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Identical particle trajectories can result from driven shear flows of two different types; (i) thennostatted 
flows, simulating a nonequilibrium steady state, and (ii) adiabatic flows, in which the irreversible heating 
associated with viscous work is not extracted from the system. This trajectory isomorphism applies to shears 
of hard particles, such as hard disks and spheres. Here we simulate such isomorphic shear flows. We also 
discuss the associated instantaneous Lyapunov spectra, which are not isomorphic. We extrapolate the dissipa­
tive hard-disk spectra to the large-system limit. [S1063-651X(98)00605-9] 

PACS number(s); 05,60. +w, 46.10. +z 

I. INTRODUCTION 

About ten years ago it was established that reversibly 
thermostated nonequilibrium steady states lead to multifrac­
tal phase-space structures [1-6]. The fractal structures have 
"Kaplan-Yorke" or "information" phase-space dimension­
alities [7,8] less than that of their equilibrium counterparts. 
This finding of reduced dimensionality demonstrated the rar­
ity of nonequilibrium phase-space states relative to equilib­
rium ones, and explained it in telms of their singular fractal 
nature. The fractal distributions of nonequilibrium phase­
space states are confined to "strange attractors," objects 
with zero measure, relative to the smooth Gibbsian equilib­
rium distributions. Surprisingly, the time-reversible mechan­
ics underlying the nonequilibrium flows turned out to be per­
fectly consistent with dissipative singular attractors, and with 
the additional unexpected consequence that the resulting 
nonequilibrium phase-space distributions were singular, 
rather than smooth. 

The singular multifractal phase-space structures provided 
an appealing mechanical rationale for the second law of ther­
modynamics [1]. But the thermostats underlying these struc­
tures raised a question [9,10]: "Do the fractals correctly rep­
resent the rarity of nonequilibrium states, or are these 
singular objects, of reduced dimensionality, merely artifacts 
of particular time-reversible thermostatting techniques?" A 
recent investigation of this question [11] established that the 
multifractal states found in thermostated hard-particle simu­
lations [1-6,12J have precise counterparts in somewhat­
more-conventional adiabatic flows. Here we study the rela­
tionships between two types of shear-flow problems, the one 
adiabatic and the other thermostated with a fixed kinetic en­
ergy ("isokinetic"). It is remarkable that these two very dif­
ferent problem types can generate configuration-space trajec­
tories, {y (x)h, which are "isomorphic," meaning "having 
the same shape." 

A nonequilibrium "time scaling," which is reminiscent 
of Nose's equilibrium work [13J, links the two simulation 
types, and also makes it possible to correlate the correspond­
ing instantaneous dissipation rates and the phase-space dis­
tribution functions. The present work is devoted to carrying 
out simulations exhibiting the isomorphism property and 
analyzing the results. Though we find, on the one hand, that 
the particle trajectories are indeed isomorphic, as the analysis 
of Ref. [llJ suggests, on the other hand we discover that the 
instantaneous Lyapunov spectra are not simply related to one 
another. 

The present work is described as follows. In Sec. II we 
discuss isomorphisms which link together a variety of ap­
proaches to the simulation of many-body hard-particle non­
eqUilibrium flows. In Sec. III we show that the configura­
tional trajectory isomorphism leads to a simple scaling of the 
instantaneous Lyapunov sums, in the full phase space 
{x,Y,Px ,Py}N' Section IV includes a brief review of shear­
flow techniques, using periodic boundary conditions, and 
emphasizing the particular difficulties associated with scal­
ing hard-particle collisions using these boundary conditions. 
Section V describes our numerical simulations of shear 
flows, and the results obtained from them. Section VI is de­
voted to our conclusions. 

II. TRAJECTORY ISOMORPHISMS FOR DISKS 

AND SPHERES 


The usual Newtonian trajectories traced out by hard disks 
or hard spheres have shapes independent of the kinetic tem­
perature. Quadrupling the temperature, by doubling all the 
particle velocities (kTrx(mv 2), simply doubles the rate at 
which the {X,Y}N or {X,Y,Z}N paths are traced out. The in­
creased speed does not change the shapes of the configura­
tional trajectories themselves. Very similar relations hold 
also for trajectories generated by inverse-power "soft­
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FIG. l. Corresponding changes in isokinetic and adiabatic tra­
jectories for a time interval dto=sdta • The {y(x)} representations 
of the trajectories are identicaL though both the momenta and other 
rates differ, by the scale factor s = (K I Ko) 112, as is explained in the a 

main text. 

sphere" potentials, ¢>!X r - n, but with the added complexity 
that the volume and the temperature must change simulta­
neously [I 4J, in a correlated way, to maintain an isomor­
phism. For simplicity, we specialize our numerical work to 
the two-dimensional hard-disk case, for which the particle 
trajectories are correlated sets of two-dimensional coordi­
nates, {Y(X)}N' Exactly similar considerations follow for 
hard spheres. 

Driven nonequilibrium simulations most often incorporate 
isokinetic or isoenergetic feedback forces, so as to maintain 
stationary states [15,16]. Though thermostat forces can be 
applied to a special set of boundary particles, the thermostat 
forces are usually applied homogeneously, to all the par­
ticles so as to minimize the influence of the boundaries. 
Mass' or energy currents are driven by external fields, sensi­
tive to a particle's type or energy, while homogeneous 
"shear flows" are usually driven by special periodic shear­
ing boundary conditions. These shearing boundary condi­
tions were developed, independently, by at least three sepa­
rate sets of workers [17-19]. The shearing boundaries 
preclude the conservation of total energy, or internal energy, 
or angular momentum, whether or not thermostating feed­
back forces are present. 

The idea underlying a trajectory isomorphism between 
adiabatic and isokinetic thermostated trajectories can be vi­
sualized as indicated in Fig. 1, where the progress of two 
isomorphic trajectories, but in two different phase spaces, is 
outlined schematically. In the figure, we show the correspon­
dence between trajectories in (i) the adiabatic phase space 
{qa ,Pa}N and in (ii) the isokinetic phase space {qo,PO}N' 
Notice that, while the trajectories agree exactly, the momenta 
differ by a scale factor s, discussed below. We indicate vari­
ables following the two types of trajectories by subscripts a 
for adiabatic and 0 for isokinetic. The isomorphism linking 
the two trajectory types implies that all the geometric con­
figurational variables, based on particle coordinates, are 
identical in the two corresponding trajectory segments: 

On the other hand, rates, such as the particle velocities and 
the strain rate--defined more fully in Sec. IV, are different, 
and typically become faster in the adiabatic flow, as the ki­
netic energy of that flow increases due to viscous heating: 

(lldt,x,y,px ,Py '£)a<;=;}s(lIdt,x,y,px ,Py ,£)0, 

s=(Ka I Ko) II2'iEdto Idta • 

Here, and throughout this work, we represent, by s, the 
"scale factor" which correlates the isokinetic and adiabatic 
time scales. The treatment of second derivatives, including 
the accelerations and the dissipation rate, discussed in the 
following section, is somewhat more complicated. For the 
accelerations, a chain-rule calculation establishes the useful 
correspondence 

where 

Thus the isokinetic friction coefficient [,K, described in more 
detail, for shear flows, in Sec. IV, corresponds to the rate of 
change of the thennal energy along the corresponding adia­
batic trajectory. 

An analytic demonstration of the trajectory isomorphism 
[I IJ can be based on showing that the trajectory curvatures 
{d2yldx2}N match, at corresponding trajectory po~nts {X'~}N 
with matching slopes, {dyl dx'iE P y IPxJN' The trajectory ISO­
morphism is most easily grasped imd appreciated by compar­
ing numerical solutions of the two sets of equations. Pro­
vided that the initial conditions correspond, exactly the same 
{y (x)h trajectories are traced out, but at different rat~s. 
Similar sealings have been considered by several groups 1Il: 
teres ted in molecular dynamics, beginning with Nose 
[11,13,20-22]' . 

A two-body trajectory segment illustrating shear-flow ISO­
morphism as described by Doll's-tensor dynamics, appears 
in the Appendix. It is perhaps less obvious, but also true, that 
a corresponding exact scaling relationship connects the dis­
sipation, through the instantaneous sum of the "local" 
Lyapunov exponents. Such a scaling does not occur for the 
individual exponents. Dissipation and the Lyapunov spectra 
are discussed in the following section. 

III. DISSIPATION AND THE INSTANTANEOUS 

LYAPUNOVSPECTRA 


The stability of stationary phase-space flows can be de­
scribed by the Lyapunov spectrum {A}, where the (time­
averaged) exponents are numbered in descending order, with 
"'i~ "'i+ I' The individual exponents can be precisely deter­
mined as time averages [23J, with an accuracy of a few parts 
per 1000. The largest exponent, '" 1, represents the average 
rate at which two nearby trajectories diverge from one an­
other. The rate at which a two-dimensional phase-space area, 
defined by three neighboring trajectories, changes with time 
defines the sum "'1 + A2 = (d lnAldt). Likewise, the averaged 
time rate of change of a three-dimensional phase-space vol­
ume, (d InVldt), is equal to the sum of the largest three ex­
ponents, '" 1 + "'2 + "'3' The technical details underl~ing the 
computation of the spectrum have been comprehenSIvely de­
scribed for hard disks and spheres [23,24]. 

The Lyapunov exponents provide an important link be­
tween microscopic mechanics and macroscopic irreversible 
thermodynamics. Their instantaneous sum provides a direct 
measure of dissipation, through the external entropy produc­

tion &' [15,16]: 
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with the sum including all the Lyapunov exponents. Thus 
~	external entropy production corresponds to the time­

averaged rate at which the comoving phase-space volume­
4N dimensional for N hard disks and 6N dimensional for N 
hard spheres-decreases. Evidently the occupied phase vol­
ume characterizing a stationary state can neither increase nor 
decrease. Thus the dimensionality of a steady-state phase­
space attractor is equal to the linearly interpolated number of 
terms in the partial sum 2:,' Ai at which the interpolated sum 
[7J changes from positive (indicating growth) to negative 
(indicating decay). This borderline dimensionality is gener­
ally fractional. It is the "information dimension" or 
"Kaplan-Yorke dimension," of the strange attractor, to 
which the dynamics of the stationary state distribution is 
effectively confined. 

In the full phase space, both the adiabatic and the isoki­
netic dynamics must satisfy the phase-space continuity equa­
tion [15,16,25]: 

despite the fact that both dynamics inhabit multifractals with 
an information dimension well below that of the full space. 
Taking into account that Gibbs's canonical hard-disk equi­
librium phase-space distribution f eq varies as (VT) - N, 

an interesting and useful relation linking the evolving non-
o 	 equilibrium phase-space density to the corresponding equi­

, I librium phase-space distribution: 
l' 

where !::.S is the excess entropy, relative to an ideal gas at the 
same energy, and the Lyapunov exponents are those of the 
nonequilibrium distribution. Though this relationship holds 
for both thermostated and adiabatic shear flows, the indi­
vidual instantaneous Lyapunov exponents are not simply re­
lated to one another. The exponents are sensitive to the rates 
at which particle trajectories are generated as well as to the 
trajectory shapes. 

In the following section, we consider the relations linking 
the dissipation to the Lyapunov spectrum, for both adiabatic 
and isokinetic shear flows. In the adiabatic case the phase­
space density fneq increases, relative to the eqUilibrium one, 
mainly due to an increase in the kinetic energy: 

There is an additional small contribution due to the momen­
tum dependence of the scale factor s. In the isomorphic i80­
kinetic case fneq increases, mainly due to the frictional con-

t~: centration of phase-space density, through the friction 
t.,A coefficient ~K' There is also a smaller contribution from the 

momentum derivative of ~K' We will see that the relative 

rate ofincrease, !::'Slk=d In(fneqlfeq)ldt, is the same in both 

cases. As the system size is increased, with the dissipation 
approaching ever more closely to the macroscopic hydrody­
namic prediction, s, T, and the dissipation rate all come to 
follow simple analytic forms [1 J]. 

IV. SHEAR-FLOW SIMULATIONS 

As is the usual practice, we consider plane Couette flow 
here, with the strength of the departure from equilibrium 

described by a homogeneous "strain rate," E=dutldy. It is 
also usual to use feedback constraint forces to extract the 
thermodynamic work done by the periodic shear. During the 
time interval t the work done by the shear stress - Pxy is 

W(t)= - V Edt'.IIP
o xv . 

By applying feedback, in the form of frictional constraint, or 
"thermostat," forces {- ~p} either the "temperature" 
rx(p2/Cmk) or the "internal energy" E=<P 
+ 2:,p 2/2m-where the "momenta" {p} are defined relative 
to the local stream velocity--can be controlled. For hard 
disks and spheres the difference between these two ap­
proaches is of order liN. 

In what follows we consider isokinetic shear-flow dynam­
ics of periodic N-body systems in two space dimensions. For 
simplicity we let the systematic shearing motion vary lin­

early in space, U x =Ey. The corresponding thermostated 
equations of motion-with the presence of a thermostat 
again indicated by a subscript O-can be written in terms of 
a parameter a which further distinguishes among families of 
shear-flow models: 

{x 	 EY Im;y 

The friction coefficient ~ in these equations of motion pro­
vides the dissipation described in the preceding section. 
"Doll's-tensor" dynamics, which we adopt in our numerical 
work, corresponds to the choice 0'=0 while "sHod" [15J 
dynamics corresponds to the alternative 0'= 1. For any a, the 
isokinetic and isoenergetic forms for the friction coefficient ~ 
are given by relatively simple functions of the particles' co­
ordinates and momenta: 

Apart from small number-dependent corrections, these fric­
tion coefficients are also directly related to the rate of diver­
gence of the phase-space density function fneq' as was out­
lined in Sec. III: 

d Infneqldt=2N~+O(lIN). 

In the adiabatic case the increase in the strain rate with time 
contributes ~K to d lnfneqldt. The decreasing value of the 
eqUilibrium distribution function, ex T- N, provides a contri­
bution N times larger. In the isokinetic case the correspond­
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ing equilibrium distribution is stationary; the thermostatting 
friction forces {-,KPh provide the entire increase in the 
phase-space density: 

Between collisions, where the interparticle forces vanish 
and the shear stress is purely kinetic, the isokinetic and 
isoenergetic friction coefficients would be exactly the same. 
During the isolated two-body collisions, the two friction co­
efficients would differ slightly, again by terms of order liN, 
only becoming identical as the number of particles increases. 
The collisional contributions make highly singular, 
a-function contributions to the motion of all the particles, at 
the instant of each two-body collision. Although these colli­
sional contributions can be ignored at low density, they pro­
vide most of the frictional dissipation at high density, for 
both shear flows and heat flow. 

Apart from the friction coefficient " DoH's-tensor dy­
namics follows from a special Hamiltonian, designed to 
model either shear or bulk adiabatic flows [26]: 

H5~1l=<P({q})+K({p})+ L "Vu:qp. 

In the plane Couette flows considered here, the correspond­
ing nonequilibrium Hamiltonian H'lfou includes the terms 

{EYPJ, one for each particle. The alternative sHod dynamics 
[16] follows from Newton's equations of motion, transcribed 
to a locally comoving frame. But because the shearing 
boundaries again prevent energy conservation, neither of 
these approaches is more truly "fundamental" than the 
other. The Doll's-tensor approach has the computational and 
conceptual advantage that it involves no explicit contribu­

tions to the motion from the "strain acceleration" ti, in the 
event that the strain rate varies with time. 

Any of the families of many-body dynamics with 0 ~ a 
~ 1 deseribes a simulation type which provides a shear vis­
cosity in agreement with Green-Kubo linear-response theory 
[15,16] at small strain rates. In the usual stationary-state 

simulations the strain rate is fixed, at EO, and , is nonzero. 
For hard disks the special adiabatic friction-free scaling of 

the motion equations, including a variable strain rate, Eo 
EO, is suggested by the equations of motion. Because both 

the impUlsive forces {F} and the equivalent accelerations 

{p/m} are separately proportional to the collision rate, 0:: T 1I2, 

as well as to the velocity, again o::T1I2
, both the forces and 

the accelerations are proportional to temperature. If, in addi­
tion, the strain rate were chosen to be proportional to T1I2 

then the corresponding adiabatic trajectories, with zero fric­
tion, become isomorphic to their thermostated twins: 

{Ea=SEO ;,=O}=*{y(x) }o={Y(x )}Q. 

The treatment of shear-flow collisions themselves pre­
sents a difficulty which cannot be avoided. At high density 
most of the transport of momentum and energy occurs 
through isolated 8-function collisions linking pairs of par­
ticles. Trajectory isomorphism requires that each collision 
must lead to the same changes in the scaled velocities: 

Otherwise, a rescaling of all the adiabatic disk velocities 
would be required whenever two disks collided. This diffi­
culty only disappears in the large-system limit, where a'--' 
nearly continuous collision frequency leads to a nearly con­
tinuous variation of the kinetic-energy ratio s2=(KaIKo). 

To achieve some simplicity in a practicable molecular dy­
namics simulation, with a few hundred particles, it is essen­
tial that the "adiabatic" hard-disk collisions follow the iso­
kinetic collision rule. Otherwise not only the strain rate but 
also all the particle momenta would have to undergo artificial 
discontinuous changes whenever any pair of disks collided. 
We make this arbitrary choice in discussing thermostated 
simulations in terms of an adiabatic analog, in the next sec­
tion. 

V. NONEQUILIBRIUM HARD-DISK SHEAR 
SIMULATIONS 

In thermostated systems of hard disks or spheres the col­
lisions need to be treated specially [27-30]. The external 
shear together with the isokinetic constraint affect the time 
evolution of the particles during their infinitesimally short 
impulsive collisions. Exact collision rules can be derived 
[22] by using an approach proposed by Hoover and Kratky 
[27,28J and applied to the sheared Lorentz gas by Petravic, 
Isbister, and Morriss [29,30]' The main idea is to replace the 
hard interaction by a smooth but very steep potential. One 
can, for example, assume that particles repel one another 
with a constant force whenever their distance is less than ~ 
the particle diameter. For F --+ 00 the equations of motion dur­
ing a two-particle collision simplify considerably and can be 
solved analytically. The postcollisional momenta are then re­
lated to the precollisional momenta by a one-dimensional 
implicit equation, which can be easily solved numerically. 
Corresponding exact collision rules can be derived also for 
tangent-space dynamics. We note the isokinetic, isoener­
getic, and adiabatic collisions differ only by terms of the 
order liN. 

We confined our simulations to a single convenient den­
sity, one-fourth the close-packed density, and to a strain rate, 
E=O.75u(mlkT) 112, large enough for muItifractal effects to 
be important, but without entering the "string-phase" re­
gime, which appears at large strain rates. There is nothing 
specially complicated about the simulations. For conve­
nience, we choose the particle mass m, Boltzmann's constant 
k, the temperature T, and the disk diameter u all equal to 
unity. The shapes of the periodic systems we study are ini­
tially square. 

We accumulated accurate Lyapunov spectra and mea­
sured the corresponding dissipation rates for systems ranging 
from N = 2 to N = 196. The largest Lyapunov exponent, the 
sum of all the positive isokinetic exponents, and the loss of 
phase-space dimensionality !:J.D, are all given in Table 1, 

along with the mean dissipation rate <') (SI2Nk), and the 
fluctuation of its kinetic part. Additional studies of the larg-~ 
est Lyapunov exponent AI' not included in Table I, estab­
lished, first, that the number-dependent part of that exponent 
is accurately proportional to N- 1I2

, and second, that conver­
gence of the full spectrum of exponents (which requires the 
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TABLE 1. The largest Lyapunov exponent, Aj , the sum of the positive Lyapunov exponents, 2:A+, and 
the dimensionality loss per phase-space dimension, I1DI(4N+ I), are given, followed by the time-averaged 
values of the friction coefficient ~ and the fluctuations of the streaming contributions of r All the data are for 
N hard disks at a density equal to one-fourth the close-packed density, and a reduced strain rate of 0.75.- N A1 2:A+ IN I1DI(4N+l) W N(80 2

) 

2 2.78 1.39 0.037 0.298 0.258 
4 2.10 1.70 0.051 0.275 0.178 
9 2.06 1.83 0.058 0.265 0.118 
16 2.14 1.86 0.061 0.270 0.123 
36 2.25 1.87 0.062 0.271 0.123 
64 2.31 1.87 0.062 0.270 0.122 
100 2.35 1.87 0'{)63 0.272 0.123 
144 2.38 1.87 0.062 0.271 0.124 
196 2.38 1.87 0.062 0.270 0.122 

solution of 4N+2 sets of 4N+ 1 coupled differential equa­
tions for N hard disks) is not currently practical beyond N 

196. The extrapolated spectrum for N=oo, based on an 
N-- 112 extrapolation, is shown in Fig. 2. The gap between the 
positive and negative branches of the spectrum is notewor­
thy. 

In view of our finding that the nonequilibrium fluctuations 
behave well, as N- 1I2 in the large-system limit, we expect 
the N-body dynamics to approach a well-defined large­
system limit corresponding to a constant friction coefficient 
C. When fluctuations in the isokinetic dissipation rate can be 
ignored, so that {= {o is constant, the relationship between 
the adiabatic and isokinetic time scales becomes simple: 

d lnsldto = {o-ts = e(oto,dto Idta=s = etoto-tta 

=[l-e- ttO]/{. 

An amusing consequence of this relationship linking the 
adiabatic and isokinetic time scales is that the infinitely long 

2.0 

1.0 

<-< 0.0 

-1.0 

-2.0 r 

-3.0 i 

0.0 0.4 0.60.2 
it1m"" 

FIG. 2. Lyapunov spectra for N= 16,36,64,100,144,196. The 
vanishing exponents and the corresponding negative exponents 
have been omitted. Lyapunov spectra for systems of 100 and 196 
hard disks are used to extrapolate to the large-system limit based on 
a number dependence of order N- 1I2. The dashed line indicates this 
extrapolated "hydrodynamic limit" spectrum. 

isokinetic trajectories correspond to only a finite time in the 
adiabatic case. Nonetheless, the adiabatic trajectories include 
an infinite number of collisions. In fact, the effect of finite­
system fluctuations on this scaling relation limits its useful­
ness to finite times, of the order of InN. This painfully slow 
convergence to the large-system limit is characteristic of 
fractal phase-space distributions. 

VI. CONCLUSIONS 

We have successfully characterized hard-disk shear flows 
which exhibit a detailed trajectory isomorphism linking ther­
mostated and adiabatic flows. The fractal phase-space struc­
tures already known to be generated by thermostated simu­
lations describe also their adiabatic analogs. We found that 
the individual instantaneous Lyapunov exponents for the two 
flow types are not simply related to each other. The summed 

spectra do satisfy a simple scaling rule, aSlk= LA;, 
where as isGibbs's entropy, relative to that of an ideal gas 
with the same internal energy and at the same density. The 
number dependence of our simulation results confirmed our 
expectation, based on the central limit theorem, that the ef­
fect of fluctuations on intensive properties would decrease as 
N- 1I2• For thermostatted systems this finding suggests that 
the large-system instantaneous dissipation rate, as well as the 
other hydrodynamic state variables, approach those of a sys­
tem with a constant friction coefficient, as N -t 00. Provided 
that this is true, fluctuations can be ignored and the time­
scaling relationship can be simplified, as shown in the pre­
ceding section: 

where the friction coefficient {o corresponds to the total dis­
sipation, including collisional contributions. The multifractal 
nature of the isokinetic distribution applies also to that of the 
instantaneous adiabatic phase-space distribution function. 
Thus the present work strongly suggests that the fractal 
structure of large-system thermostated flows also represents 
the limiting structure of adiabatic shear flows. 

In the present work the friction coefficient linking the two 
types of trajectories incorporates only the streaming contri­
butions to the shear stress. We expect that exactly similar 
considerations would apply as the system size is increased, 
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so that fluctuations in the rate of phase-space collapse (in the 
thermostated case) and equilibrium phase-space growth (in 
the adiabatic case) can likewise be ignored. 
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APPENDIX 

We demonstrate numerically the trajectory isomorphism 
discussed in the text, for a symmetric pair of hard disks 
undergoing shear according to Doll's-tensor dynamics. The 
motion equations are as follows: 

{x= EY+ Pxlm;y 1m: 

Px= ?Px ;Py 	 F,- EPx ?py}, 

where the isokinetic friction coefficient is a ratio of two­
particle sums: 

The adiabatic equations are exactly similar except that the 

strain rate Evaries with the kinetic energy: 

3 

2 

1 

;>, 0 

-1 

-2 

-3 

-3 -2 -1 	 o 2 3 
x 

FIG. 3. A pair of time-reversible hard-disk trajectories {y(x)} 
according to both isokinetic-constant-strain-rate--dynamics and 
adiabatic-scaled-strain-rate--dynamics. as is described in the Ap­
pendix. 

E(t) E(O),ss[K(t)IK(O)]In. 

The forces {F"F,} represent the hard-particle collisions. 
We display a simpie numerical example in Fig. 3. The initial 
"momenta" of the two disks, which describe their motion 
relative to the local stream velocity, are taken to be 
{::t51l3,::t 12113}, so that the initial comoving kinetic energy 
is unity. The strain rate is O.25fY(mlkT) 1/2, one-third that 
used in our many-body simulations. The trajectories shown 
in Fig. 3 correspond to an isothermal time interval of 3.0000 
and to an adiabatic time interval of 3.4762. Both sets of 
motion equations yield the same laboratory-frame trajecto­
ries, as shown here. 
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