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woneuitibrium simulations with time-reversible thermostats provide multifractal phase-space structures. Alternative
_sustic approaches to thermal boundaries would seem 1o rule out such fine-grained structures. Here we discuss the
g of this difference and illustrate a possible resolution of it for a hybrid stochastic-and-deterministic version of the
T ANE

.-ymensional Galton board problem. (©) 1998 Elsevier Science B.V.
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\fore than 10 years ago it was established, com- two-dimensional triangular-lattice array of scatterers.
_.uonally, that reversibly-thermostatted nonequi- Nonequilibrium steady states can be achieved for this
-rym steady states lead to multifractal phase-space model by incorporating in it a “‘thermostat” capable
-tures. The relative rarity of nonequilibrium states of removing the energy gained from the accelerating
iied by this fractal structure is consistent with field [6-12].
- econd law of thermodynamics [1,2]. On the If we choose the x axis parallel to the field direc-
ot hand, there are equally long-standing theoret- tion, and perpendicular to one of the three sets of lines

of scatterers, then the conventional Hamiltonian equa-

s results suggesting that nonequilibrium steady
tions of motion for the moving mass point are as fol-

_<en give rise to continuous phase-space distribu-

as [3.4). How could both these results - fractal lows [6,71,
- the one hand, and continuous on the other — be
~2? To shed some light on this question we con- t=pi/m, y=py/m, p.=F.+E, p=F.

et here the simplest model which combines chaos
« th dissipation so as to provide an interesting steady
e, the “Galton board”. The model is based on the

The force F describes the interaction of the moving
mass point with the periodic array of hard-disk scatter-
ers and the accelerating field is E. The energy gained
from the field can be extracted — so as to obtain a
nonequilibrium steady state - by introducing into the
equations of motion (i) a frictional force, —{p, with
either constant [8] or time-reversible [6,7,9) friction

nused to study probability densities, beginning in
73 [3]. In our version of the Galton board, a singie
“oving mass point is accelerated through a periodic

5-9601/98/% - see front matter (€) 1998 Elsevier Science B.V. All rights reserved.
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coefficient £, or (i1) inelastic scattering, as described
by a coefficient of restitution [ 10]. Each of these ap-
proaches leads to a multifractal phase-space distribu-
tion [11,12], as evidenced by numerical analyses of
the Poincaré sections describing the collisions.

The information dimension D of such a section can
be estimated by dividing the Poincaré section into bins
of width €. Then, the limiting small-¢ bin-size depen-
dence of the probability density f, or, equivalently, the
measure u, gives the information dimension [ 13,14],

Dlne « {Inu.) = Z,ue In g,
= /flndeSection .

Thus the information dimension follows from the ap-
parent phase-space probability for occupying a bin of
width € and sectional volume d/ secrion,

fe dTSection NS .

In the isokinetic Galton board, the information dimen-
sion so found varies smoothly with the field strength
E, decreasing quadratically from the zero-field dimen-
sion, D(0) = 2, for small fields, and, for larger fields,
gives rise to limit cycles, with dimensionality zero in
the Poincaré section.

As Lebowitz (see the discussions in Ref. [3])
pointed out to us, Goldstein, Kipnis, and Ianiro [4]
have proved that the fine-grained probability density
fr o u is continuous for a particular many-body
problem with stochastic thermal boundaries. And it
is certainly plausible that choosing just the right se-
quence of “random” velocities at a thermal boundary
could lead to any conceivable phase-space configu-
ration. On the other hand, it seems to be usual that
a muitifractal phase-space distribution requires, for
its support, the entire accessible phase-space dimen-
sionality, so that the “embedding dimension™ of the
multifractal is the same as that at equilibrium, while
the “information dimension”, discussed further below,
is smaller. Such a situation occurs in the case of the
isokinetic Galton board [6,7].

In “isokinetic” Galton board simulations [6,11],
the motion is entirely deterministic, but with a (time-
reversible) frictional force, —{p, added to the equa-
tions of motion to keep the kinetic energy constant.
This restriction confines the possible collisions to a
two-dimensional region. Each collision, between the

moving mass point, at rpgin;, and one of the fixed
terers, at Fscanerer, Can be characterized by the nesi-
angles, {«, B}, where @, with 0 < a < T, gives
direction of the vector rps = Fpoint ~ Fscatterey, rela.
to the field direction, and 4, with —L7 < g ff‘*
gives the direction of the point’s velocity just aﬁ:
colliding, relative to the same vector Fps.

In systems with “stochastic” boundaries, the p
tion suffers a discontinuous velocity change g i,
boundaries: the old particle velocity is replaceq gy,
new one, chosen from a Maxwell~Boltzmann gje:
bution characteristic of the boundary. This is the
for which a theoretical analysis, establishing the Cong
nuity of the resulting phase-space distribution for he.,
conduction, has been completed [4]. To CaﬂCaturg;
“stochastic” boundary in the mass flow described
the Galton board problem, we divide the possible harg,
disk scattering collisions into two classes: (i) detey.
ministic and elastic for api, < @ < 77, with the radig
momentum reflected and the energy conserved,
(ii) “stochastic” for 0 < a < an, with the moy
point’s post-collisional direction - given by the ang
B — random, but with the post-collisional speed for the
stochastic collisions a fixed constant, pg/m. Th
the kinetic energy varies in this caricature probleg
we continue to use the two-dimensional Poincaré S0
tion for displaying the point-scatterer collisions. Such
a projection operation would tend to reduce, rathe
than enhance, any fractal character in the distributigg,
The projection operation is analogous to combinin:
strictly isokinetic distributions, but with slightly di.
ferent fields. The collisions shown, from a long time
series, are all equally likely. See Fig. 1, which showg
typical sequences of 100000 collisions, generated i
this way, for two different locations of the boundary
angle, @min, which separates the deterministic colti-
sions from the stochastic ones. There is a stfong visual
resemblance between these distributions for stochastic
hybrid dynamics and the more familiar [6] isokinetic
multifractals, one of which is shown in Fig. 2.

The approximate information dimensions, {D.}, for
million-collision data sequences similar to those illus-
trated in these two figures, were estimated from the
quotients [14],

D( = <1H,LL€>/II]€,

and are given in Table 1. The convergence of the ni-
merical analysis strongly suggests that the distribu-
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Collision sequences, {a,sinB}, for a reduced field strength of 3.0, using two different widths for the stochastic region,
T {'1%’ é} Within the stochastic strip, which is not shown in the figure, the speed just after collision is set equal to py/m
e dirgction is chosen at randomn. The density of the scatterers is % the close-packed density. The abscissas correspond to the region

« < m and the ordinates to the range —im < g < in

pression: not only the fully-deterministic isokinetic
Poincaré section, but also its stochastic cousins, ap- :
pear to be multifractals, though the information di-
mensions of the stochastic sections are considerably
closer to that of the full space. See again Table 1. Be- '
cause kinetic energy varies in the stochastic case, a i
complete description of such collisions would require
a third dimension, such as speed. We believe that this
additional information cannot alter the conclusion that
our caricature of a “stochastic” phase-space distribu-
tion is a multifractal.

In response to one referee’s suggestions we wish to
emphasize that many results in statistical mechanics
apply strictly only in limiting cases, such as truly in-
finite sampling times or an infinite number of degrees
of freedom. The deviations from such limits can be

. Typical collision sequence, {a,sin B}, for a reduced field quite small, of order e‘ir or o™ or an inverse power
“-h ot 3.0, using the usual isokinetic thermostat, which con- of ¢ or N. Thus numerical results can appear to ap-
. the moving particle’s speed to the fixed constant pp/m. proach such limits even though they differ by small .
lerwiiy of the scatterers is 3 the close-packed density. The terms. The resuits presented here suggest that stochas-
4 coresponds to the region 0 < @ < ar and the ordinate (o tic boundaries may well give phase-space distributions

.ol !
¢ -ym < B < g

resembling known multifractal distributions. Assess-
ing this suggestion 1S an outstanding, quite difficuit,

“~are multifractal. The numerical work is best car- theoretical task. We agree with the referee that the nu-
:out by scaling the deterministic portion of the merical work cannot be wholly convincing, particu-
" section into a unit square. The resulting nu- larly in view of the fact that the numerical informa-

~wal values are quite consistent with a visual im-
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Table 1

Information dimension as determined with equal rectangular bins,
using the collision data of Figs. | and 2, expanded to one million
collisions. The apparent information dimensions D = {Inue)/Ine
are tabulated for 167, 322, and 647 Poincaré section bins. The first
two calculations are stochastic, while the last, with no stochastic
region, is isokinetic. The angle oy, describes the width of the
stochastic boundary region, as is described in the text. All the
data are for a fieid strength of 3;73;’”10, where o is the scatterer
diameter and the scatterer density is four-fifths the close-packed
density.

Qmin Dyg Dy Dga

57 1.961 1.960 1.960
T 1.974 1.973 1.972
0.0 1.861 1.850 1.844

tion dimensions are not so far removed from the em-
bedding dimension. The results are both suggestive
and provocative. Since completing this work we have
studied the heat conductivity of a one-dimensional an-
harmonic tethered chain resembling the “dingaling”
model [15]. By using the heat transfer at the chain’s
hot/cold stochastic boundaries to estimate the local
phase-space expansion/contraction we have obtained
numerical results quite consistent with a multifractal
distribution.

How could a stochastic boundary generate a multi-
fractal section? Even though Hamiltonian motion con-
serves phase-space volume, it distorts the shapes of
comoving volume elements, Thus, in the stochastic
replacement of an old velocity distribution by a new
equilibrium one, the projection of changed velocities,
into momentum space, ¢an give a net increase or de-
crease in phase volume. This violation of Liouville’s
theorem is confined to the stochastic regions of phase
space. Though such a replacement does not immedi-
ately destroy the continuity of a smooth distribution,
it seems conceivable that repeated iterations of the
stochastic-collision process, like iterations of the gen-
eralized baker map, can lead to multifractal limiting
distributions. Such an explanation is consistent with
the stochastic Galton board data, presented here. If
stochastic boundaries can violate Liouville's theorem
locally, leading, with iteration, to multifractal struc-
tures, it is also possible that the apparent conflict be-
tween the stochastic and deterministic approaches to
nonequilibrium steady states can be resolved defini-

Fig. 3. Subset of a typical collision sequence, {a,sin 8). 'ﬂ:a
points shown are taken from those trajectories with 80 of “‘0‘! )
successive collisions in the deterministic region, omitting the firgt”
five and the last five points, under the conditions of Fig. | wigy
Xmin = T](;ﬂ'- :

tively, through careful analyses of examples sum],,
to those considered here. The situation seems to yg
analogous to a dissipative map, in which the volume
change associated with dissipation is provided by the
boundary mapping. g

It seems also likely that the phase-space structures
found here can be related to the “escape-rate theory”
for open systems, discussed by Dorfman, Gaspard, and
Nicolis [16,17]. In that theory, the rate of informa.
tion gain about the initial condition, the “Kolmogorgv~
Sinai entropy”, associated with phase-space flows, i
separable into two parts, (i} that described by the pos-'
itive Lyapunov exponents and (ii) that described by
the “escape rate”. This rate is also directly related to
a thermodynamic dissipation rate, Sexema/k. In the
present stochastic model the rate of “escape”, into the
stochastic “boundary” region, is determined by the
magnitude of the angle agp. The collision sequences
which can avoid that stochastic region indefinitely ev-
idently make up a “chaotic-saddle repellor”, with an
information dimension D less than that of the embed-
ding space. The Galton board with stochastic bound-
aries can be viewed as an open system: a particle
reaching the thermostat region 0 < a < am, escapes
and is replaced by another particle with a thermalized
momentum. A first approximation to such a saddle re-
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jor 18 shown in Fig. 3, where only those Poincaré
_nts are shown which belong to uninterrupted se-
epees of at least 80 consecutive elastic collisions.

' ;z should be mentioned that our attempts to cre-
. gmilar repellor structures through strai ghtforward
:wraJizations of time-reversible maps [ 18], includ-
«ochastic strip regions, failed. We expect that, with
. ;thcr diligence, such a map could be constructed, to
imp;emem the many significant and highly interest-
., qudies carried out by Breymann, Tél, and Vollmer

‘370 but we have not yet found such a map.
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