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Smooth particle applied mechanics provides a method for solving the basic equations of continuum mechan­
ics, interpolating these equations onto a grid made up of moving particles. The moving particle grid gives rise 
to a thoroughly artificial numerical heat conductivity, analogous to the numerical viscosities associated with 
finite-difference schemes. We exploit an isomorphism linking the smooth-particle method to conventional 
molecular dynamics, and evaluate this numerical heat conductivity. We find that the corresponding thermal 
diffusivity is comparable in value to the numerical kinematic viscosity, and that neither is described very well 
by the Enskog theory. [S1063-65IX(96)13511-X] 

PACS number(s): 05.60. +w, 02.60. -x, 05.20.-y 

I. INTRODUCTION 

A simple numerical technique for solving the continuum 
equations, smooth particle applied mechanics SP AM, retains 
the simplicity and stability of molecular dynamics, but is 
applicable to macroscopic problems [1-3]. SPAM replaces 
the partial differential equations of continuum mechanics 
with simpler, but equivalent, ordinary differential equations 
for particle motion. The method has been successfully ap­
plied to simple thermomechanical problems in fluid mechan­
ics, including the Rayleigh-Benard instability of a conduct­
ing compressible fluid, heated from below in a gravitational 
field [4]. In the present work we stress an unusual aspect of 
this particle-based continuum method, a thoroughly artificial 
numerical heat conductivity analogous to the thermal con­
ductivity of atomistic fluids. Though corresponding numeri­
cal viscosities are well-known in finite-difference schemes, 
numerical heat conductivities have not been discussed previ­
ously. These numerical transport coefficients are analogs of 
the eddy viscosity and eddy conductivity of simple turbu­
lence models [5]. 

We begin this paper by reviewing the smooth-particle 
method; then we describe and apply Ashurst's simulation 
scheme to the measurement of this numerical heat conduc­
tivity. We study dense-fluid states with known viscosities 
and compare our results to the predictions of the Enskog 
theory [6] and turbulence models. Our conclusions appear in 
the final section. 

II. SMOOTH PARTICLE APPLIED MECHANICS 

SPAM is a particle-based interpolation scheme applicable 
to both fluids and solids. The continuum density, velocity, 
and energy at any space point are all to be evaluated by 
summing suitably weighted contributions from nearby mov­
ing particles. The contributions of these nearby particles to 
the sums are proportional to their weighting functions 
{wCr)}, where the {r} are the distances between the space 
point and the various nearby particles. 

The weighting function w(r<h) is normalized; its inte­
gral over all r is unity. Typically w has a range h on the 
order of two or three interparticle spacings. The example 
flows we consider in the present work incorporate the sim­
plest such weight function, Lucy's [2], with a range of 3 and 
at a number density of unity. Normalized in two space di­
mensions, the Lucy function is 

wLUcy{r)=(511Th 2)[1 +3(rlh)][1-(rlh)]\ r<h. 

The very smooth character of Lucy's weight function is typi­
cal of those used in smooth particle simulations. This 
smoothness property implies that both Vw and VVw are 
continuous, guaranteeing the continuities of the first and sec­
ond spatial derivatives of interpolated continuum variables, 
such as Vp, V2 T, and V· (T. 

The continuum equation of motion, pr= V . (T, expresses 
the acceleration in terms of the divergence of the stress ten­
sor (Y. The equivalent smooth-particle form gives the accel­
erations of individual particles in terms of individual stress 
tensors and densities, weighted with gradients of the corre­
sponding weight functions. The equation of motion for par­
ticle i, for example, includes a sum over all particles {j} 
lying within the range h of particle i: 

The simplest possible example problem using this 
smooth-particle equation of motion describes the flow of an 
ideal gas with (T oc p2. In this case the smooth-particle accel­
erations, and also the resulting trajectories, are isomorphic to 
those of molecular dynamics, with w playing the role of a 
pair potential [7]. Thus the microscopic transport coefficients 
associated with the corresponding Lucy fluid-which can be 
estimated from nonequilibrium molecular dynamics, kinetic 
theory, or equilibrium Green-Kubo theory-must describe 
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the observed macroscopic diffusive flows of momentum and 
energy in the smooth-particle representation of the corre­
sponding continuum flow. 

The diffusive transport implicit in the Lucy-fluid molecu­
lar dynamics, since it represents a macroscopic flow without 
transport coefficients, describes an additional artificial flow 
of momentum and energy in addition to those described by 
the continuum constitutive equations. The extra flows are 
consequences of the particulate discretization of the con­
tinuum. They describe the diffusion of momentum and ki­
netic energy present in the smooth-particle representation, 
but absent in the macroscopic constitutive equations. Both 
types of transport are at least in part artifacts of the extra 
fluctuations and the discretization inherent in the smooth­
particle method. Our numerical work shows that the extra 
transport of momentum and kinetic energy corresponds to 
the kinetic parts of the shear viscosity and thermal conduc­
tivity of microscopic molecular dynamics. 

Momentum fluctuations are conventionally thought of as 
being transported by "eddy viscosity" in turbulence theo­
ries. The transport of fluid kinetic energy is likewise, but less 
frequently, ascribed to an "eddy conductivity" [5]. Both 
these phenomenological coefficients can be estimated from 
kinetic theory, measured by computer simulation, and com­
pared to data taken from turbulent flows. A good understand­
ing of the corresponding particulate transport effects is es­
sential to evaluating the accuracy of the smooth-particle 
method as applied to fluid flows. 

The smooth-particle shear viscosity has recently been 
measured, for Lucy's pair potential, in two dense-fluid states 
[8]. The results found depended only slightly on the number 
of particles and were the same order of magnitude as were 
guesses based on kinetic-theory arguments. Subsequent ac­
curate evaluation of the low-density kinetic-theory shear vis­
cosity for the Lucy potential gave an accurate interpolation 
between the low-temperature hard-disk limit [6] and the 
high-temperature weak-scattering limit [9]: 

In the present work we consider two different temperatures, 
0.07 and 0.54, bracketing the maximum value of the Lucy 
potential, 5/911"=0.177. At the lower of the two dense-fluid 
temperatures studied in the present work, the low-density 
kinetic-theory viscosity, 0.055, is ten times less than the 
measured high-density viscosity, 0.6. At the higher tempera­
ture this disagreement is substantially reduced. The two­
dimensional kinetic-theory prediction [6] for the thermal 
conductivity, K = 41Jklm, suggests that the artificial transport 
of kinetic energy is potentially a significant source of error in 
smooth-particle simulations of continuum flows. We confiml 
this idea here by simulating corresponding heat flows, in two 
dimensions and using the Lucy potential, as described in the 
following section. 

Ill. NONEQUILIBRIUM HEAT ·};'LOW SIMULA nONS 

Because the Evans-Gillan [10,11] algorithm for heat con­
ductivity seems to be unstable, at least in two dimensions 
[12], we used the direct method pioneered by Ashurst [13] in 
his dissertation. Two heat reservoirs, one hot and one cold, 
bound two symmetric regions filled with Lucy particles. The 
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FIG. 1. Typical 4(18x 18) geometry for thermal conductivity 
simulations, with two Newtonian regions of Lucy particles confined 
between cold and hot reservoir regions. Each of the four regions 
contains 18x 18=324 smooth particles. The range of the potential 
is 3. The top and bottom boundaries are periodic. The vertical 
boundaries contain perfectly reflecting walls. The horizontal peri­
odiC repeat length here is 4X 18=72. A hot-to-cold temperature 
ratio of 3 is imposed on the two reservoir regions by Gaussian or 
Nose-Hoover thermostat forces IX (p. 

complete four-region system is periodic in both the horizon­
tal and vertical directions. See Fig. I for a typical case with 
18X 18= 324 particles in each of the four regions. The num­
ber density in all four regions is unity and the range of the 
Lucy potential is 3. The bulk Lucy particles obey ordinary 
Newtonian dynamics. The boundaries between the reservoirs 
and the Newtonian fluid regions are perfectly reflecting 
walls. Particles can interact without interference across these 
walls, but on reaching them undergo elastic reflection. The 
particles contained within the reservoir regions follow con­
strained equations of motion, {p = F - ~TP }, where the hot 
and cold friction coefficients UH, ~d control the reservoir 
temperatures through either differential [14,15] "Gaussian" 
or integral [16,17] "Nose-Hoover" control. In the latter case 
the friction coefficient is determined by integral feedback: 

We have used the basic geometry of Fig. I, with a hot-to­
cold temperature ratio of 3 and with each region made up of 
one or more equal squares. In the Nose-Hoover simulations 
the thermostat relaxation time 'T was chosen such that the 
combination Keq i2 was equal to unity. 

To counter thermal fluctuations, relatively large tempera­
ture gradients are required in two dimensions. Even so, re­
ducing uncertainties in the average fluxes to a few percent 
required simulation times of the order of millions of time 
steps. 
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TABLE L The Enskog theory predictions for the thermal conductivity are compared to simulation results 
using the geometry indicated in Fig. L Gaussian and Nose-Hoover thermostats are indicated by G and N, 
respectively. The hot-to-cold temperature ratio is 3 in all these simulations, with the mean temperature given 
in the table. The simulations use Runge-Kutta time steps of 0.01 so that a run length of 10 000 uses a million 
steps. The uncertainties in the data are of order 5-10 %. 

System size 

4(6x6)N 

4(9X9)N 

4(9X9)G 
4(l8X9)G 
4(l8x 18)G 

4(27X 18)G 

4(36x 18)G 

4(6x6)N 

4(9X9)N 

4(l2X 12)N 

4(9X9)G 
4(18X9)G 
4(27X 18)G 

4(36X 18)G 

Temperature 

0.Q7 

0.07 
0.07 
0.Q7 
0.Q7 
0.Q7 

0.07 
0.54 
0.54 
0.54 
0.54 
0.54 
0.54 
0.54 

RUn length 

20000 
50000 
30000 
16000 
16000 

30000 
12000 
10000 
40000 
20000 
50000 
32000 
13000 
12000 

K KEnskog 

0.31 0.23 
0.50 0.23 
0.56 0.23 
1.18 0.23 
1.23 0.23 
1.42 0.23 
1.51 0.23 
0.90 23 
1.0 23 
2.3 23 
2.0 23 
4.8 23 
6.2 23 
6.8 23 

The heat conductivity can be measured in two equivalent 
ways: either the time-averaged heat flux within the Newton­
ian sections of the system or the average rate at which heat is 
introduced into and extracted from those regions can be com­
bined with measured values of the Newtonian temperature 
gradient. The direct determination of the temperature gradi­
ent is complicated by a relatively large temperature discon­
tinuity at the Newton-reservoir walls; see Fig. 1. In our rela­
tively small-scale calculations, with Newtonian sections 
ranging from 6 to 36 particles in length, wall discontinuities 
contributed a substantial reduction in the measured interior 
temperature gradient. The reduction was typically a factor of 
3 or 4. Detailed investigation of the temperature profiles, 
such as the typical case shown in Fig. 1, made it plain that 
the "bulk" region lying within the range h of the reservoirs 
has also a strongly nonlinear temperature profile. Accord­
ingly, the region lying within this distance of the reservoirs 
was excluded in the analysis of all but our smallest-sized 
systems. 

-

Despite the relatively fluctuations present here, and 
characteristic of tINa-dimensional systems, conductivities ac­
curate within several percent could be obtained for systems 
of several hundred particles. Results are shown in Table I, 
along with the kinetic-theory predictions. The nu­
merical work confirmed that the potential contribution to the 
mean heat flux is negligibly smalL The lower-temperature 
data with considerable uncertainty, an extrapolated 
heat conductivity of order 2, an order of magnitude larger 
than the Enskog prediction. but consistent with the known 
value of the shear viscosity, 7J= 0.6, and a two-dimensional 
Prandtl number from kinetic theory, Pr=k7j/(mK) 0.25. 
The higher-temperature data are somewhat more size depen­
dent, but suggest an extrapolated conductivity around 8, 
somewhat less than the Enskog-theory prediction of 23. De­
spite the considerable uncertainty in the extrapolations, these 
crude results are sufficient for semiquantitative estimates of 
artificial momentum and energy flows under conditions simi­
lar to those found in real simulations. 

The relatively long-range nature of the Lucy potential is 
responsible for the insensitivity of density, pressure. and po­
tential energy cP = I4>ij to temperature [8]. As a conse­
quence, the thermal part of the pressure for the Lucy poten­
tial corresponds closely to that of the ideal gas law, 
VilP Nkil T. The potential contribution to the pressure, 
though much greater [9J is almost temperature independent: 

(PV)<t> -(1/2)2: rij' VWij=[N(N-l)/2VJ f wdr 

==N(N-l)/2V. 

Accordingly, the remaining thermal pressure of the Enskog 
theory, T(ap/aT)v is nearly equal to the thermal 
part of the Lucy pressure: 

The Enskog-theory transport coefficient is therefore nearly 
equal to the low-density (ideal-gas) kinetic-theory predic­
tion: 

KEnskog=4(k/m) 

In describing our numerical results we choose the volume 
per particle, the particle mass, and Boltzmann's constant all 
equal to unity. The normalization of the Lucy function also 
fixes the unit of energy, (9'lT15)WLucy(0). At our lower tem­
perature of 0.07, the simulations suggested a heat conductiv­
ity several times larger than the Enskog prediction and rela­
tively close to the Prandtl value, K=4 7jk/ m. Thus, at low 
temperature, corresponding to slow hydrodynamic flows, the 
numerical transport of kinetic energy is relatively important. 
At the higher temperature, 0.54, the Enskog viscosity, 6, is 
lower than the direct simulation value, 12. Our estimate for 
the high-temperature smooth-particle conductivity, 8, is sub­
stantially less than the kinetic-theory Enskog conductivity 
prediction, 23. See Table L 
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Evidently Enskog's approximate dense-fluid theory, or 
equivalently, kinetic theory, though far from quantitative, 
produces correct order-of-magnitude estimates for the trans­
port of momentum and heat for weak soft potentials, like 
Lucy's. A conclusive study of still higher temperatures 
would certainly require much larger, and correspondingly 
more expensive, studies, because the mean free path esti­
mated from simple kinetic theory already greatly exceeds the 
interparticle spacing at the higher of the two temperatures 
studied here. 

IV. SUMMARY 

We find that the intrinsic numerical thermal diffusi vity 
associated with the smooth-particle representation of a con­
tinuum is the same order of magnitude as the numerical ki­
nematic viscosity, at both low and high temperatures. Thus 
both momentum and kinetic energy diffuse, artificially, at 
comparable rates. These two diffusion coefficients corre­
spond, in a qualitative way, to the transport coefficients used 
in phenomenological turbulence models to describe the 
transfer of momentum and energy by turbulent eddies. The 
conditions studied here in our simulations correspond to 
those for which SP AM is a useful numerical approach to 
non equilibrium flows [4,8]' In such SPAM simulations there 
are two different contributions to the kinetic-theory "tem­
perature." First, particles interact with neighbors within a 
circle or sphere of radius h. The root-mean-square speed in 
such a region differs from the mean speed by terms of order 
h2\1 2u, where u is the hydrodynamic flow velocity. In addi­
tion, the SP AM particles exhibit intrinsic velocity fluctua­
tions. Both effects need to be taken into account in order to 
estimate the artificial energy transport due to the numerical 
conducti vity characterized here. 

The numerical conductivity in SPAM, equal to the kinetic 
heat transport in the corresponding molecular dynamics 
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