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Abstract 

The smooth-particle weighting functions used in numerical solutions of the thermo
mechanical continuum equations can be interpreted as weak pair potentials from the stand
point of statistical physics. We examine both equilibrium and nonequilibrium thermomechani
cal properties of many-body systems llting a typical smooth particle potential, Lucy's, and 
discuss the implications for macroscopic continuum simulations. 

PACS: 05.20.Dd; 07.0S.Tp; 66.20. + d; 67.5S.Hc 

1. Introduction 

Smooth particle applied mechanics was invented, simultaneously and independently, 
by Lucy and Monaghan, in 1977 [1]. It is a particle method for solving the continuum 
equations, with the particles playing the role of moving grid points. The accelerations 
and trajectories of these particles depend upon the form of the underlying continuum 
constitutive relations. We speak of the "invention" of the smooth particle method, 
rather than its "discovery", simply because it incorporates many arbitrary features. 
The smooth particle method represents all the field variables of continuum mechanics, 
including density, velocity, and energy, as sums of individual particle contributions. 
The range associated with these contributions, h, and the form of the weighting 
function w(r), are chosen arbitrarily, but typically in such a way that 20 or 30 "smooth 
particles" contribute to the values of the continuum field variables {p, v, e} at a par
ticular location. There is, in addition, some representational arbitrariness in the 
spatial average of the continuum equations as motion equations for the representative 
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smooth particles. It is a symptom of this arbitrariness that the particles have indi- • 
vidual velocities and energies {v, e}i which differ from the field quantities (v) and (e) 

at the locations of these same particles. Generally, the smoothed averaged quantities 
display smaller fluctuations, and hence are more continuum-like, than the individual 
particle quantities. 

The most common form of the equation of motion for the smooth particles is 

(1) 


where the pressure tensors for particles i andj can depend on the velocity gradients in 
their vicinity, 

(2) 


where Pik is the arithmetic or geometric mean of Pi and Pb and where, for simplicity, 
we take all the individual particle masses to have a common value, m. The individual 
particle densities in Eqs. (1) and (2) are sums of contributions from nearby particles, 
including the particle in question: 

The main advantage of the motion equation (1) relative to some alternatives is that it 
conserves momentum exactly, due to the antisymmetry of the Vw contributions to 
interacting pairs of particles. When the pressure tensor is anisotropic this approach 
does not necessarily conserve angulat..momentum. 

Smooth particle simulation has been applied to a variety of astrophysical problems 
as well as to problems in conventional solid and fluid mechanics [2-5]. The somewhat 
arbitrary nature of the approach suggests that it is useful to take up a host of 
interesting related problems in statistical mechanics, both at and away from equilib
rium, so as to understand the method better. The simplest physical application of 
smooth particle applied mechanics corresponds to the adiabatic isentropic deforma
tion of a two-dimensional ideal gas, with a scalar pressure P ex p2, for which the 
continuum equation of motion (1) reduces to the ordinary atomistic equation of 
motion for molecular dynamics, 

(3) 


• 	 with w(r) ¢(r) playing the role of a pair potential. For other equations of state, 
smooth particle dynamics is not precisely isomorphic to molecular dynamics. But, 
whenever the pressure and density are approximately constant as at equilibrium, for 
example the smooth particles representing a continuum resemble particles obeying 
the motion equations of conventional molecular dynamics. It is for this reason that we 
consider here the properties of a typical weighting function, Lucy's, viewed as a pair 
potential. This choice, 

r:::;; h, 
r> h, 
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has continuous first and second derivatives, which facilitates accurate numerical 
integration of the motion equations. The proportionality constant is determined in 
such a way that the D-dimensional integral of w is unity, so that the two-dimensional 
value (5/nh2

) is replaced by (105/16nh 3) in three dimensions. Gross properties of the 
Lucy potential should resemble those of a repulsive Gaussian potential, for which 
a similar normalization would be expressed in terms of the Gaussian function's 
halfwidth. 

For particle simulations it is advantageous to use a potential of the shortest possible 
range. Throughout this paper we set the "range" of the weighting function equal to 
unity, for convenience. A principle of corresponding states holds which allows all the 
equilibrium and nonequilibrium properties for other values of the range to be 
expressed in terms of those for h = 1. The next section is devoted to a discussion of this 
principle. The following sections are devoted to the discussion of time reversibility, 
thermodynamic, and hydrodynamic properties of Lucy's potential. The final section is 
a summary in which applications to continuum simulations are stressed. 

2. Corresponding states principle for smooth particles 

The dynamics of any configuration of smooth particles, at locations {r}, with 
velocities {v}, energies per unit mass {e}, and with a weighting function of range h, can 
alternatively be viewed in a scaled sp,ace, with a weighting function of unit range. It is 
this scaled-space choice that we adoJt here in our numerical work. In the scaled space 
both the distances and the velocities are decreased by a factor h, so that h is replaced 
by unity. The normalized weighting function is thereby increased by a factor hD

, where 
D is the dimensionality of the space, usually 2 or 3. The dynamics of the original 
configuration is thus replaced by a scaled dynamics. This scaled dynamics is a faithful 
model of the original provided that the kinetic energy in the scaled system is also 
increased by a factor of hD

• This can be achieved by scaling the mass or the time. For 
simplicity, we adopt a universal scale-independent time, and choose mass scaling, 
requiring that the stronger forces in the high-density system are applied to more 
massive bodies, more massive by a factor of h2 + D in D dimensions. 

These choices allow the same time scale to be used in both systems while maintain
ing also the same ratio of kinetic to potential energy. Any of the physical properties of 
the scaled system (h = 1) can then be expressed in terms of those for the original 
system. Dimensionless properties, such as PV/NkT, E/NkT, or Reynolds' number, are 
necessarily identical in the two systems. 

To illustrate, consider the scaling ofenergy for a two-dimensional system with h = 3 
and N/V 1. This corresponds, in the scaled space emphasized in this paper, with 
h 1, to a number density of hD = 32 9. Knowing E = K + <1> in the original 
system gives ESCALED = 9E. In the kinetic energy the velocities are reduced by a factor 
3, while the mass increased by a factor 81, giving an overall increase in kinetic energy 
of a factor 81/32 = 9. Another energy, PV, scales in the same way. The hydrodynamic 
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Table 1 
Scaling relationships illustrating the corresponding states principle linking thermomechanical properties 
for the h-dependent Lucy potential to higher-density properties for a standard potential with characteristic 
length h = 1. Here we tabulate the ratio of each quantity in a system with smoothing length h to the same 
quantity in a higher-density system with h = 1 

Time: hO Length: h Velocity: h 
Force: h- D - 1 Energy (K): h- D (iP): h- D 

Mass: h- D - 2 Volume: hD Stress: h- 2D 

Temperature: h- D Viscosity: h- 2D 

transport coefficients, kinematic viscosity v and thermal diffusivity DT
, are propor

tional to the squares of lengths. Thus, 

where 1] is the shear viscosity, p is the mass density, K is the thermal conductivity and 
Cv is the heat capacity per unit mass, ~Dk for a D-dimensional ideal gas, for instance. 
Table 1 summarizes a selection of such scaling properties. This corresponding states 
principle is similar to that which holds for the Lennard-lones potential and for the 
family of inverse power potentials, as is discussed at length in the treatise of Hirschfel
der et a1. [6J. 

3. Turbulence, time reversibility, and the Lucy potential 

Theoretical discussions of turbulence often center on an idealized situation in which 
ordinary molecular viscous dissipation and conductive heat transfer are both absent. 
The corresponding ideal fluid is called an "Euler fluid" because it obeys the Eulerian 
equations of fluid mechanics, in which the viscosities and the thermal diffusivity do 
not appear. If it is true that such a limiting case can be realized in numerical 
simulations, the model should be a prototypical basis for theoretical analyses of 
turbulent flows. If instead the limiting case is not well defined then alternative 
attempts to describe it computationally will lack consistency with one another. This 
potential application, as a basis for studying turbulence, recommends the investiga
tion of smooth particles as a model for the Euler fluid. One would expect such a model 
to display a statistical distribution of eddy-current kinetic energies resembling that of 
a real fluid at high Reynolds number. An attempt to carry out such a set of 
simulations, with smooth particles, was not definitive [5]. Better agreement with 
Kolmogorov's k 5{3 eddy-current energy spectrum was achieved in a small 1024
particle system than in a system four times larger. 

The Lucy potential model has some independent interest from the standpoint of 
time reversibility. Boltzmann's explanation of irreversible behaviour in gases, based 
on the Boltzmann equation, still retains an air of paradox and contradiction over 
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a century later. It has recently been pointed out that the use of Lucy's potential to, 
model the dynamics of an Euler fluid (with neither viscosity nor heat conductivity) 
provides an inverted version of Boltzmann's reversibility paradox [7]. The fluid being 
represented, since it lacks transport coefficients, can display no dissipation. On the 
other hand, the representation of this fluid by ordinary molecular dynamics, using 
Lucy's potential function, implies the existence of intrinsic transport coefficients, as 
given by the Boltzmann equation at low density, and by the Green-Kubo theory at 
any density. 

Applications, to turbulence and to a deeper understanding of Boltzmann's paradox, 
provide additional motivation for studying the Lucy model. A further motivation, 
noted but not yet pursued, is the understanding of a peculiar shear-flow instability, in 
which a single particle came to possess most of the system kinetic energy [3]. All of 
these problems are fertile ground for further research. For this reason we study here 
some of the most basic properties of the Lucy model, the mechanical and thermal 
equations of state and the low-density linear transport coefficients. Our results are 
described in the next two sections. 

4. Thermodynamic equilibrium properties of the Lucy fluid 

At low temperatures the Lucy potential can exist in an amazing variety of crystal
line structures. Because the potenti~h.as no repulsive hard core there is no maximum 
density. Thus there is a bewildering variety of phase transformations as the cold 
material is compressed from low density to high, with the high-density limit ap
proached in a peculiar way, with each lattice site occupied by sufficiently many 
particles that neighboring particles are at least unit distance (for h = 1) apart. The 
stabilities of the various crystal structures can be investigated in terms of the elastic 
moduli [8J or, more simply, by inspection of a simulation carried out with damping 
sufficient to slowly extract all the kinetic energy. We ignore solid-phase properties in 
the present work but emphasize their intrinsic interest as another open research area. 

Because the Lucy potential is primarily of interest as a model for fluids we have 
determined an accurate fluid-phase equation of state for it, varying density, pressure, 
temperature, and energy over wide ranges. These data were generated by straight
forward isoenergetic and isokinetic molecular dynamics simulations [9]. A fast work 
station can easily provide mechanical and thermal equations of state, to three-figure 
accuracy at hundreds of state points. Representative data are displayed in Tables 
2 and 3. For the convenience of the reader we have provided two sets of data, the first 
giving pressure and temperature as functions of energy and volume, as is the usual 
hydrodynamic practice, and the second giving pressure and energy as functions of 
temperature and volume, as is the usual practice in statistical mechanics. The isother
mal simulations were performed at constant (kinetic) temperature by imposing a con
straint on the total kinetic energy of the isothermal systems [10]. At the level of 
accuracy shown in the tables there is no difference between simulations with 100,256, 

1 
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Table 2 
Selected values of the energy and pressure-volume product for the Lucy potential. The results are given as 
sums of the potential and kinetic parts. Corresponding values for h i= 1 can be derived by using the scaling 
relationships described in the text. Note that the kinetic contributions to the energy per particle and to 
PVIN are identical. All the simulations were carried out with periodic boundaries, using the fourth-order 
Runge-Kutta method with a time step of 0.02, rescaling the velocities as needed to retain 12-digit accuracy 
in the total energy 

EIN: 
p=1 p=4 p=7 p = 10 
0.16 + 0.34 1.44 + 0.56 2.88 + 0.62 4.35 + 0.65 
0.34 + 1.66 1.63 + 1.87 3.03 + 1.97 4.48 + 2.02 
0.40 + 3.10 1.72 + 3.28 3.13 + 3.38 4.56 + 3.44 
0.42 + 4.58 1.77 + 4.73 3.18 + 4.82 4.62 + 4.88 

PVIN: 
p=l p=4 p 7 P = 10 
0.32 + 0.34 1.83 + 0.56 3.35 + 0.62 4.86 + 0.65 
0.42 + 1.66 1.85 + 1.87 3.34 + 1.97 4.83 + 2.02 
0.45 + 3.10 1.87 + 3.28 3.35 + 3.38 4.84 + 3.44 
0.46 + 4.58 1.89 + 4.73 3.36 + 4.82 4.84 + 4.88 

Table 3 
Selected values of the energy and pressure-volume product for the Lucy potential. These are given as sums 
of the potential and kinetic parts. Corresponding values for h i= 1 can be derived by using the scaling 
relationships described in the text. Note that the kinetic contributions to the energy per particle and to 
PV IN are identical. All the simulations were ~rded out with periodic boundaries, using the fourth-order 
Runge-Kutta method with a time step 0[0.02, rescaling the velocities as needed to retain 12-digit accuracy 
in the kinetic energy 

EIN: 
p 1 P 4 p 7 P 10 
0.20 + 0.50 1.43 + 0.50 2.86 + 0.50 4.32 + 0.50 
0.41 + 3.50 1.73 + 3.50 3.13 + 3.50 4.57 + 3.50 
0.44 + 6.50 1.81 + 6.50 3.23 + 6.50 4.66 + 6.50 
0.46 + 9.50 1.85 + 9.50 3.28 + 9.50 4.72 + 9.50 

PVIN: 
p=1 p 4 p 7 P 10 
0.35 + 0.50 1.84 + 0.50 3.36 + 0.50 4.87 + 0.50 
0.45 + 3.50 1.88 + 3.50 3.35 + 3.50 4.84 + 3.50 
0.47 + 6.50 1.91 + 6.50 3.37 + 6.50 4.85 + 6.50 
0.48 + 9.50 1.92 + 9.50 3.39 + 9.50 4.87 + 9.50 

or 1024 particles. We include not only the number density unity, for comparison with 
the usual statistical-mechanical theories of dense matter, but also densities severalfold 
greater, corresponding to the degree of packing useful in continuum simulations using 
smooth particle methods. 

The results provide estimates of the potential contribution to the pressure and the 
energy accurate within about 1 % over the whole range. The data can be summarized 
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as following very well the Grueneisen description, with the pressure, at constant 
volume, varying nearly linearly with energy. This should not be entirely surprising, for 
the high-density limit of the Lucy particles must furnish an exact representation of the 
underlying two-dimensional ideal-gas isentrope, 

P = pe oc p2. 

Likewise, the isochoric relation between temperature and energy is nearly linear. 
Further, both variations are almost density independent within the range spanned by 
the tables: 

(APV/AE)v 0.96; {AK/AE)v = Nk(AT/AE)v = 0.93. 

In order to see whether these small deviations from the ideal-gas equation of state 
can be simply understood on the basis of the Mayers' virial series [6J, we have 
computed the temperature-dependent second virial coefficient B2 and estimated the 
third B3 in the virial expansion 

Fig. 1 shows the degree to which this classic approach accounts for the collective 
smooth particle effects at the relatively high densities used in continuum simulations . 
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1. Potential contribution to the smooth particle equation of state (points) compared to the predictions 
of the two- and three-term virial series (dashed and solid lines, respectively). 
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Despite the overall simplicity of the results, there are some surprises in the small 
details. At the higher number densities typical of smooth particle simulations, 
NhDIV = 5 and above, there is a definite decrease in thermal pressure with temper
ature. That is, the potential contribution to the pressure actually falls while the kinetic 
part doubles or triples in size. Such behavior is quite unlike that characterizing the 
usual short-ranged potentials used in computer simulations. 

5. Kinetic and hydrodynamic properties for two-dimensional Ouids 

When the smooth particle method is used to model hydrodynamic flows in which 
viscosity has a noticeable influence, it is essential that any intrinsic artificial or 
numerical viscosity, stemming from the method itself, be considerably smaller than 
the true viscosity of the fluid being modelled. This requirement is sufficient motivation 
for a thorough study of the viscous response of the Lucy potential to shear. 

Detailed computer simulations [9J of high-density viscous flow, for two different 
temperatures, and over a wide range of strain rates, showed strong temperature- and 
rate-dependences for the intrinsic Lucy-potential viscosity [3]. These simulations 
indicated a 20-fold increase in shear viscosity in response to an 8-fold isochoric 
temperature increase, consistent with an estimated temperature dependence T 3/2, The 
numerical viscosity values were in rough agreement with theoretical estimates. 

Another very smooth potential function [11J, resembling Lucy's in shape, and also 
used in two-dimensional shear-visco~ty simulations [9], 

¢ 8[1 (rlo/J4, 
becomes a smooth particle weight function very much like Lucy's if 8 is chosen to be 
51nh2 and (J is taken to be the range of the smoothing function, h. At a relatively low 
density for smooth particles, Nh 21V 1, the computed shear viscosities for this 
smooth potential agreed fairly well with estimates from Enskog's theory [6,1 4]. 

The Enskog theory of dense-fluid transport is a natural starting point for estimating 
transport coefficients [6, 12-14]. That theory begins by introducing an equivalent 
hard-particle model of the fluid to be described. In the two-dimensional case hard 
disks are used. The size of the disks is estimated by matching the "thermal pressure" 
T(8PI8T)v to the disks' pressure. In the case of Lucy's potential our equilibrium 
computer simulations have established that the pressure is nearly ideaL In this case 
the Enskog theory suggests (perhaps incorrectly) that the low density kinetic-theory 
viscosity should be a good high-density estimate. An investigation of the two- dimen
sional heat conductivity for hard disks has recently been carried out [12J, showing 
small deviations from Enskog's predictions. 

We have used three different methods, all based on Boltzmann's equation, to 
evaluate the limiting low-density shear viscosity for the Lucy potential: 

1. Numerical integration in terms of the scattering angle X. 
2. Numerical solution of the equilibrium Boltzmann equation. 
3. Numerical solution of the nonequilibrium Boltzmann equation. 
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The first of these approaches is based on the conventional evaluation of the energy., 
and impact-parameter dependence of the scattering angle X, followed by an integra
tion over the equilibrium velocity distribution. The required integral for the lowest
order contribution to the viscosity coefficient has the form: 

11 == P/OJ,,; 

OJ" = 2(N/V)(kT/m)1/2 fy6 exp ( - y2)dy fsin2 Xdb. 

Here, y is the relative velocity in units of 2(kT/m)1/2. We reproduce the more familiar 
three-dimensional expression solely for comparison [6, 14]: 

OJ" = \6 (N/V )(nkT/m)1/2 fy7 exp( - y2) dy fsin2 Xb db. 

At low temperature our numerical evaluations reproduce the first term in Sengers' 
more complete evaluation of the hard-disk result [13]: 

11COLD = 11DISK = O.24(mkT )1/2/h. 

At high temperature the scattering angle is reduced, and ultimately varies as the ratio 
of potential to kinetic energy. The approach to that limit is clearly shown in Fig. 2, 
and leads to the high-temperature result: 

11HOT = O.94(mkT )1/2(kTh2)2 /Ji~ . 

Because the same collision integral provides the lowest-order approximation to the 
thermal conductivity, the ratio of the two transport coefficients is, to this first 
approximation, independent of the scattering law: 

(m/k)K/11 = 4, 

making it possible to estimate values of the heat conductivity from the shear viscosity. 
The second approach we have followed replaces the collision-integral analysis with 

a numerical average over simulated equilibrium collisions. We use Bird's method, 
selecting pairs of particles for collision with a probability proportional to their relative 
speed. We consider the Boltzmann equation for a homogeneously sheared system 
with 

8ux/8y == i --+ dvx/dt = - ivy. 

The first approximation to the nonequilibrium part of the distribution function for 
{vx, vy} is proportional to fEQ mVxvy/kT. Multiplying the Boltzmann equation by 
mVxvy/kT and integrating over all velocities links the perturbation to the collision rate 
r 1 and gives a transparent expression for the shear viscosity: 

11 = P/OJ, OJ = r 1<<5 2)EQ, r 1 = 2(Nh/V)(nkT/m)1/2; 

<5 == [(mvXvy) - (mvXv y)' + (mvxvyh - (mvXvy)~J/2kT. 

iiL&£52 ;: in !&ii1&1J & aUL&EA*, 
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2. Dependence of the scattering angli\x on the center-of-mass energy E and impact parameter b for 
Lucy's potential. The curves plotted show E2 sin1 X, corresponding (from top to bottom) to energies of 
5.0, 10, and 20. Note the approach to the high-temperature limiting law, X2 liT 2. 

["lis the collision rate per particle and b is a symmetrized change in the shear stress 
contribution of two colliding particles, with its square averaged over a chain of 
equilibrium collisions. At low temperature this formula reproduces the first approxi
mation to the low-density hard-disk shear viscosity cited by Gass [13J, and at high 
temperature, where scattering is relatively inefficient, it likewise continues to provide 
a useful numerical evaluation of the viscosity. 

The third approach, and the simplest of them all, also makes use of Bird's statistical 
method for solving the Boltzmann equation by generating stochastic collisions, but 
applied to a nonequilibrium system undergoing homogeneous shear flow. Each time 
step f..t of the noneq uilibrium simulation proceeds in three stages: (i) first, all particles 
undergo a velocity change due to shear: 

with the velocities {vx, vy} being relative velocities, measured relative to the local 
stream velocity (ux , 0); (ii) next, all these velocities are scaled, to maintain the kinetic 
energy at the equipartition value, NkT; (iii) finally, a pair of particles is selected for 
collision, with the relative probability of each pair proportional to the relative speed 
of that pair. It is clear that reducing the time step At and increasing the number of 
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particles considered will eventually converge to the solution of Boltzmann equation, f 

as was first pointed out by Bird [15]. 
Within the numerical accuracy of our work, about 1 %, all three methods for 

determining the shear viscosity agree, Selected values from the last two methods are 
given in Table 4, The data in Table 4 provide a smooth interpolation between the 
low-temperature T 1/2 hard-disk viscosity and the high-temperature weak-scattering 
dependence, T 5/2, Fig. 3 shows this interpolation, as well as the good agreement of the 
data with the analytic form it suggests: 

The viscosities from this interpolation formula are very close to those from the present 
direct low-density simulations. They also provide a useful rough estimate for viscos
ities at high temperature and high density. A high-density, relatively high-temperature 
simulation with the Lucy potential [3J gave a shear viscosity of 13, while the above 
interpolation formula provides the estimate 5.5, Thus the Enskog theory, which 
suggests that the low-density form be used unchanged at high density, can be in error 
by as much as a factor of two. 

There have been no computer simulations for the heat conductivity, using Lucy's 
potential. The Evans-Gillan approach [16,17J to homogeneous field-driven heat 

Table 4 

Shear viscosity for the Lucy potential, 


¢LTXY == (5/nh 2 ) [1 6(r/W + 8(r/W 3(r/h)4] , 


at low density, and with m k h 1, as a function of temperature T. Viscosities for other values of the 

range h can be estimated by using the scaling relationship derived in the text. The heat conductivity K can be 

estimated by using result, as quoted by Gass [13], K 4I1k/m. The entries shown in the table were 

eomputed in two independent ways, solving the Boltzmann equation, using Bird's method with 100 

particles, and evaluating the equilibrium collisionally averaged shear-stress fluctuation. The strain rates 

Ii given in the table refer to simulations with 2000000 Runge-Kutta time steps (flt = 0.01) calculated using 

Bird's approach. The single-particle collision rate F! was chosen such that one collision occurred during 

each Runge-Kutta time step. The data in the table are taken from the last half of each simulation. At high 

temperatures where thermal scattering is very inefficient, this method becomes impractical. Thus no data 

were obtained for temperatures higher than 10. The kinetic-theory approach is less severely limited at high 

temperature. Those results, based on equilibrium averages over 100000 collisions, at zero strain rate, are 

somewhat more accurate than the nonequilibrium results, and appear in the final column. We have also 

confirmed the kinetic-theory calculation at selected temperatures by making direct evaluations of the 

corresponding collision integral 


T 2iF! I1NONEQ r/EQ 

0.01 0.2000 0.0296 0.030 
0.03 0.1000 0.054 0.053 
0.10 0.0500 0.105 0.105 
0.30 0.0300 0.22 0.211 
1.00 0.0100 1.3 1.20 
3.00 0.0010 12 14.1 

10.00 0.0001 300 290 
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3. Temperature dependence of the viscosity for Lucy's potential. The smooth curve (plotted for m, k, 
and h all equal to unity) is the sum of the high- and low-temperature limits discussed in the text: 

'7::::; '7m O.24(mkT)1!2/h + O.94(mkT)1/2(H~h:)::/h. 

currents seems to fail in two dimensions, necessitating the study of an inhomogeneous 
flow driven by heat reservoirs, as in [12]. 

At low density the Boltzmann equation establishes the ratio of conductivity to 
viscosity. The Chapman-Enskog approach to solving the Boltzmann equation estab
lishes that, to lowest order, both the viscosity and the heat conductivity are given by 
the same collision integral. Thus Sengers' ratio of the transport coefficients for disks, 
as quoted by Gass [13J, should apply also to other potentials, such as Lucy's. This 
reasoning also suggests that the transport coefficients predicted by the approximate 
Krook-Boltzmann and Fokker-Planck equations have substantial errors. For the 
transport coefficient ratio, the correct Krook-Boltzmann, and Fokker-Planck results 
for a two-dimensional gas are as follows: 

(m/k)(K/ll) = {4, 2, j:}. 

This dimensionless ratio of transport coefficients is independent of the relaxation 
times {'!KB' '!FP} which occur in the two approximate kinetic equations: 

(df/dt)KB [fEQ fJ/'!KB, 

(df/dt)FP = (mkT/'!FP),v;f + (1 TFP)Vp(fP), 

llKB = P'!KB, KKB 2P(k/mhKB; 

llFP = ! P'!FP, 	 KFP = ~ P(k/m)rFP' 
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In all these expressions k is Boltzmann's constant and m is the particle mass. Note that '" 
the differential operators on the right-hand side of the Fokker-Planck equation 
represent derivatives Vp with respect to the momentum p. 

The disagreement between the exact Boltzmann equation and the Fokker-Planck 
equation might seem surprising in view of the common belief that the Boltzmann 
equation reduces to the Fokker-Planck equation in the weak-scattering (high-tem
perature) limit. An investigation of the usefulness of the Fokker-Planck equation for 
weak scattering would help to dispel this confusion. A theory specially suited to the 
study of weak interactions was developed by Rainwater and Hess [18]. The nonlinear 
aspects of transport are of particular interest, and are certainly well within the 
capabilities of computer simulation [19]. A study of two-dimensional shock waves 
following up the exploratory calculations presented in Kum's thesis [SJ would be 
relevant and interesting. The present data suggest that twofold shock compression of 
a quiescent ideal gas would generate an "artificial viscosity" (that is, a viscosity 
characterizing the Lucy potential) of order unity, resulting in a shock width only a few 
times greater than the range of the weight function. 

6. Summary and conclusions 

The thermomechanical and transport properties using Lucy's potential are not only 
relatively simple, but can also be:vplatively simply understood on the basis of 
high-temperature high-density perturbation theory. By using these ideas, in conjunc
tion with the principle of corresponding states, it is possible to estimate the numerical 
impact of the intrinsic Lucy-potential viscosity on fluid-phase simulations of 
Navier-Stokes solutions. 

Such estimates need to take both thermal and size effects into account. Thermal 
effects require a kinetic temperature estimate. This is not an easy matter. An estimate 
can be based on comparing the two velocities which characterize each smooth 
particle: the individual particle velocity Vi, and the collective hydrodynamic velocity 
<v> at the particle location. This difference can be estimated in at least two ways. On 
the basis of a Taylor series expansion of the hydrodynamic velocity, the velocity 
difference would vary as h2V 2(V). Alternatively, the relative particle velocities might 
instead be of order c, where c is the sound speed. Because the viscosity depends upon 
the local temperature as T 5/2 oc C 

5j2
, with an additional dependence on h of order 

h1 
+(3D/2) in D dimensions, either estimate suggests a very strong dependence of flow 

simulations on h. Such effects dominate the true viscosity in some situations and 
suggest a sharp threshold for the applicability of smooth particle methods to fluid flow 
problems, with the quality of approximation depending very strongly on the number 
of particles used. 

In Kum's two-dimensional Rayleigh-Benard simulations with only 500 smooth 
particles, for example, a fourfold increase in the Rayleigh number ostensibly driving 
the convective flow produced no noticeable change whatever. A SOOO-particle model 



438 Wm.C. Hoover, S. Hess I Physica A 231 (1996) 425-438 

of the same flow behaved properly. In certain circumstances, discussed fully in " 
connection with Kum's work, the repulsive forces of the smooth particle weighting 
functions can even cause freezing of the flow. This sensitivity of flows with only a few 
degrees of freedom to the form of the weighting function is readily understandable on 
the basis of the analysis in the present work. It appears that the maximum tractable 
Reynolds number increases very rapidly with the number of particles, more rapidly 
than N 3/2, and thus more rapidly than the N I + (lID) dependence of the computational 
work. Accordingly, we conclude that applications of the smooth particle method to 
complex flows deserve continued vigorous investigation. 
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