.0188 +0.0000 —0.0040 —0.0148
0.00b +0.0148 +0.0040 —0.0000 —0.0188
0.25f +0.0526 +0.0000 —0.0297 —0.1062
0.25b +0.1062 +0.0297 —0.0000 —0.0526

€ (\D) (A3 (3 (A3
0.00f +0.425 +0.321 +0.275 +0.194
0.00b +0.458 +0.316 +0.279 +0.191
0.25f +0.448 +0.366 +0.231 +0.289
0.25b +0.388 +0.418 +0.246 +0.388
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TABLE II. Long-time-averaged Lyapunov exponents, and their squares, for
an ergodic doubly thermostated harmonic oscillator. The exponents sum to
zero in the equilibrium case, €é=0.00. In the nonequilibrium case the expo-

nent sum corresponds to the rate of entropy loss to the thermostat, $/k.

€ (\) (\2) (\3) (\4)
0.00f +0.069 +0.000 —0.000 —0.066
0.00b +0.066 +0.004 —0.000 —0.069
0.25f +0.052 +0.000 —-0.033 —0.086
0.25b +0.086 +0.033 —0.000 —0.052

¢ () () (\3) (A3
0.00f +0.452 +0.344 +0.264 +0.283
0.00b +0.450 +0.341 +0.256 +0.290
0.25f +0.421 +0.309 +0.222 +0.252
0.25b +0.350 +0.309 +0.232 +0.329

of the local Lyapunov exponents, forward and backward in
time. In Fig. 4 we plot the smallest local Lyapunov exponent
as a function of the largest one, both forward and backward
in time, for the equilibrium and nonequilibrium periodic or-
bits detailed in Figs. 2 and 3. Although reversing the time
direction for these periodic orbits simply reverses the signs
of the two time-averaged exponents, it is apparent that the

3 3
+7»4 Forward, £=0 _)‘4 Backward, e=0
0
+A
-3 i
-3 1]
4
+A4 Forward, ¢=0.25
0
-4
-4

FIG. 4. Parametric dependence of the local Lyapunov exponent A4 on A for
both the forward and the backward versions of the periodic orbits described
in Figs. 2 and 3. Note that there is no apparent correlation bewtween the
exponents in the two time directions.

Hoover, Posch, and Hoover

local values are entirely uncorrelated. Even in the equilib-
rium case, an unstable periodic orbit of only 10° time steps
clearly exhibits this breaking of time symmetry. The proper-
ties represented here, for a simple microscopic model, are
certainly characteristic of macroscopic systems too. This
work suggests both a search for a macroscopic variational
principle based on nonequilibrium fluctuations, and a careful
mathematical analysis of the microscopic dynamics of the
doubly thermostated Martyna—Klein—Tuckerman oscillator.
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