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We generalize Benettin's classical algorithm for the computation of the full Lyapunov spectrum to 
the case of a two-dimensional fluid composed of linear molecules modeled as hard dumbbells. Each 
dumbbell, two hard disks of diameter a with centers separated by a fixed distance d, may translate 
and rotate in the plane. We study the mixing between these qualitatively different of 
freedom and its influence on the full set of Lyapunov exponents, The phase flow consists of smooth 
streaming interrupted by hard elastic collisions. We apply the exact collision rules for the 
differential offset vectors in tangent space to the computation of the Lyapunov exponents, and of 
time-averaged offset-vector projections into various subspaces of the phase space. For the case of a 
homogeneous mass distribution within a dumbbell we find that for small enough dl a, depending on 
the density, the translational part of the Lyapunov spectrum is decoupled from the rotational part 
and converges to the spectrum of hard disks. © 1998 American Institute of Physics, 
[S 1054-1500(98)01 002-7J 

The Lyapunov spectrum characterizes many-body 
Lyapunov instability just as the single Lyapunov expo­
nent describes a single chaotic degree of freedom. Com­
puter simulations of atomistic fluids and solids, as well as 
continuum flows, have revealed a rich variety of spectra, 
well beyond the reach of current theory. Here we extend 
the atomistic simulations to the simplest model for a di­
atomic fluid in two dimensions, identical hard dumbbells 
interacting according to classical mechanics. The 
anisotropy-dependent spectrum for the dumbbell fluid 
reflects the physical transition from uncoupled transla­
tional and rotational motions to fully coupled roto­
translational states. We also demonstrate that the eigen­
vectors, which characterize the many-body Lyapunov 
spectra, can correspond to localized excitations. 

I. INTRODUCTION 

During the last decade, the spectrum of Lyapunov expo­
nents for many-body systems has been the focus of extensive 
numerical simulations and of interesting theoretical studies, 
The motivations for this interest are numerous, Lyapunov 
exponents are the time-averaged rate constants for the expo­
nential divergence and convergence of neighboring phase­
space trajectories and, thus, an indicator for dynamical 
chaos, I For more than a few degrees of freedom they provide 
the only practical method for detennining the dimension of 
fractal attracting structures in the phase space measure of 
nonequilibrium steady-state systems.2

,3 They have been in­
strumental for our understanding of' the second law of ther­
modynamics and the macroscopic irreversible behavior of 
such systems,4,5 Furthermore, they are related to the transport 
coefficients and offer new bases for discussing transport.6

,7 

Also equilibrium Lyapunov spectra have provided new and 
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unexpected insights. It was recognized that the shape of the 
spectrum varies considerably with the state of the system2

,8 

and that the maximum exponent becomes maximal, as a 
function of the density, or changes discontinuously, as a 
function of the energy, at a phase transition. Examples in­
clude the fluid-solid transition in two or three physical 
dimensions,9-! 2 and the orientational disorder-order transi­
tion for an extended XY model of planar rotators. 13,14 Theo­
retical arguments have been given by Sinai for the existence 
of the Lyapunov spectrum in the thermodynamic limit of 
infinitely many particles, interacting with a pairwise additive 
short-range potential. 15 They are based on the assumption 
that the thermodynamic-limit transition N ---., 00 is taken be­
fore the time-average limit t---.,oo, Most numerical and theo­

18retical results are in support of this expectation. 16
- How­

ever, a weak, but very persistent, increase of the maximum 
exponent with the particle number N has been interpreted 
recently as a possible logarithmic singularity.19 Thus, the 
study of the Lyapunov instability adds complementary infor­
mation to more established views of the dynamical proper­
ties of many-body systems. 

We have recently generalized the classical algorithms by 
Benettin et al.20 and Shimada et al. 21 to study hard disk17 

and hard sphere18 systems in two and three dimensions, re­
spectively, These systems are paradigms for fluids and can 
be treated by kinetic theory. Within this framework van 
Beijeren et al22 formulated the first successful analytical 
theory for the Kolmogorov-Sinai entropy, expressed as the 
sum of all positive Lyapunov exponents, for low-density 
gases. In another, although related, approach van Zan et at. 23 

succeeded in computing the maximum Lyapunov exponent. 
In numerical work, the advantages of low-density studies, 
with a very good signal-to-noise ratio, typical for hard elastic 
interactions, are recovered. 

© 1998 American Institute of Physics 
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So almost all computations of Lyapul10v for 
many-body systems involve atomic systems. The only ex­
ception we are aware of is due to Borzsak, Posch, and 
Baranyai,24 who studied molecular fluids composed of rigid 
diatomic molecules with two interaction sites rer molecule, 
interacting with a soft repulsive site-site potential. This 
simulation provided the first study of a system affected by 
both translational and rotational of freedom. Here we 
introduce an extension of our hard-disk algorithm and study 
a two-dimensional system of N hard dumbbells. Each dumb­
bell consists of two rigidly connected hard disks of diameter 
cr and center-center separation d~ cr . Numerically the ad­
vantages of a very good signal-to-noise ratio, typical for hard 
elastic interactions, are recovered. It also permits the study of 
low-density gases. There are various possibilities for the 
mass distribution within a dumbbell, which lead to different 
moments of ineltia for a given molecular anisotropy d/ cr. 
The simplest model assumes that the mass of a disk is con­
centrated in its center (point-mass dumbbells). It is the lim­
iting case of the soft diatomic-molecule model mentioned 
above. Work on the point-mass dumbbells and a comparison 
with the respective soft case will appear elsewhere25 Tn this 
paper we assume that the total dumbbell mass is homoge­
neously distributed over the whole dumbbell, the union 
of the two connected disks (homogeneous dumbbells). 

The paper is organized as follows. In Sec. II we intro­
duce our model and summarize its collision dynamics in 
phase space. In Sec. III we describe our exact method for the 
computation of the full Lyapunov spectrum in tangent space. 
We define certain projections of the tangent-space dynamics 
into subspaces spanned only by variables associated with (I) 
translational, and (ii) rotational degrees of or (iii) 
with the phase space of single particles. These projections 
allow a very detailed analysis of our results, which is pre­
sented in Sec, IV. We discuss the extent to which the trans­
lational and rotational degrees are involved in the dynamics 
of the tangent vectors belonging to the various Lyapunov 
exponents. To save space we restrict our attention to a low­
density gas and discuss in detail the onset of coupling be­
tween rotation and translation. In the concluding Sec. V we 
demonstmte that the molecules most active in the stretching 
and contraction dynamics in tangent space at any instant of 
time are very localized in physical space and form "macro­
scopic modes," which are not directly correlated with other 
particle properties such as temperature, energy and stress. 

II. SIMULATION OF HOMOGENEOUS DUMBBELLS 

We consider a planar and purely classical system of N 
hard dumbbells in a square simulation box with periodic 
boundary conditions. Each dumbbell, sometimes also re­
ferred to as a "molecule," consists of two rigidly connected 
disks separated by d. Each disk has a diameter cr and a mass 
ml2. The molecular mass m is assumed to be homogeneously 
distributed over the union of the two disks. The moment of 
inertia for rotation around the center of mass becomes 
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mcr2 3dw+[d2 ] 1T+2 arctan(dhl)] 

4 2dw+cr2[1T I 2arctan(d/14')]f 
1 if d~cr (1)

l cr2 l-d2J if d>(T,
4 2 

where 14' Jcr2 -d2 is the molecular waist. For d-'tO this 
moment of inertia converges to that of a single disk with 
mass m and diameter cr, and with a homogeneous mass den­
sity. 

The state of a dumbbell i is given by r i , pj ,0:i, and J i ' 

where rj and Pi refer to the position and linear momentum of 
its center of mass, respectively, O'i denotes the orientation 
angle between the separation vector of the two disk centers 
with an arbitrary fixed direction of the plane, and J f is the 
angular momentum with respect to rotation around the center 
of mass. Between collisions the state changes according to 

(2) 

It is convenient for the following to introduce the 
6N -dimensional state vector in' phase space, r 

{rj,Pi,O'i ,J;};i 1,· . ,N, and to write the motion equa­
tions (2) for intercollisional streaming according to 

F(r). 

To find successive collisions we integrate these equa­
tions with a time step At and check for overlap of two mol­
ecules. In such an event the collision point is determined 
iteratively with an accuracy < 10- For all details we 
refer to Ref. 26. At each collision the collision map 

+ +­rj rj = rj , 

p~ P; + Ap, p/ Pj Llp, 
(3) 

Jt =J~ + [rciXAp]O, Jt =Jj- [rcjXAp]o 

is applied to the colliding molecules, where the superscripts 
- and refer to states immediately before and after the 
collision, respectively. rei is the relative position vector of 
the collision point with respect to the center of mass of mol­
ecule i. The notation [a]o denotes the component of a three­
dimensional vector a perpendicular to the simulation plane. 
The map (3) is a consequence of the conservation laws for 
energy, linear momentum and angular momentum, and the 
condition that the colliding surfaces are smooth. This 
smoothness condition requires that the momentum change 
Ap=Apn, where n is a unit vector pointing from the center 
of the colliding disk for molecule i to that of molecule j. 
Furthennore, 

(Pj-Pi) ·nJm +{[rej xn]oJr [rei xnJoJ j }/! 

1/m+{[rCixn]2 [rej Xn]2}/2! 

The collision map (3), augmented by the unaffected state 
variables of the other molecules not partaking in this colli­
sion, is conveniently abbreviated according to 

(4) 
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III. LYAPUNOV EXPONENTS 

The phase of a chaotic system is extremely 
sensitive to small perturbations of the initial conditions, 
which means that two phase points, initially by a 
small distance in phase space, diverge or converge exponen­
tially. The exponential rates of divergence 
(convergence) are referred to as the Lyapunov exponents, 

A(bT(O) lim In "-==---:. 

where the tangent vector 8ret) gives the infinitesimal dis­
placement of a perturbed satellite trajectory from the refer­
ence trajectory re t). According to Oseledec27 there are L 
orthonormal initial vectors 8r,(0) yielding a set of expo­
nents, the Lyapunov spectrum {Ak},k= 1, ... ,L, which is 
taken to be ordered such that Ak+ I' L is equal to 6N, the 
phase space dimension. 

To compute the Lyapunov exponents for hard dumbbell 
systems we follow Del\ago et aI., 17,18 who generalized Ben­
ettin's classical algorithm20

,21.28 to hard disk and hard 
systems. The method the construction of as many 
offset vectors in tangent space as Lyapunov exponents are 
required. For the streaming between collisions each 8rel) is 
a solution of the linearized equations 

where T means transposition. The linearization, in time and 
phase space coordinates, for the collision map (4) yields 17 

aM aM 	 ]
81'+= (II' ·81'-+ ·F(r)-F(~1(r-JJ 07'c· (6) 

With these expressions it is possible to compute the exact 
time evolution of any tangent vector orel) and to obtain the 
full Lyapunov spectrum from (5). 

The matrix aM!ar in (6) is symbolically evaluated 
with the analytical package MUPAD,29 and the computer code 
for the matrix elements, generated by MUPAD in the C pro­
gramming language, is used directly in our program. 07'e is 
the (positive or negative) time delay between the collision of 
the satellite trajectory with respect to that of the reference 
trajectory. The distance between the centers of the colliding 
disks is given by rc/=rj+kj-r!-k j , and its variation for 
the satellite trajectory with respect to the reference trajectory 
by Or) + ok) - Or; - ok!. Here, k! is the vector from the 
center of mass of molecule i to its disk involved in the col­
lision, for which 

k! 	 d (c~s a i ), 

2 I, Sin ai! 


d(-oaisinai\ (0
I I=oa· °ki2 \ oai cos ail I 1 · 

Then, the time delay 07'e is given by 

(7) 

Milanovic, Posch, and Hoover 457 

the component of iird perpendicular to the collision surface, 
divided by the relative normal velocity of the colliding disks, 
For the relative disk velocity we have vd= vi.d, where 

J \ 

0,)k 
I 

I 

IS the velocity of the colliding disk for molecule i in the 
laboratory frame. 

The tangent vectors are reorthonormalized after every 
five collisions, and the Lyapunov exponents are computed 
from the time-averaged logarithms of the renormalizing 
factors. 20

.
28 Since the phase vol ume is conserved, any expan­

sion in certain phase-space directions is exactly compensated 
by a contraction in some other directions, and the sum of all 
Lyapuno\' exponents must vanish. As a consequence of the 
time-reversal invariance of the equations of motion, the 
Lyapunov exponents appear in conjugate pairs of equal mag­
nitude and opposite sign. In all our examples we have com­
puted the full spectrum of exponents and have verified the 
pairing rule with high precision. In the figures only the posi­
tive branches of the spectra are shown. The c·onservation of 
energy, of linear momentum, of the center of mass, and the 
neutral expansion behavior in the flow direction cause three 
conjugate exponent pairs to vanish. The various pairs are 
specified by an index I such that the most positive and nega­
tive exponents, AI and A6N, are associated with 1= 1, the 
second-largest exponent 11.2 and second-smallest exponent 
A6N- I with 1= 2, and, finally, the six vanishing exponents 

, ... ,A3N~3 with the indices 3N-2 to 3N. 
A more detailed analysis of the dynamics in tangent 

space is possible if projections of the tangent vectors or{ 
into various orthogonal subs paces, TX E {Tr,Tp,Ta, TJ}, 
are considered. The projections are associated with the 
center-of-mass configuration space r, the translational mo­
mentum space p, the space of the molecular orientation 

a, and the space of angular momenta J, 
respectively.24 If 81'X,I denotes a tangent space vector with 
components identical to those of bTl for directions belong­

to TX, and vanishing otherwise, the time-averaged 
squared length 

(8) 

is taken as a measure for the probability of orr of pointing 
into a direction of tangent space belonging to the selected 
subspace TX. These so-called "mean-squared X 
components,,24 are directly related to the coherence angles 
introduced by D'Alessandro and Tenenbaum. 3o 

Another application of the same idea is to project into 
the single-particle subspaces T JLi spanned by 
Or;, 0Pi ,oai' oJ;, for i= 1,... ,N,5 

No time is applied in this case. This allows us to 
determine what molecules participate most in the stretching 
or collapsing processes at some instant of time, and whether 
or not these processes are homogeneously distributed or lo­
calized in physical space. 

http:Tenenbaum.3o
http:respectively.24
http:algorithm20,21.28
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FIG. The squares denote the positive branch of the Lyapuno\' spectrum of 
a planar system consisting of N = 64 homogeneous dumbbells with a mo­
lecular anisotropy dl a= 2 ~ 14 The density n = 0.1 a ~2 The smooth curve 
refers to an equivalent spectrum of 64 hard disks (d=O) without rotational 
degrees of freedom. The index on the abscissa labels conjugate exponent 
pairs, which are defined only for integer indices. For d = 0 there are only 
2N= 128 exponent pairs and six vanishing exponents, associated with the 
indices 126 to 128. The Lyapunov exponents arc given in units of 

where K is the total (kinetic) energy, III is the dumbbell 
mass, and cr is the diameter of the two rigidly connected disks forming a 
dumbbelL 

IV. RESULTS 

In all our numerical work we use reduced units for 
which the disk diameter (T, the molecular mass m, the spe­
cific energy EIN( =KIN) and the Boltzmann constant k are 
equal to unity. The unit of time is )mcr2NtK, where K is the 
total kinetic energy. The number density of the system is 
defined by n = N I V where V is the area of the simulation 
box. 

Here we consider systems consisting of 64 dumbbells 
with a molecular anisotropy dl (T. All systems are low­
density gases, n=O.lcr- 2, for which we study the onset of 
coupling between translational and rotational degrees of free­
dom. The low density was chosen to avoid complications 
from fluid to solid phase transitions. Work on denser systems 
. . 25 
IS In progress.. 

For homogeneous dumbbells the moment of inertia, for 
d---->O, remains finite, and the Lyapunov spectra are well be­
haved. In Fig. 1 the positive branch of the spectrum, or more 
precisely half of the exponents, for a 64-dumbbell system 
with an anisotropy ratio dl (T= 2 -14 is shown by the squares. 
The smooth line represents analogous data for a system of 64 
disks which has only translational and no rotational 
degrees of freedom and which are taken from our previous 
work. II To facilitate this comparison we note that in Ref. 17 
the unit of energy was defined by the translational kinetic 
energy per particle, whereas here it is the sum of the trans­
lational and rotational kinetic energies per particle. Thus, the 
unit of time in Ref. 17 differs by a factor of 
)(2N-2)/(3N-2) from the unit used here, which must be 
taken into account in comparing Lyapunov exponents. From 
the impressive agreement between these two sets of data in 
Fig. 1 we conclude that for a small enough, but finite, anisot­
ropy d the Lyapunov exponents associated with the trans la-
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d 

FIG. 2. Maximum Lyapunuv exponent A1 and Kolmogorov-Sinai entropy 
per particle, ilKS fN, for a 64-dumbbell system of density n O.ja~2 as a 
function of the anisotropy dla. d is given in units of a, and A: and ilKS in 
units of \i(KIN)/(maC 

). The horizontal smooth lines are results for h<lrJ 
disks taken from Ref. 17, 

tional degrees of freedom are decoupled·from those for mo~ 
lecular reorientation. The total spectrum decomposes into a 
translational part 1~ 1~ 125, and a rotational part 126~ I 

189. The vanishing exponents belong to the indices 190 
l~ 192. 

In Fig. 2 the dependence of the maximum exponent, A.l. 
and of the Kolmogorov-Sinai entropy per particle h KS / N, 
on the molecular anisotropy dl (T are shown. These quantities 
converge very well, for d ----> 0, to their purely translational 
hard disk limit, taken from Ref. 17 and indicated by the 
horizontal lines, but are considerably enhanced by rotation 
for larger d. It is significant that the convergence is complete 
for 11.1 already for values of d for which h KS, the sum of all 
positive exponents, is not converged yet. This is due to the 
"rotational paJt" of the spectrum in 1 also contributing 
to h KS ' For d~ 1O-3(T the positive branch of the rotational 
part consists of 64 exponents which are very close to each 
other. This may be inferred from Fig. 3, where we have 

f_ 

d 

FIG. 3. Anisotropy dependence ofse1ected positive Lyapunov exponents, 
labeled by their index t, for a 64-dumbbell system of density Il =O.1(T~2 d 

in uoits of the disk diameter a, and the A/ in units of 
---"-.~-'C 111C horizontal line indicates the value of the smallest posi­

tive exponent for the spectrum of 64 hard disks taken from Ref. 17, 
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FIG. 4. Anisotropy dependence for the positive branch of the Lyapunov 
spectrum for a 64-dumbbell system at a density II =0.la- 2 d is given in 

units of the disk diameter a, and A in units of )(KIN)/(ma2). The expo­
nents are only def1ned for integer indices I. 

plotted the smallest positive (l = 189) and largest (l = 126) of 
the "rotational" exponents as a function of d. We note that 
they scale ~ d 112 for d -) 0 as is indicated by the limiting 
slope. Also shown in this figure is the d dependence for the 
exponent l = 125, the smallest of the positive' 'translational" 
exponents. For d< 1O-3 cr it is well converged to the smallest 
positive exponent for the purely translational disk system 
indicated by the horizontal line, whereas for d> 1O-2 cr it is 
very close to its neighbor, l = 126, associated only with rota­
tion for small d. We conclude that for d< 1O-3 cr the tangent 
space dynamics for translational motion is decoupled from 
that for reorientation. For 1O-3 cr<d< 1O-2cr the coupling 
between translational and rotational degrees of freedom be­
comes more and more significant, and is essentially complete 
for a critical value d = 1O-2cr .c 

There is an interesting anomaly in these curves, which 
we believe is real and no artefact of the simulation. It is most 
clearly noticeable for the maximum exponent in Fig. 1. The 
maximum displayed there by AI for molecular anisotropies 
close to the critical value de is indicative of unusually strong 
mixing in phase space. A similar behavior has been found for 
other order-disorder transitions. 17,18,14,lO Apparently the 
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FIG. 5. Spectrum of the mean squared translational components for selected 
values of the anisotropy dla=2-", where -11 appears as a label on each 
curve. As usual. 1 is the Lyapunov index. The components are defined only 
for integer values of I. 

transition to a coupled roto-translational state i.s analogous to 
a phase transition. We are currently investigating this point. 

An overview of the shape dependence of the Lyapunov 
spectrum on d for constant number n = 0.1 cr -2 is provided in 
Fig. 4. The decoupling between translational and rotational 
degrees of freedom is made clearly visible by the widening 
gap between the exponents l= 125 and 126 for d<1O- 2 cr. 

The increase of the exponents for large d is due to the 
smaller free volume and, hence, increased collision fre­
quency. For later reference we tabulate in Table I the time­
averaged translational and rotational kinetic energies, a few 
selected Lyapunov exponents, the Kolmogorov-Sinai en­
tropy, and the single-particle collision rate, 117, for the spec­
tra appearing in Fig. 4. 

The translational subspace of the tangent space is 
spanned by all Ori' 0Pi' The mean-squared components 
o~rans [ for projections into this subspace are shown in Fig. 5 
for selected values of d indicated by the labels. We shall 
refer to them, for short, as "squared translational compo-

TABLE l. Simulation results for the Lyapunov spectra displayed in Fig. 4 for a 64-dumbbell system at a density of /l = 0.1 a -2. d is the distance between the 
two disks of a dumbbell and is given in units of the disk diameler a. The translational and rotational Kinetic energies, KT and K R, are measured in units of 
the total kinetic energy per particle, KIN""'(KT+ KR)IN. h KS is the Kolmogorov-Sinai entropy and is determined from the sum of all positive exponents. lIT 
is the single-particle collision frequency. h KS ' lIT, and the selected Lyapunov exponents A/ are al\ given in units of [(KIN)/(ma 2)JIf2, where m is the 
dumbbell mass. 

d KTIN KRIN hKSIN "I Am Am A189 liT 

2- 14 0.667 0.333 0.599 1.038 0.099 0.010 0.0083 0.328 
2- 10 0.660 0.340 0.623 1.038 0.101 0.042 0.0323 0.326 
2- 8 0.660 0.340 0.663 1.037 0.107 0.081 0.0592 0.328 
2- 7 0.642 0.358 0.684 1.031 0.112 0.109 0.074 0.324 
2- 7 +2- 5 0.678 0.322 0.727 1.057 0.120 0.119 0.089 0.333 
2- 6 0.693 0.307 0.758 1.076 0.134 0.133 0.095 0.338 
2- 6 +2- 7 0.651 0.349 0.770 1.050 0.150 0.150 0.097 0.330 
2- 5 0.652 0.348 0.791 1.047 0.165 0.165 0.105 0.330 
2 -4 0.663 0.337 0.889 1.086 0.205 0.205 0.120 0.344 

0.25 0.659 0.341 1.150 1.170 0.270 0.268 0.144 0401 

0.50 0.662 0.338 1.372 1.276 0.318 0.314 0.133 0.508 

0.75 0.662 0.338 1.543 1.387 0.353 0.351 0.129 0.636 

1.0 0.665 0.335 1.702 1.496 0.393 0.388 0.128 0.784 
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nents." The analogous "squared rotational components," 
obtained by projecting into the rotational subspace spanned 
by ~ll 80:;, OJ" will be denoted by . Obviously, 8~ans'! 
+ 8;01.;= 1, and each curve in 5 acts as a dividing line 
between a translational part below, and a complementary ro­
tational part above. For d = 2 - 14(J', labeled 14 in Fig. 5, all 
squared translational components are unity for 1 ~ l ~ 125, 
and vanish for 126~1~ 189. For the complementary squared 
rotational components it is reversed. The transition from I 

125 to 126 is discontinuous. For d the tangent vec­
tors do not remain exclusively in one of these two subspaces, 
but start to spend more and more time also in the comple­
mentary subspace. The tangent vectors for the maximum and 
minimum exponents (I = I) are least affeted. However, the 
discontinuous step between! 125 and 126 does not disap­
pear until dl(J'=2- 6 =0.016, which is close to the critical 
value de found above. Only for d> de one may speak of 
strong coupling between translational and rotational degrees 
of freedom. 

We remark that the squared translational components for 
a conjugate pair of exponents are and that it is suffi­
cient in Fig. 5 to consider the range of indices labeling ex­
ponent pairs. Such a symmetry, however, does not persist if, 
for example, projections into the position and momentum 
subspaces are considered separately. In such a case also the 
positive and negative branches of the Lyapunov spectra must 
be treated separately. An analogous remark also applies to 
the squared rotational components. 

V. OUTLOOK 

The existence of a discontinuous step in the spectrum of 
the squared translational and rotational coefficients for small 
molecular anisotropies is an unexpected result. The data pre­
sented here are for a number density n 0.1 (J' - 2. We are 
working at present to extend these simulations to larger n 
and N to learn how the critical anisotropy ratio de / (J' de­
pends on the density and to characterize the effect of the 
fluid-solid phase transition on the spectrum. Another ques­
tion concerns the existence of the thermodynamic limit, N 
-+00 for fixed n and KIN, for the spectra. It was shown for 
systems of hard disks in two dimensions,17 and for hard 
spheres in three. IS that the maximum exponent Al seems to 
converge to a finite limit, although a logarithmic divergence 
cannnot be completely ruled out, lJnd that the ratio of the 
smallest positive exponent to the maximum exponent con­
verges to zero. The existence of the thermodynmic limit for 
the Lyapunov spectrum has been conjectured for the one­
dimensional Fermi-Pasta-Ulam chain (f3 model),16 and is 
expected, from purely theoretical arguments,15,23 also for 
higher-dimensional systems with pairwise short-range poten­
tials. We have found finite limiting exponents also for two­
dimensional systems in nonequilibrium steady states with up 
to 3200031 and 102400 particles.32 On the other hand, Searles 
et aL 19 interpret a weak, but persistent, increase of AI with N 
as a possible sign of a logarithmic divergence. Their simula­
tions involved up to 8000 Weeks-Chandler-Anderson par­
ticles. In the present work the range of N values studied is 
not large enough to decide on this question. 
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FlG. 6. Snapshot of a 64-dumbbell systems at a density of II = 0.1 (r~'. The 
central part of a dumbbell is painted gray if its squared particle component 
for the maximum exponent exceeds 0.06. Similar.ly, the peripheral pan is 
painted gray if its squared particle component for the minimum exponclll 
exceeds 0.06. 

We have shown in Sec. IV that the mean squared pro­
jected components allow a rather detailed analysis of the 
tangent space dynamics for the offset vectors Sri' If one 
projects into the various subspaces T f-Li for all dumbbells i 
= 1,.. .,N as suggested in Sec. III, one obtains squared coef­
ficients 8~•. I(t) which, for brevity, we refer to as the instan­, / . 
taneous "squared particle components." Summed over all 
particles they obey I 8~i .,Ct) = 1. In Fig. 6 we show a 

snapshot 64,17=0.1, d = 0.25) where the color of the 
dumbbells is chosen according to the squared particle com­
ponent for the vectors of the conjugate exponent pair 
1= 1. The central part of a dumbbell i is painted black if the 
component associated with the max:imum exponent is larger 
than 0.06, and a dumbbell is given a gray peripheral part if 
the same condition holds for the most negative exponent. In 

7 a similar snapshot is shown where the color code now 
refers to the squared particle components of the two tangent 
vectors associated with the positive and negative conjugate 
exponents A100 and A285' From Figs. 6 and 7 it is observed 
(i) that the respective tangent vectors have significant com­
ponents only in subspaces belonging to a few particles, (ii) 
that these particles are localized in space and grouped in 
clusters, (iii) that the clusters for the two conjugate expo­
nents, both labeled by the same index I, are identical. This is 
a consequence of the symplectic nature of a pairwise colli­
sion; and (iv) that the clusters for different conjugate pairs 
are also different. The observation (i) was already made by 
us in Ref. 32 for soft-disk systems in nonequilibrium steady 
states involving up to 102400 particles. It is generally found 
that the localization of this active cluster for a I is 
much more pronounced for larger and denser systems. 

The active zone has the appearance of a collective mode, 
which moves through the fluid, but remains localized. We 
were unable to relate it to other hydrodynamic fields such as 

http:Similar.ly
http:particles.32
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FIG. As in Fig. 6 where the central and peripheral coding refers to the 
squared particle components associated with the positive exponent A100 and 
its conjugate negative exponent A285 • 

the temperature. This localization is a consequence of two 
mechanisms: first, the delta-vector components of two col­
liding molecules after a collision are linear functions of their 
components before the collision and have a chance to grow 
significantly only if their size before the collision was al­
ready far above average. Second, the renormalization after 
such a collision tends to reduce the (already small) compo­
nents of the other noncolliding particles even further. Thus, 
the competition for the maximum growth of "their" tangent 
vector components favors the collision pair with the largest 
components. It is interesting to note that the "clock vari­
ables," introduced by van Zon et al. for the computation of 
the maximum exponent,23 assume the role of the tangent­
vector components for the various particles and that, not sur­
prisingly, they out a few "active" particles arranged 
in localized clusters similar to the structures found here. 
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