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Large-system hydrodynamic limit for color conductivity in two dimensions 

Wm. G. Hoover and Kevin Boercker 
Department of Applied Science, University of California at Davis-Livermore and Lawrence Livermore National Laboratory, 

Livermore, California 94551-7808 

Harald A. Posch 

Institute for Experimental Physics, University of Vienna, Boltzmanngasse 5, Wien A-J090, Austria 


(Received 19 August 1997) 

Nonequilibrium simulations of two-dimensional shear flow have shown that the viscosity is well defined in 
the large-system "hydrodynamic" limit. Those simulations, with up to a quarter million particles, were carried 
out at fixed energy and strain rate. Here we explore the mass current response to an external "color field" E 
for N particles, half with "color charge" + 1, and half with -1. The fixed-field large-N "color conductivity" 
K=( vIE), with the energy per particle held constant, likewise indicates a well-defined large-system limit at 
moderate fields. [S 1063-651 X(98)06404-6] 

PACS number(s): 05.60.+w, 46.10.+z 

I. INTRODUCTION 

It was recently established, through extensive computer 
simulation over a wide range of system sizes [1,2J, that the 
shear viscosity is a well-defined transport coefficient for a 
dense two-dimensional fluid. This is an interesting result be­
cause theoretical considerations [3,4J suggest that the usual 
transport coefficients are undefined in two-dimensional sys­
tems. That argument is based on the divergence of the 
Green-Kubo integral expressions. Because no boundary con­
ditions are specified, despite their relative importance, in two 
dimensions, the actual situation is not completely clear. It 
may well be that the large-N shear viscosity, though finite 

and well behaved for any fixed strain ratei:, diverges as 

lni: for sufficiently small strain rates. Although shear flows 
show no peculiarities, some evidence has accumulated that 
heat flows are anomalous in two dimensions. The artificial 
Evans-Gillan field [5J, which is often used to generate a heat 
current, provides an unstable flow in two-dimensional fluids, 
even for vanishingly small fields, when the heat flow is sta­
bilized by the usual homogeneous thermostat forces [1,6,7]. 
Though a phase-separating two-current instability has been 
seen in color conductivity simulations at high fields [8,9J, the 
stability of the flow for larger systems, at moderate fields and 
for long times, has not been investigated. 

Very recently it has beensh()wn that hard-disk or hard­
sphere trajectories in nonequilibflum thermostated simula­
tions are identical to those generated in related adiabatic 
Hamiltonian simulations, though the time required to trace 
out the trajectories is quite clifferent [10]. Thus the computer­
generated trajectories for thermos tatted systems, together 
with the mu1tlfractal phase-space structures which they gen­
erate, have fundamental significance for statistical mechan­
ics. With this in mind we have extended our earlier small­
system simulations of the "color conductivity" K for soft­
disk systems [9]. This conductivity is the ratio of the (time­
averaged) particle velocity to the strength of the accelerating 

field, where half the particles are accelerated to the right, and 
the remainder to the left, by the field. We investigate here 
whether or not this color conductivity, 

behaves in a peculiar way, perhaps symptomatic of a Green­
Kubo divergence, as the number of particles is increased. A 
stationary nonequilibrium state is maintained, allowing us to 
determine the color conductivity, by using an isoenergetic 
thermostat variable {, as is explained in Sec. II, which is 
devoted to our numerical results. Section III contains our 
conclusions. 

II. COLOR CONDUCTIVITY SIMULATIONS 

The simulations were carried out in the usual way 
[5,11,12J, using a special very smooth short-ranged repulsive 
pair potential, 

designed to minimize numerical errors. This soft-disk inter­
action has three vanishing derivatives at the cutoff distance, 
r/ a= 1. Otherwise, it is typical of soft repulsive interactions. 
With both the reduced number density Na2/V and the re­
duced energy per particle (CD -I- K)/ N € set equal to unity, the 
collision diameter is about four-fifths of the interparticle 
spacing. Thus the model system represented here is a dense 
fluid, which we confine by using periodic boundaries. 

The equations of motion were solved with fourth-order 
Runge-Kutta integration, using a time step O.Olcr(ml €) 112. 

There were no significant changes when a time step half that 
size was used. A time-reversible friction coefficient { was 
chosen to constrain the internal energy to its original value: 
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FIG. L Time development of 1600 soft disks at a field strength of 0.25E/u. The particles initially were arranged in two strips parallel to 

the field direction, The figure shows the right-going and 
essentially complete at a time of 1500u(mlE) 112 

1m) 

For convenience, in our numerical work, we set the particle 
mass m. as well as the potential parameters (T and E equal to 
unity. We chose the strength of the external field E, which 
drives the mass current, so as to approximate the dissipation 

rates, 0.01 <SINk<0.08, of our earlier shear flow simula­
tions [1,2]' As is usual, the pairs of interacting particles were 
stored in a "linked list,' constructed at every time step, so 

particles at reduced times of 50. 550, 1050. and 1550. Mixing is 

that the required computer time was proportional to the num­
ber of particles rather than to N2 , The largest of the 
Lyapunov exponents, A1, \vas also measured, because the 
shear flow work indicated that barh the viscosity coefficient 
and the largest Lyapunov exponent have deviations of order 
N- from the corresponding large-system limiting values. 

The color conductivity simulations presented no special 
difficulties. In heat-flow simulations. with a relatively soft 
potential and the usual thermostats. a bothersome instabilit) 
can occur, with one particle taking up most of the systen1 
energy and traveling through its fellows at speed. 'Nt 
are currently investigating the sensitivity of this instability lC 

thermostat type, with Markus Hartmann. the CCllO 
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TABLE 1. Color conductivity (mean velocity, divided by field strength E) for N two-dimensional par­
ticles interacting with the soft potential ¢( r < u) 100€[ 1 (r/u)2]4. The largest Lyapunov exponent Al 
and potential energy per particle <P/N are tabulated for a total run time of t. The potential energy is given as 
a sum of like and unlike interactions. The total energy per particle and area per particle are both taken to be 
1.00 in reduced units. Comparable data for N = 100 are in excellent agreement with the considerably shorter 
simulations described in Ref. [11]. A simulation with N = 102 400 at the higher-field strength was unstable. 

N Eul€ t( €/m) 112/ u AICml€) 1/2u K(m€)ll2/ u <PINE 

J 	 4 0.25 100000 3.31 0.068 0.085+0.170 
16 0.25 50000 3.06 0.103 0.144+0.163 
36 0.25 50000 3.07 0.127 0.149+0.158 

~ " 	 64 0.25 20000 3.07 0.143 0.150+0.154 

100 0.25 20000 3.08 0.154 0.151 +0.153 

256 0.25 10 000 3.09 0.179 0.151 +0.150 

'400 	 0.25 10 000 3.10 0.188 0.150+0.150 
1600 0.25 10 000 3.09 0.219 0.148+0.146 
6400 0.25 10 000 3.09 0.228 0.144+0.143 
25600 0.25 14000 3.09 0.235 0.142+0.141 
102400 0.25 10 000 3.09 0.237 0.140+0.139 
4 0.50 100000 3.30 0.069 0.085+0.170 
16 0.50 50000 3.06 0.101 0.144+0.164 
36 0.50 50000 3.06 0.128 0.150+0.156 
64 0.50 20000 3.06 0.144 0.150+0.153 
100 0.50 20000 3.06 0.156 0.151 +0.151 
256 0.50 10 000 3.06 0.186 0.150+0.146 
400 0.50 30000 3.06 0.194 0.148+0.145 
1600 0.50 20000 3.03 0.216 0.142+0.136 
6400 0.50 10000 3.02 0.239 0.136+0.128 
25600 0.50 10000 3.00 0.259 0.131 +0.123 

t 

I 

FIG. 2. Snapshot of 102 400 soft disks at a field of 0.50€/ u, showing phase separation. The two species are shown as two shades 
of gray. The while patches are free of particles, OH""""'''''''5 a local pressure near zero. 
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FIG. 3. Snapshot of 1600 soft disks at a field strength of 
0.50d cr. The particles initially were arranged in two strips parallel 
to the field direction. Such an arrangement is quite stable, with the 
fluid into two rapidly moving parallel slabs, as shown here. 

conductivity problem is simpler than the heat-flow problem, 
and more stable-because the external forces are not velocity 
dependent-high-field color conductivity simulations have 
similarly shown a "two-stream" instability, with segregation 
of right-moving and left-moving particles into separate mas­
sive clumps. See the description in Ref. [8]. It is possible that 
such a phase separation could be understood by an extension 
of free-energy ideas taken from equilibrium thermodynam­
ics. If the separated phases could cool sufficiently for the 
resulting free energy drop to offset the loss in mixing en­
tropy, then separation should occur. For the dense fluid state 
which we study here, losing nearly the entire kinetic energy, 
0.7NE, would be required to offset the contribution of the 
mixed-phase mixing entropy to the free energy, - NkT In 2. 

In our initial calculations, at the lower of the two fields we 
investigated, E 0.25 Ei CT, and with the two particle "col­
ors" initially interspersed on a square lattice, checkerboard 
fashion, we found no evidence of clumping. To check this 
finding, we carried out additional calculations in which the 
two colors were initially segregated into two strips parallel to 
the x axis. These strips rapidly homogenized and disap­
peared, reinforcing out impression that the flow remains 
stable for large system sizes with E=0.25Eh]'. Figure 1 
shows a typical series of snapshots, starting from an initial 
configuration with the two particle types arranged in two 
broad two parallel strips, NX(NI2). It is interesting that si­
mu'ltaneous snapshots, showing the direction of each parti­
cle's velocity rather than its color, indicate relatively small­
scale transient clumping at long times; but investigation 
reveals that the particles in the "clumps" are a relatively 
homogeneous mixture of the two colors, with those of the 
slightly predominant species entraining the other. This 
clumping simply indicates the inability of the two fluids to 
interpenetrate, and is quite distinct from the phase separation 
which occurs at higher fields. The separation of potential 

energy into like-color and unlike-color pairs (see Table I) is 
a useful indicator of phase separation, somewhat simpler 
than the corresponding pair distribution functions discussed 
in Ref. [8]. In the lower-field case the ratio is not far from the 
ideal-mixing value of [<plike/<PunlikeJ [1 (2IN)]. The larg­
est Lyapunov exponent for these simulations likewise shows 
very little size dependence, in contrast to its behavior in the 
higher-field simulations discussed next. 

At a field of 0.50EI (]' the situation is different. Larger 
systems show marked phase separation; see Fig. 2. The 
Lyapunov exponent for these larger systems is also signifi­
cantly smaller, indicating a reduction in mixing activity in 
the phase space. The ratio of like to unlike energies also 
begins to deviate significantly from the ideal-mixing value, 
for systems of a few hundred particles or more. Finally, sys­
tems started out with the two colors arranged in strips paral­
lel to the field direction freeze, with most of the energy taken 
up by the streaming velocity of the two resulting solid 
chunks of material; see Fig. 3. 

It is clear from these data that a nonequilibrium phase 
transition separates the two field strengths. This finding cor­
roborates that of Ref. [8], in which simulations were carried 
out at fixed current rather than fixed field. The lower-field 
conductivity data shown in Table I, when plotted as a func­
tion of N- lI2

, show no significant deviation from a straight 
line, with an intercept value of O.24oCT(mE)-112. The analo­
gous linear dependence of the transport coefficient on the 
width of the system was likewise observed in our shear vis­
cosity studies. 

An unexpected and significant finding emerged from an 
analysis of our Lyapunov instability studies. We found that 
those particles which make the largest contribution to the 
maximum exponent, il. 1, tend to be localized in space. Figure 
4, for N = 25600, is typicaL The top of the figure shows a 
homogeneous color distribution and a clumped velocity dis­
tribution. The bottom of the figure shows, more darkly, those 
particles which make an above-average contribution to hI' 
first in coordinate space, and then in momentum space. The 
clumps which result are nearly the same for the two repre­
sentations. We could find no particular properties of these 
particles, such as temperature, energy, or stress, which were 
correlated with the instability. It is quite interesting to see 
macroscopic modes so highly correlated with microscopic 
dynamic instabilities. A detailed study of this correlation be­
tween microscopic dynamical instability and macroscopic 
modes should be taken up for a simple unstable hydrody­
namic flow such as Kolmogorov or Rayleigh-Benard flow. 

III. CONCLUSIONS 

Both color conductivity and shear viscosity have well 
defined large-system limits, for a fixed value of the drivin1 
from equilibrium, for dense two-dimensional fluids witl 
short-ranged soft repulsive forces. The results are reproduc 
ible and independent of the initial conditions. At highe 
fields we confirmed the well-known two-phase instabiEt: 
studied by Hansen and Evans [7J and Evans, Lynden-Bell 
and Morriss [8]. A phenomenological representation of thes 
results is currently lacking, due to the failure of any theory t, 

treat phase separation under nonequilibrium conditions. Thi' 
together with the correlation linking microscopic Lyapuno 
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FIG. 4. Four views of a typical configuration of 25 600 particles at a field strength of O.25EI cr. In the left column the colors indicate (a) 
panicle color (black indicates a positive field force and gray a negative field and (b) direction of motion (black denotes the 
"right" -moving velocity and grey the "left"-moving velocity). In the right column the colors indicate those particles making above-average 
contributions (black) to A I in (e) configuration space and (d) momentum space. 
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