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The eventual entropy increase of an ideal gas undergoing free expansion, ~S = k In(VfinIVo), requires a 
"coarse-grained" hydrodynamic description because Gibbs' fine-grained entropy is unchanged in such a 
process. Smooth particle applied mechanics (SPA.M) is well suited to the simulation and study of such 
problems because the particles in SPAM simulations can be of any size, from microscopic to macroscopic. 
SP.Ai\1 furnishes a natural interpolation. or bridge, linking microscopic molecular dynamics to macroscopic 
continuum mechanics. We analyze particle-based simulations of ideal-gas free expansions from both the 
microscopic and the macroscopic points of view, comparing several dynamical estimates for the time devel­
opment of the system entropy. Most of the entropy increase occurs rapidly, within a single sound traversal 
time. A local comoving version of turbulent hydrodynamics provides the most useful viewpoint for describing 
flows of this kind. [SI063-651X(99)07402-4] 

PACS number(s): 47.1O.-i-g, 02.70.Ns, 31.15.Qg, 47,70.-n 

l, FREE EXPANSIONS AND ENTROPY 

The "confined free expansion," which results when a 
pressurized fluid is first exposed to a vacuum, and then con­
fined by a box, is the prototypical irreversible isoenergetic 
process. During the free expansion and the subsequent 
equilibration there is no heat exchange with the system's 
surroundings and no work is done, establishing that the ex­
pansion process is adiabatic and isoenergetic: !1 E = !1 Q 
-.:l W=O. The initial expansion phase is also nearly isentro­
pic, with the gas cooling as it expands. Over 100 years ago, 
Boltzmann described such expansion processes, emphasizing 
that entropy is not generated until the directed motion of 
expansion is converted to the disordered motion we call heat 
[I ]. 

Once the system reaches the walls confining it, so that the 
kinetic energy associated with the expansion can be con­
verted to "heat." an entropy increase occurs. The details of 
this increase are what interest us here. We study the expan­
sion of a "perfect" or "ideal" gas. with no explicit dissipa­
tion. Nevertheless, within the system the turbulent decays of 
the macroscopic velocity and temperature gradients give rise 
to an increasing thermodynamic entropy. With confining ex­
ternal boundary conditions, which ultimately bring the ex­
pansion to a halt, there eventually results an undoubted 
change of state, with a consequent increased entropy. The 
details of the macroscopic turbulent conversion of orderly 
motion into heat are complex and hard to treat theoretically. 

Such an irreversible entropy increase is likewise difficult 
to understand at the microscopic level. \\<'ben Hamiltonian 
mechanics generates the motion of the individual fluid par­
ticles, there can be no change in the system's fine-grained 
Gibbs' entropy, This follows from the constancy of the 
phase-space probability density f, according to Liouville's 
theorem [2]: 

These difficulties in accounting for increases in entropy us­
ing conventional macroscopic fluid mechanics or micro­
scopic statistical mechanics are well-known, currently under 
active investigation by researchers in macroscopic turbu­
lence and microscopic irreversible flows [3,4J, and served to 
motivate our interest in exploring accurate numerical solu­
tions of this problem. 

Macroscopic hydrodynamics provides a quantitative esti­
mate for the irreversible rate of entropy production in terms 
of the shear and bulk viscosities, (71, 71v), and the heat con­
ductivity K, unless the temperature and velocity gradients 
are too large, the conversion of temperature and velocity 
differences into "heat," or internal energy, can be described 
by Newtonian viscosity and linear Fourier heat conductivity. 
If we ignore the bulk viscosity (which is appropriate for a 
monatomic ideal gas) and additionally assume that the two 
remaining transport coefficients are state independent, the 
local density of the irreversible entropy production from 
Newton's and Fourier's linear transport laws becomes 

where € is an effective shear strain rate. In two dimensions, 

with the local velocity components x u and .v = v, the cor­
responding effective shear strain rate is given by 

From a more simplified point of view one might expect that 
most of the entropy increase would occur locally and discon­
tinuously, through a complex pattern of interacting shock 
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and rarefaction waves which converts most of the kinetic 
energy of the developing flow directly into heat. 

Because the confined free-expansion problem provides 
the simplest illustration of the paradoxical properties of 
Gibbs' entropy, and can be simulated by a variety of tech­
niques relatively easily, we have chosen to explore it here. 
We use a robust and flexible numerical method which pro­
vides simultaneous insight into both the microscopic and 
macroscopic points of view, namely smooth particle applied 
mechanics (SPAM). In the case of a special two-dimensional 
monatomic ideal gas, this macroscopic method for solving 
the field equations of continuum mechanics turns out to be 
equivalent to ordinary microscopic molecular dynamics [5]. 
This link between the microscopic and macroscopic view­
points is described further in Sec. II. In Secs. III and IV, we 
describe the details of the macroscopic simulations, and the 
results. Our conclusions make up Sec. V. 

II. THE SMOOTH-PARTICLE DESCRIPTION 

OF AN IDEAL GAS 


Smooth-particle solution techniques, as developed by 
Lucy and Monaghan in 1977 [6,7] and applied more recently 
to a variety of problems in fluid and solid mechanics [8-10], 
can be used to solve the continuum equations in a simple, 
and stable, way. In this approach the smooth particles, each 
with a mass m, and with individual velocities {Vj} and inter­
nal energies {me j}, move according to equations of motion 
which contain in them the macroscopic equation of state: 

Here P is the pressure tensor and wij w(rij) is the smooth­
particle "weight function," which describes the spatial in­
fluence of each particle on its surroundings. The range of 
w-typically a few interparticle spacings-is conventionally 
denoted h. If the pressure is purely hydrostatic, without shear 
contributions, as in the two-dimensional ideal gas of interest 
here (with E=PV=NkT), the smooth-particle equations of 
motion give central forces, with the {ij} pair contributions 
parallel to the corresponding interparticle separation vectors 
{ru}' The equilibrium hydrostatic equation of state modu­
lates the pair interaction. The densities of the N particles 
making up the system, {pJ, are the summed-up contribu­
tions from all particles within the range h of the smooth­
particle weighting function w(r):{Pi""'m2:j w(rj)}. The 
largest contribution to each particle's density is its own "self 
contribution," mw(O). 

When the smooth-particle motion equations are multiplied 
by the corresponding particle velocities, and summed up, the 
result is the time-rate-of-change of the laboratory-frame ki­
netic energy K: 

L mUiVi= m 2L L [(Pl p2)j+(Plp2);]:(VV),wij
1­ , j 

(m 212)L L [(Pl p2)i+(Plp2)J(Uj-V)V j Wij'kl I ; 

From the macroscopic energy equation for an inviscid 

nonconducting gas, e= (PI p) V . v, where the pressure P is 
now a scalar, rather than a tensor, the smooth-particle equa­
tions for the time development of the individual particle in­
ternal energies are [6,7] 

Here e i is the internal energy per unit mass for particle i. 
Thus, in this special inviscid-gas case, the total energy E 

K = m 2: ,[e i + (v 7/2)] is conserved exactly by the smooth­
particle equations: 

The total internal energy E is the themlodynamic state en­
ergy, and excludes the additional kinetic energy K due to 
convective motions of the gas. 

Note that the special polytropic equation of state, P 
=(D2/2m)p2, gives particle forces precisely equal to the 
negative gradients of a "weight potential" W( {rijD 
=mD22: i<;wj/rj). Thus, within an additive constant for 
each particle [the "self-contributions" ¢(0) 

, \.(mD 2/2)wii(O), which do not contribute to the accelera­ i 

tions], the smooth-particle density sums equal twice the cor­
responding individual smooth-particle internal energy sums, 
which in turn turn out to be exactly equivalent to each par­
ticle's share of the pairwise-additive interaction energies of 
Hamiltonian molecular dynamics: ¢ = 2: i <j¢(rij)==m2: j ej. 
The weighting function w(ri) ¢(rj)/mD2 here plays the 
role of a microscopic pair potential. Thus all of the indi­
vidual macroscopic smooth-particle continuum trajectories 
are precisely "isomorphic" to corresponding microscopic 
particle trajectories calculated with molecular dynamics. The 
two approaches. macroscopic and microscopic, have identi­
cal solutions [5]. We have chosen the symbol D so as to 
emphasize the units of the arbitrary constant appearing in the 
isentropic equation of state. In two space dimensions D cor­
responds to a diffusion coefficient, the square of a length 
divided by a characteristic time. In three space dimensions i 
the corresponding D would vary as the 512 power of a length, il 
again divided by a characteristic time. ,II 

The microscopic pressure tensor follows from the virial !I 
theorem [II]. The expression which results, iiI,

II 

where rij rj- rj and F jj is the force on particle i due to its 
interaction with particle j, can be evaluated using molecular 
dynamics. For a uniformly dense distribution of particles the 
sum over pairs of particles approaches an integral: 

P<PV-+(NI2) fo"2iTr(NIV)rF(r)dr, 
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where NIV is the number density of the smooth particles. 
With the special hydrostatic macroscopic ideal-gas equation 
of state. P:=.(D2/2m)p:', the same integral results, but with 
the interparticle force F replaced by -mD:'Yw. From the 
normalization of the weight-function integral. 

the uniform-density limit of the microscopic potential pres­
sure, p<P, reproduces the complete macroscopic equation of 
state, P=(D 2/2m)p2. The remaining kinetic portion of the 
microscopic pressure tensor, pK, corresponds, in the macro­
scopic hydrodynamic interpretation, to a local turbulent Rey­
nolds stress, p[ (uu) (u )(u)] [12]. 

Apart from an additive constant. the macroscopic ideal­
gas entropy is Nk In[(VIN)(£IIV)]. We will see that solutions 
of the inviscid nonconducting Euler equations for the motion 
of such a gas require an additional turbulent correction, 
based on local velocity fluctuations, to the internal energy 
used in this entropy fonnula. The macroscopic entropy is 
quite different from that following from Gibbs' statistical 
mechanics. In Gibbs' approach, where the potential energy 
of the underlying smooth-particle fluid is essentially con­
stant, Gibbs entropy is Nk In[(VIN)(KIJ'v')], and thus lies be­
low the macroscopic entropy by Nk In(£IK). Though this en­
tropy difference does not affect the systematic macroscopic 
dynamics at all, it does affect fluctuations, as well as recur­
rence probabilities. in interesting ways. as is discussed fur­
ther below. 

The smooth-particle solutions necessarily approach those 
of continuum mechanics as the number of particles is in­
creased. To approach this limit computationally, it is neces­
sary that the range of the weight function be sufficiently 
large. so that fluctuations can be ignored and, simulta­
neously. sufficiently small that surface effects can be ig­
nored. We have explored both these effects in simulating the 
free expansion of a two-dimensional ideal-gas represented by 
smooth particles. 

III. :\'lACROSCOPIC SIMrLAnONS 

OF FREE EXPA:SSIO~ ('SING SPAM 


With SPAM. a solution of the partial differential field 
equations of continuum mechanics. 

{plp= - y. v;pu y. P;pe= - vv:P- v· Q}, 

reduces to the solution of a set of ordinary differential equa­
tions for the particle motions and energies. with interparticle 
forces derived from the weight functions {w; i(rIi)} and the 
macroscopic equation of state. In the specia( ideal-gas case 
we consider here. viscosity and heat conduction are both 
absent, so that the heat flux Q vanishes and the pressure is 
hydrostatic, with P u = P y\ P = pe (D 212m) p2. The mac­
roscopic energy equation is automatically satisfied in this 

case, so that the {e;} equations need not be solved explicitly. 
Exploratory simulations. with an assortment of boundary 
conditions and weight functions, led us to choose Lucy's 
weight function [6], with the range h large enough, h 

=6..jmlPo, to include several particles, even at 
minimum value of the density, Pfin= Po/4: 

WLucy(r<h) (5hrh2)[1 +3(rlh)][l (rlh)]3; 

The two-dimensional normalization condition determines the 
multiplicative constant (5/7Th 2). The mass. length, and time 
scales are given by the particle mass m, the initial square­
lattice spacing ,/mlpo. and ml(Dpo). respectively. 

We simulate a macroscopie free expansion by removing 
the four rigid reflecting walls defining an LX L box. We 
simultaneously impose (i) periodic boundaries with a 
doubled sidelength 2L. so that the volume (area) increases 
instantaneously, at eonstant energy, by a factor 4, and (ii) 
small random particle velocities. with zero sum, chosen so 
that the initial energy per particle is exactly equal to the 
large-system static limit, EIN POD 212. The kinetic energy 
compensates for the small missing "surface energy" of 
those particles close to the boundary of the initial rigid L 
XL box. The large-N number of pairs of interacting par­
ticles. for ..IN/Vo=6/h, decreases from about 60N to about 
ISN during the evolution toward the lower-density final 
state. Provided that the final state has uniform density, Po/4, 
conservation of energy predicts an increase in per-particle 
kinetic energy of 3PoD2/8. From the thennodynamic stand­
point we would also hope to find a corresponding entropy 
increase of k In 4 per particle, when the kinetic energy asso­
ciated with the irreversible expansion has finally been con­
verted into heat. In the absence of any explicit dissipative 
transport in the gas we expect the characteristic time for the 
effective dissipation to be of the order of the sound traversal 
time. 2L1c. We investigate this expectation. and the sensi­
tivity of the decay to the number of smooth particles, in the 
following section. 

IV. SI'VIULAnONS AND RESULTS 

For simplicity. we begin with a square lattice of initial 
particle coordinates. with the lattice spacing of \ mlPo 
- " 1 setting the distance scale. We choose the par­
ticle mass m I and the constitutive constant D I to set the 
corresponding mass and time scales in the numerical work. 
In order to quantify surface effects. it is convenient to con­
sider the series of simulations 2n;4~n~8. Although it 
is possible to equilibrate the systems initially, either at con­
stant energy or at constant kinetic temperature. and with ei­
ther rigid or periodic boundaries. results for our simpler ini­
tial conditions are in no way essentially different from those 
other possibilities. \Ve also implemented hexagonal periodic 
boundaries and carried out a series of fourfold expansions. 
The resulting time histories were very similar to those ob­
tained with the slightly simpler square geometry. 

We solved the smooth-particle equations of motion with 
an accurate fourth-order Runge-Kutta integrator. Time steps 
of O.02m/(poDl. or even O.05ml(poD). are sufficiently 
small for accurate trajectories, as judged by reversing the 
motion over several hundred time steps. Larger systems 
could be simulated relatively easily, on parallel machines, 
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FIG. t. Snapshots of a 16384-particle simulation of the fourfold expansion of an ideal gas, using Lucy's weighting function with h 
6 \ mlPo. The individual particle locations, as well as contour representations of the density and kinetic energy, relative to the 

.dean flow, are shown at times. relative to the sound traversal time, of {1I8.114,1/2, In the contour plots the white have 
above-average density (middle row) or kinetic energy (bottom row) while the black lie below the corresponding averages. 

but the details are already sufficiently clear with the 65536­
particle simulations possible on a serial machine. During 
each simulation, we monitored the positions. internal and 
convective and the corresponding of the 
particles, as is discussed below. 

Figure 1 shows a series of snapshots of particle positions 
from a typical simulation, with 16384 particles. Because the 
smooth-particle method makes it easy to calculate all the 
field variables on a regular grid. 

(puv)g=i;m2: U;UiWig' 
I 

we include also in the figure grid-based contour plots of the 
density and the kinetic energy, relative to the mean flow, as 
the flow develops. 

Initially, as suggested by an energy-conservation principle 
resembling Bernoulli's [13J [which states that the energy e 
J...(Plp)+( 1I2)u 2 is conserved along four pla­
nar rarefaction fans move out. perpendicular to the walls of 

~ confining 2L X 2L chamber. with a maximum velocity a 
ult larger than the sound velocity c, and consistent with the 
principle 

The directed kinetic energy generated by the expansion into 
vacuum is soon "dissipated," or converted, into quite ir­
regular shorter-wavelength disturbances. by the collisions of 
pairs of periodically repeated rarefaction fans. The time re­
quired for this energy conversion, at least on a visual level, is 
very brief. less than a sound traversal time. Because this 
feature of the solutions is conunon to all the system sizes that 
we could we conclude that it represents the 
. 'true" solution as welL to the extent that Lyapunov-unstable 
(due to turbulence) continuum equations have "solutions," 
True viscous and eonductive dissipative transport is only ef­
fective at much times. of order L 21D rather than L! c. 

SF AM, like other grid-based numerical schemes, auto­
matically includes an intrinsic shear viscosity [14] well as 
a related heat conductivity [IS]) which depends upon the 
number of particles used to describe the flow. In simulations 
for which the kinetic energy allows relatively soft interpen­
etrating collisions to occur, Enskog' s high-density kinetic 
theory can be used to estimate the intrinsic viscosity, with 
the result [15.16] 

We carried out isoenergetic simulations of the shear viscos­

ity over a range of strain rates, €=duxldy, using the meth­
ods of Ref. [14]. The results are given in Table I, and are, for 
the lower strain rates. a bit larger than rhe Enskog estimate, 
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TABLE 1. Shear viscosity 11"'" - Pxy I E for the Lucy potential with h 6 vml Po and piPo= 114. The data were obtained using 1024 
particles with a total energy of (N12)D2Po"" 512D 2Po and a time step 0.005ml (D Po). The total simulation time is T, of which the last balf 
was used for determining the viscosity and pressure tensor. The components of the pressure tensor are shown as the sums of kinetic and 
potential contributions. Simulations at reduced strain rates of 0.001 and 0.002 indicate instabilities of the type discussed in Ref. [14]. 

rDpolm Eml(D/po) 1J/(DpO) (P xxV/N)D 2po (P,yVIN)D 2po (PyyVIN)D 2po 

200000 0.0001 28.5 0.3586+ 0.1225 0.0114+0.0000 0.3582+0.1225 
86500 0.0002 27 0.3618+0.1225 -0.0212+0.0001 0.3551 +0.1225 
18000 0.0004 29 0.3763+ 0.1224 -0.0472+0.0001 0.3410+0.1224 
20000 0.0005 29 0.4005+0.1223 -0.0582+0.0001 0.3174+ 0.1223 
180000 0.0050 7.99 0.5161 +0.1217 0.1606+0.0007 0.2032-'- 0.1226 

70000 0.0100 4.356 0.5547+0.1214 0.1750+ 0.0008 0.1641 +0.1231 
30000 0.0200 2.094 0.5993+0.1211 0.1684 + 0.0009 0.1196-'- 0.1236 
80000 0.0500 0.720 0.6461 +0.1208 0.1447+ 0.0008 0.0730+ 0.1242 
30000 0.1000 0.307 0.6706+0.1207 -0.1234+0.0006 0.0486+ O. 1246 

TJ= 19D Po· The agreement is similar to that found previ­
ously, at a lower temperature, in Ref. [14]. 

The present viscosity data differ from those of Ref. [14] 
in two ways. First, we are including the self-interaction, 
mD 2w(O)/2, in the per-particle energies here. These were 
omitted in Ref. [14]. The increased energy here, about 4%, is 
of little consequence. The densities, energies, and strain rates 
in the present work are in corresponding states with higher 
densities, energies, shear viscosities, and strain rates, all of 
which are increased by a common scale factor. Thus the 
Enskog shear viscosity, here 19Dpo at p=Po/4 and kT 
=0.375D2Pa, must be increased by a factor 4, to 76Dpa, in 
order to describe a corresponding sheared system at P Pa 
and kT=) .5D2Pa. with a strain rate four times greater. Tak­
ing this correspondence into account, the data of Table I are 
nicely consistent with the relatively-lower-energy data com­
piled in Ref. [14]. In Fig. 2 we show all the viscosity data, 
from both sources, all expressed in units consistent with 
those of Ref. [14]. 

Increasing N'X LX L, the number of smooth particles rep­
resenting a particular macroscopic flow, with fixed values of 
the SPAlVi simulation parameters, h, m, and D, causes the 
effective Reynolds number of the flow to increase as N 1I2

, 

because the Reynolds number is proportional to the box size 
L. Over the range of sizes examined there was no in­
dication of a slowing of the dissipation with increasing box 
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FIG. 2. Shear viscosity 1J= P", I Efor the Lucy potential with 
h 3 -Jm/Po and p= Po. In order to' make the present data compa­
rable to those of Ref. [14J, the strain rate and the shear viscosity 
from Table 1, for h 6 ~m/Po, have both been increased, by a factor 
4. 

size. In fact, the main entropy increase appears to occur in 
approximately one sound-traversal time, independent of sys­
tem size. Very long simulations show only fluctuations at 
long times, with no tendency for a further systematic entropy 
increase. 

The simplest description of the ideal-gas equilibrium en­
tropy, S== N k In(elp), is worthless for this problem, because 
this entropy is necessarily a constant of the motion 

where we include the "self' Wii term in the sum. Evidently 
the kinetic energy of the motion, which cannot be dissipated 
with in viscid motion equations, must be taken into account 
too. The simplest such "improvement," adding in the 
laboratory -frame kinetic energies of the particles, {m u112}, 
provides a very substantial and wholly unrealistic [I] entropy 
increase during the early of expansion, where the mo­
tion is adiabatic and reversible, and well before the irrevers­
ible interaction of the expanding rarefaction fans takes place. 
See Fig. 3 for typical time histories of Eulerian "laboratory­
frame" entropies for a variety of system sizes: 

Evidently this lab-frame entropy already begins to increase 
during the earliest stage of the flow, when only nearly­
isentropic rarefaction fans are present. 

To avoid the unrealistic. premature entropy increase 
shown in these laboratory-frame entropies. it is evident that 
the kinetic energies at the locations of the continuum par­
ticles, {m (u21/2}, need to be measured relative to the co­
moving "Lagrangian" frames at the particle locations. The 
local kinetic energies of the mean motion, {m( u 12/2}, cannot 
contribute to the thermodynamic entropy. Making this sub­
traction leads to the corresponding "Lagrangian" entropy. 
shown also in Fig. 3, 

SL<lg= k L In{[e i + (l/2)((u (u IY);]/Pj}' 
I 
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N= 256 

FIG. 3. Time-development of the "laboratory-frame" entropy (upper CUfye), the Lagrangian entropy (lower curve), and the grid-based 
entropy (dots), for systems of 256. 1024,4096. 16384, and 65 536 particles. The time scales show one-half sound traversalume to each case. 
The entropy range shown is Nk In 4 in each case, 

The co moving Lagrangian picture of fluid properties is 
equivalent to making the assumption of local thermodynamic 
equilibrium. As Boltzmann pointed out [IJ, the correspond­
ing Lagrangian entropy increase is delayed until the rarefac­
tion fans collide with their "container" -here represented 
by periodic images of the original system. 

An alternative version of the co moving entropies, using a 
fixed grid rather than the grid made up of moving particles, 
can be based on smooth-particle entropies evaluated at the 
fixed grid points: 

L 2-(kim) J:L I-+LL pg ln{[e g -l-(l/2)(v )g 

{v);)]/pg}dx dy. 

ese entropies are also shown in Fig. 3. for five different 
svstem sizes. With systems of a few thousand particles there 
i~ excellent agreement between the grid-based and particle­
based averages, as must be true for the validity of the 
smooth-particle approach. The main physical conclusion 
from these simulations is independent of the entropy repre­
sentation: the coarse-grained entropy increase is substantially 
complete in a time of the order of the sound traversal time. 
Conventional transport processes, which could be included 
with a slight increase in computational expense, are not very 
important to this free-expansion process. Ordinary transport 
contributes onlv a relatively small amount of the irreversible 
entropy production. 

The two-dimensional nature of our simulations appears to 
be somewhat artificial, at first glance. But it is interesting to 
note that our polytropic equation of state, with "/== CpIC v 
= 2, corresponds exactly to the dynamics of shallow water, 
where the pressure and density are integrated through the 
thickness of a water film with a perpendicular gravitational 
field [17]. Simulations in two dimensions also reduce the 
influence of surface effects and facilitate visualization. There 
is no difficulty in carrying out analogous three-dimensional 
work. In the three-dimensional case it is most "natural" to 
imagine the continuum mechanics of a monatomic ideal gas 
with the polytropic isentrope P x p5/3. The SPAM trajectories 
for this macroscopic equation of state are isomorphic to 
. 'se following from the three-dimensional molecular dy­

nics of a system with the embedded-atom potential <P: 

rf-.({r,,})~" 2/3.r p ,=m" w(r)l
'¥ .~ ~ Pi '1 I f ij f' 

In this embedded-atom picture, mL w represents an elec­
tronic density, into which the nuclei at coordinates {rJ are 
embedded [18J. 

V. CO~CL'(jSION 

The irreversible expansion of an ideal fluid can be de­
scribed equally well at the microscopic level of molecular 
dynamics and at the macroscopic level of smooth-particle 
applied mechanics, despite the lack of any dissipative trans­
port coefficients in the corresponding continuum modeL Evi­
dently the conversion of the energy of compression into heat 
occurs primarily through processes proceeding at the speed 
of sound, rather than through the much slower dissipative 
processes of shear viscosity and heat conduction, Provided 
that the local velocity fluctuations are included in the internal 
energy, the coarse-grained entropy increase described by ir­
reversible thermodynamics is nicely, and simply, accounted 
for, and in a way which is insensitive to the number of par­
ticles used in the simulations. 

We can use Gibbs' statistical probabilities to demonstrate 
an interesting property of smooth-particle simulations of 
confined free expansions. Gibbs' microcanonical probabili­
ties show that the expansions become truly irreversible as the 
number of particles is increased. Consider the expansion 
ptoblem illustrated in the figures. For large N the initial state 
approaches that of a motionless solid at zero temperature. 
Classically, such a many-body cold solid state has an entropy 
of minus infinity. By contrast, the final N-particle state ap­
proaches that of a homogeneous fluid, with potential energy 
<P equal to one-third the kinetic energy K Classically, such a 
many-body hot fluid has a finite entropy S Nk In[(VI 
N)(KIN)]. Evidently the completely time-reversible smooth­
particle approximation to the inviscid nonconducting dynam­
ics of an ideal eras introduces a statistical irreversibility even 
stronger than the kinetic-theory probability ratio of (lf4 )N. 
Acco;ding to the smooth-particle model, the initial state, 
which corresponds to a cold motionless crystal from the 
standpoint of molecular dynamics. has zero measure in the 
corresponding classical phase space. 

Despite this evident change in Gibbs' entropy, Liouville's 
incompressible theorem [2] guarantees no change in the 
phase volume occupied by a measurable ensemble of sys­
tems undergoing confined free expansion. It seems possible 
that the true entropy increase could be related to the excess 
local Kolmogorov entropy (the instantaneous summed posi­
tive Lyapunov exponents), with the excess measured relative 
to the equilibrium Kolmogorov entropy of the final state, but 
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a check of this conjecture would require a significant com­
putational effort, which we have not yet been able to make. 
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