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We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequiIi­
brium molecular dynamics and smooth-particle applied mechanics. The time-reversible microscopic 
equations of motion are isomorphic to the smooth-particle description of inviscid macroscopic continu­
um mechanics. The corresponding microscopic particle interactions are relatively weak and long 
ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional 
flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary 
plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds 
to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic, even at high 
density. For the soft Lucy potential which we use in the present work, nearly all the system energy is po­
tential, but the reSUlting shear viscosity is nearly all kinetic. We show that the measured shear viscosi­
ties can be understood, in terms of a simple weak-scattering model, and that this understanding is useful 
in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that 
method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field. 

PACS number(s): 66.20. +d, 03.40.Gc, 05.70.Ln 

I. INTRODUCTION 

Boltzmann popularized the quest for an understanding 
of the emergence of irreversibility from time-reversible 
equations of motion. His explanation made it plain that 
irreversible behavior can be seen in isolated systems only 
if fluctuations are ignored-that is, ensemble averages 
can approach equilibrium even while individual histories 
continue to cover all available states. Generalizing classi­
cal mechanics, admitting interactions with the surround­
ing world, to include sources and sinks of work and heat, 
has two advantages: (i) stationary nonequilibrium states 
can then be generated, and (ii) the analysis of irreversibili­
ty becomes less difficult. Several methods for treating 
time-reversible heat reservoirs have established that the 
irreversibility associated with the conversion of work to 
heat is rooted in the chaotic instability of the underlying 
motion equations [1,2]. The Green-Kubo theory [3], 
which predicts irreversible behavior in terms of the en­
semble average of equilibrium correlation functions, is a 
general demonstration of the possibility of obtaining ir­
reversible behavior from reversible motion equations. 

It has been widely accepted that the Green-Kubo 
theory predicts some kind of divergence for two­
dimensional transport coefficients [4]. The diffusion 
coefficient, viscosities, and heat conductivity were all ex­
pected to diverge because the corresponding correlation 
integrals decay slowly in two dimensions, inversely as the 
time. On the other hand, recent high-precision simula­
tions [5] of shear flow, for a short-ranged steep repulsive 
potential produced a size-independent, though rate-

dependent, shear viscosity fairly close to the predictions 
of Gass' two-dimensional Enskog theory [6]. The repro­
ducible finite nature of these viscosities could be made 
understandable if the coefficients only diverge in some 
unobtainable zero-rate large-system limit. Evidently, the 
simple Green-Kubo derivation of divergence fails to hold 
for finite systems with finite steady nonequilibrium fluxes. 
The simulations we report here, for a very different po­
tential, show no problems in defining and using viscosity 
in two dimensions and cast doubt on the generality of the 
divergence argument. 

An interesting additional puzzle emerged when we be­
gan to use smoothed-particle methods to solve analogous 
flow problems in continuum mechanics. In this approach 
[7] the equations of continuum mechanics are smoothly 
interpolated in space, using summed contributions from a 
set of moving material points. The continuum field 
variables-stress, energy, strain rate, and heat flux­
anywhere in space are calculated by superposing the con­
tributions from all those moving points, which lie within 
the range of a weight junction which describes the 
"smoothing." At a given space point the superposed 
averages usually involve contributions from a few dozen 
of the moving points. 

If the continuum material we choose to model happens 
to be a two-dimensional ideal gas, then the corresponding 
inviscid Euler equations have as their smooth-particle 
representation the motion of particles obeying the usual 
equations of molecular dynamics, with the weight func­
tion playing the role of an interatomic potential [8]. 
Thus, the smooth-particle approach to continuum 
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mechanics produces another version of the paradox 
Boltzmann studied: linking reversible particle motion 
equations to irreversible macroscopic behavior [9]. 

Though the irreversibility problem is an old one, the 
capacity and speed of present day computers makes this a 
good time to investigate all these questions anew, begin­
ning with both equilibrium Green-Kubo and nonequili­
brium steady-state Couette flow simulations of two­
dimensional viscosities, and then applying the results to 
the simulation of a two-dimensional unstable flow, the 
Rayleigh-Benard problem. In Sec. II, we introduce the 
smooth-particle approach to continuum simulations, 
stressing the parallels linking this continuum approach to 
molecular dynamics in the case that the macroscopic 
weight function is proportional to the microscopic poten­
tial function. Because the atomistic view is unique, and 
underlies the continuum one, we next consider atomistic 
particles, describing in Sec. III how the continuum con­
stitutive relation linking stress and strain rate can be ob­
tained from atomistic simulations of plane Couette flow. 
In Sec. IV, we exploit the close relationship linking 
smooth-particle applied mechanics and molecular dy­
namics to compute the viscous shear response of a partic­
ular ideal fluid, which can be pictured in either an 
atomistic or a continuum point of view. Section V con­
tains a comparison of the nonequilibrium viscosities for 
this case with equilibrium estimates from Green-Kubo 
theory. In Sec. VI, we explore a nonlinear problem, 
heat-induced convection in a gravitational field (the 
Rayleigh-Benard problem). Section VII records our con­
clusions. 

II. SIMULATION OF FLOWS USING 

SMOOTH-PARTICLE APPLIED MECHANICS 


Smoothed-particle applied mechanics (SPAM) provides 
an ordinary-differential-equation particle method [7 -11] 
for solving the partial differential conservation equations 
of continuum mechanics: 

dp/dt -pV'v; 

pdv/dt=V'O' ; (2.1) 

pde/dt=O':Vv V·Q. 

The method, often called smooth-particle "hydrodynam­
ics," can be applied to solids as well as to fluids. It treats 
the motion of N "smoothed," or "smeared-out," parti­
cles, distributed in space. All the field variables in the 
continuum conservation equations, including the mass 
density p, the velocity v, the energy per unit mass e, the 
stress tensor 0', and the heat flux vector Q, are interpolat­
ed among the locations of the moving particles. In the 
simplest form of the theory, the density at any point in 
space, p( r), is given by the summed contribution of all 
particles within range of that point: 

p(r) m ~ w(r-r) . (2.2) 
j 

The density at the position of any particle includes the 
self-term w(O), from the term i in the sum over j: 

pj=p(rj ) m ~W(ri-rj)=m ~w(rij); rjj=rj-rj . 
j j 

(2.3) 

The motion of particle i is governed by the stress tensor 
and the "weighting," or "smearing," or "smoothing" 
function w (rl, in a sum over all nearby particles j: 

!d 2r; /dt ~ =dv;fdt 

=-7 [(mO'/p2);+(mO'/p2)jJ,v;w(r jj )) ,(2.4) 

where the stress 0' j at each particle is calculated from its 
internal energy per unit mass, ei (which obeys a similar 
equation) and its mass density Pi' 

We use a special weighting function, w(r) wLucy(r), 
in this work. It is typical of such functions, being 
smooth, monotone decreasing with increasing r, and 
designed to include interactions between each particle 
and a few tens of nearby neighbors. It was used by Lucy 
[11J, who, with Monagh&n [7], invented the smoothed­
particle method in 1977. This Lucy weight function has 
circular symmetry, and exactly the same analytic form, 
apart from the units, as does the Lucy potential function 
which we use in Sec. IV: 

WLucy{r < h =30') (S/h 2rr)[ 1 +(3r /h)][ I (r /h)]3 . 

(2.5) 

We arbitrarily choose the cutoff, or range, of this func­
tion to be h = 30'. The multiplicative constant 
(S/rrh2)=(S/9rrO' 2) is then fixed by the two-dimension&! 
normalization of w: J2rrrw dr 1. 

Note that a scalar equation of state, for a two­
dimensional ideal gas, 

O'xx=-O'yy=P=pe=P (p/po)2/2, (2.6)o

(where Po £/0'2 and Po =m /0'2 are constants) provides 
equations of motion isomorphic to the motion equations 
of monatomic molecular dynamics [7J, 

(2.7) 

where cp( r) is the pair potentiaL These equations consti­
tute an autonomous set, with a solution independent of 
the energy equation. [The energy equation (2.1), with Q 
set equal to 0, is, however, fully consistent with the dy­
namics generated by (2.7),J Thus, the smooth particles, 
whose motion is governed by the ideal gas pressure ten­
sor, through the weighting function w(r), trace out the 
same trajectories as would atomistic particles governed, 
through the corresponding potential function cp(r), by the 
equations of molecular dynamics. For definiteness, we 
continue with our special, though typical, choice of the 
potential corresponding to our smoothed-particle weight­
ing function, using again the functional form introduced 
by Lucy: ¢Lucy{ r) = (£0'2 )WLucy (r). Potential functions de­
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~-------- ----T-~----- ~-.- -;---- .------- ­
rived from weighting functions, such as this, differ, in , , , , , , , , ,. , ,shape, range, and units, from conventional pair potentials . , ., , , , , ,~(r). Because the smoothed-particle function has no , , ,, , 
strongly repulsive core and is also relatively long ranged, 
each smoothed particle simultaneously interacts, weakly, 
with dozens of others. The statistical mechanics and hy­
drodynamics of corresponding long-ranged molecular 
systems, with pair potentials resembling Lucy's weighting 
function, have not yet been systematically explored. 

Energy is reckoned a little differently in the microscop­
ic and macroscopic dynamics. In the smooth-particle 
density and energy sums, the self-contribution of each 
particle, proportional to wID), is included. In the molec­
ular dynamics simulations of Sec. IV, the corresponding 
contributions to the energy, 

{~Lucy(rii =0)=( W·
2)WLucy(D) 

5£0"2 11Th 2)=0.1768388£ l, (2.8) 

are not included. This difference does not affect the iso­
morphism of the two kinds of particle trajectories, since 
w'(O) and ~'Lucy(O) both vanish. 

In this paper, we apply molecular dynamics, equivalent 
to ideal-gas smoothed-particle applied mechanics, to the 
analysis of simple two-dimensional flows. We consider 
first plane Couette flow and then convective Rayleigh­
Benard flow, in which convection rolls, driven by heating 
in a gravitational field, compete with conduction, as a 
mechanism for heat transfer. The lack of viscosity for 
the continuum ideal-gas version of this model suggests 
that the corresponding flows describe the large­
Reynolds-number limit of turbulence analyses [12-14]. 
It is paradoxical that there is an intrinsic atomistic 
viscosity present in the implementation of this continuum 
model, which prevents that model's Reynolds number 
from diverging. 

Movies of smoothed-particle flows reveal high­
frequency velocity fluctuations, which are ordinarily ab­
sent in continuum mechanics. Because the particles can 
be large, the smooth-particle simulation method has a 
substantial scale advantage over molecular dynamics. 

III. SIMULATION OF STEADY 

TWO-DLMENSIONAL PLANE CODETTE FLOW 


Homogeneous periodic shear has been studied for more 
than 20 years [2,5,15]. In such a flow, an N-particle sys­
tem is driven by the motion of neighboring periodic im­
age systems, as shown in Fig. 1. From the macroscopic 
standpoint, and confirmed by the microscopic equations 
of motion, the sheared system would steadily gain energy, 
and heat up, due to this periodic boundary driving. To 
avoid this heating, and to obtain a nonequilibrium steady 
state, it is usual to add time-reversible Gauss [16] or 
Nose-Hoover [17,18] "friction coefficients" Sto the equa­
tions of motion. The resulting reversible friction con­
strains or controls either the temperature or the internal 
(excluding the macroscopic flow kinetic energy) energy. 

For two-dimensional particles of mass m, and with a 
macroscopic strain rate t=dux Idy, the Gaussian isoener­
getic form of these equations that we use here is the set 
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FIG. 1. Two-dimensional L XL plane Couette shear flow 
driven by the relative motion of periodic images (shown 
dashed). This periodic driving, "Lees-Edwards boundary condi­
tions," is augmented by a global ergostat in order to generate a 
nonequilibrium steady state. 

\x=tY+(Pxlm); Y (pylm); 
(3.1) 

Px =Fx tPy -SPx ; Py=Fy SPy J , 

with 

(3.2) 

Pxy is the xy component of the pressure tensor and K is 
the kinetic energy, measured in terms of particle veloci­
ties relative to the mean flow. The isokinetic version of 
these equations has been called the "Sllod" algorithm be­
cause of its close relationship to the Dolls Tensor algo­
rithm [19], The friction coefficient S extracts heat from 
the system at exactly the rate that the periodic shearing 
boundaries do thermodynamic work on the system, 

(3.3) 

In our numerical simulations we derive the interparti­
cle forces in the motion equations l (Fx ,Fy) = - V<l> J 
from the specially chosen short-ranged Lucy pair poten­
tial shown in Fig. 2: 

0.16 
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O.OB 

0,04 

0.00 ~~-'-'.~~_"...L~~....L-"~...L=~~ 
0.0 0.2 0.4 0.6 O.B 1.0 

rfh 

FIG. 2. Lucy potential function, cPLucy, proportional to the 
weighting function which we use in our smooth-particle applied 
mechanics simulations here. The integral of the weighting func­
tion is normalized to unity. The force from the Lucy potential 
vanishes quadratically at the cutoff. In our two-dimensional 
simulations, each fluid particle interacts with approximately 30 
others. 
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¢Lucy( r) = (5w 2 Ih 2,,)[ 1+ (3r Ih)) 

X[1-(rlh)]3 for r <h =3a (3.4) 

The reason for this particular choice, which contains the 
energy scale E, the length scale u, and the cutoff range h, 
is described more fully in Sec. IV. As usual, the total po­
tential energy <I> is a sum of pair contributions ( <P.) 1, one 
for each pair of particles closer than the cutoff distance. 
Throughout this work, we arbitrarily choose the range of 
the potential, h, equal to 3a and the volume per particle 
equal to a 2, giving the relations h = 3a = 3( V IN)1/2. 

Here N is the number of particles in the simulation and V 
is the volume. As before (5], we use the linked-list 
method in combination with Lees-Edwards boundary 
conditions for the intergration of the equations of 
motion. 

IV. SHEAR VISCOSITIES FOR LUCY'S FORM 

OF !fo(r) AND w(r) 


It is convenient to solve the set of 4N motion equations 
for !x,Y ,Px ,Py 1 using the classic fourth-order Runge­
Kutta method. We have previously simulated the viscous 
pr?perties for a short-ranged steeply repulsive force using 
thIS method [5]. Here, the quadratic nature of our force 
cutoff implies discontinuities in the forces, proportional 
to dt 2 , leading to local single-step trajectory errors of or­
der dt4. These exceed the Runge-Kutta integration error 
which is of order dt 5/5!. With a time step of 
o. 005(m a 2IE )1/2, the single-step energy is still conserved 
to about 12 digit accuracy. This small energy error can 
be eliminated by rescaling the momenta after each 
Runge-Kutta integration step. 

All of our simulations have been carried out at unit re­
du.ced density, N u 2=V. This choice gives 24 interacting 
neIghbors for each particle when the particles are ar­
ranged in a regular square lattice and 36 interacting 
neighbors when the particles are arranged in a regular 
triangular lattice. We use two different energies, NE/2 
and N E. It turns out that in the first lower-energy case, 
the energy is mainly potential, with kT;:::;;0.07E, less than 
half the potential height, (w 2 )w (0) = q,(O) 5E I( 91T). 
The higher-energy case, with E :I.m [e + (v 2/2)] =N E, 

corresponds to a thermal energy kT:=::; O. 54E, three times 
the maximum value of the potential. 

Typical instantaneous configurations of 1024 smoothed 
particles are shown in Fig. 3 for the two choices of the to­
tal energy, NE/2 (left) and NE (right), at the moderatelv 
high strain rate, e=(Elmu2 )1/2. Although they appea~ 
to be very similar, a striking difference can best be 
displayed by using an analysis of these structures, sug­
gested to us by Dave. If the local dyadic sum at r, 

SDave(r)= 2: !.\.Yi!.\.Yiw(ri r); 

Sbave(r) ~ !.\.xi!.\.xiw(ri- r ) ; 
(4.1) 

Sjjave(r)=Sbave(r) - ~ !.\.xi!.\.Yjw(Cj -r) ; 

resembling a moment-of-inertia tensor, is diagonalized, 

FIG. 3. Typical configuration of 1024 Lucy particles under­
going shear, at unit reduced strain rate, with per-particle inter­
nal energies ofO.5c; (left) and Lac; (right). 

and a path is traced out in the direction of the eigenvec­
tor belonging to the minimum eigenvalue, the system is 
neatly divided into a set of cells, as is shown in Fig. 4. 

To draw these pictures, N points on a regular grid cov­
ering the simulation box were chosen as starting points 
for paths of 200 iterations and a step size of O.lu per 
iteration. The sign of the eigenvector at the initial points 
was chosen randomly. At any point farther along the 
path it was chosen such that the scalar product of the 
eigenvectors for successive steps be positive. The last 150 
iterations were used in constructing Fig. 4. Motion along 
the paths can be viewed as a constant-speed "flow" with 
characteristic strain-rate-dependent mean-squared dis­
placements, <(!.\.X)2) and <(!.\.y)2 >. The x and Y direc­
tions are, respectively, parallel and perpendicular to the 
flow. This idea is used in Fig. 5 for the same two exam­
ples. Each curve is an average over at least 150 instan­
taneous configurations (taken at intervals of 200 Runge­
Kutta time steps). The limiting slopes of these 
curves correspond to strain-rate-dependent "diffusion 
coefficients," but with units of u, because the "time" 
along the path is measured in a units. At unit reduced 
strain rate, we find !DX,DYI is !1.05,3.831 for E=NE/2 
and [1. 00,3.211 for E = N E. As one might expect, the 
mean-squared displacement in the shear direction is prac­
tically energy independent, but varies significantly in the 
perpendicular direction. 

The structural anisotropicity introduced by the shear-

FIG. 4. Topological analysis, using Daves suggestion, of the 
configurations of 1024 Lucy particles undergoing shear, at unit 
reduced strain rate, with per-particle internal energies of O.5e; 
(left) and l.0c; (right). 
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2FIG. 5. Mean-squared displacements, divided by a , for the 
artificial "flow" used to characterize the topology of sheared 
systems. The shearing motion is parallel to the x axis. Both the 
direction of the measured displacements (x or y) and the re­
duced strain rate (0.5 or 1.0) have been used to label the curves. 
Each "iteration" corresponds to a path increment of O.la, as 
described in SeC. IV. 

ing is very pronounced, though it is hardly discernable in 
the instantaneous configurations shown in Fig. 3. The 
anisotropy vanishes in the shear-free case, but the energy 
dependence persists, as shown in Fig. 6, where we have 
combined the two directions. We find that the diffusion 
coefficients are 1.6, for E = N E/2, and 2.1 for E = N £. 

This analysis can be modified by permitting the step size 
(here O. la) to depend upon the local values of the eigen­
values of matrix (4.1). This approach might be useful for 
the characterization of totally different systems, such as 
polymers. 

Though we do not show them here, it is important to 
emphasize that velocities, in smooth-particle applied 
mechanics, can be interpreted in terms of two different 
momenta: the individual particle "momenta" !Pi l, which 
represent velocities relative to the mean streaming 
motion 

(4.2) 

and the averaged momenta (p(r)=a 2I,w(r-rj )Pj), 
which can be evaluated at any point, and are computed 
using the weighting function. The averaged momenta 
[ < Pr ) I can, for instance, be computed on a square grid 
to facilitate the calculation of (fast) Fourier transforms of 
the velocity field, and so are a more useful representation 
of the flow than are the individual particle momenta. 

We have carried out a wide range of calculations in or­
der to determine the viscous response of Lucy's fluid as a 
fUnction of strain rate at two different energies. The re­
sulting pressure tensors and potential energies (omitting 
the contributions from the self-term at r =0) are given in 
Tables I and II. The rate-dependent shear viscosities, 
[17 = - p xy Ie1from these data are displayed in Fig. 7. In 
Fig. 8, we show also the normal stress function, 
(pxx - Pyy ) Ie. The data indicate that the Lucy "fluid" 
exhibits noticeable shear thinning at strain rates in excess 
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FIG. 6. Combined mean-squared displacements (x plus y), 
divided by a 2 , as a function of energy for the equilibrium zero­
strain-rate case. 

of O.01(E/ma2 )112 and that the viscosity is sensitive to 
temperature, varying roughly as T312 in the range con­
sidered here. An extremely interesting feature of the data 
at the higher energy, E = N E, is an instability occurring 
in the strain-rate range E"",,(O.OI0±O.OO2)(E/ma2 )1I2. 

Though we have not investigated this instability in ex­
haustive detail, its symptom is that a single particle fairly 
rapidly attains most of the system kinetic energy. The in­
stability is presaged by dramatic fluctuations in the shear 
stress (-I,pxpylmV). 

The trajectories traced out by the particles are exactly 
the same, whether molecular dynamics, or smooth­
particle continuum mechanics is used. Likewise, the 
kinetic part of the shear pressure-tensor component ac­
cording to molecular dynamics, (11mV) (I,PxPy >, corre­
sponds to the negative of a volume-averaged Reynolds 
stress in the continuum, (-pvxVy ), measured in the 
comoving frame. On the other hand, the potential part 

10 

<> E/N = 1.0 

<> <> <> <> 

E/N = 0.5 

0.1 

0.01 
0.001 0.01 0.1 

FIG. 7. Dependence of shear viscosity, divided by 
(mEl I !2/a , on strain rate for E=NE and E=NEI2. These re­
sults are for thermostatted systems of 1024 Lucy particles. Note 
the instability, discussed in the text, at reduced strain rates near 
0.01 in the higher-energy case. 
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TABLE I. Kinetic and potential parts of the stress tensor for Lucy's potential cp(r < h =30')= (5E0'2 hrh 2)[ (1 +(3r Ih)][ 1-(r Ihl]l 
using a Gaussian ergostat imposing a fixed total energy E !,cp(r ij l+!,(p 2/2ml=NE12. The container is square, with V=N0'2. 
The potential energy is given; the kinetic and potential parts of the pressure tensor are arranged in pairs {kinetic,potential). The 
time step in the fourth-order Runge-Kutta simulations was 0.005(m0'2/El I/2 • A simulation of the Green-Kubo viscosity with 
N= 1024 and for an elapsed time of 20000 pn~vided the estimate 7] =0. 548(m Elli210' with a hydrostatic pressure of O. 5562(E/0'2), of 
which O. 071(EI0'2) is the kinetic contributiod. In giving these numerical results we have chosen units with m = 1, E= 1, and 0' = 1. 
The total time of the run is in units of 1"= 1 

N th e ( <PINe) 

1024 28 0.001 0.429 -0.0006 +0.0001 +0.0714 +0.4849 +0.0714 +0.4849 
1024 27 0.002 0.429 -0.0012 +0.0001 +0.0715 +0.4848 +0.0713 +0.4848 
1024 108 0.005 0.429 -0.0032 +0.0003 +0.0715 +0.4848 +0.0712 +0.4849 
1024 40 0.010 0.429 - 0.0063 + 0.0005 +0.0721 +0.4846 +0.0708 +0.4849 
1024 80 0.020 0.428 -0.0119 +0.0010 +0.0736 +0.4845 +0.0696 +0.4848 
400 90 0.050 0.428 -0.0232 +0.0016 +0.0806 +0.4836 +0.0642 +0.4853 

1024 221 0.050 0.428 -0.0233 +0.0016 +0.0808 +0.4837 +0.0639 +0.4853 
1024 614 0.100 0.427 -0.0305 +0.0014 +0.0908 +0.4824 +0.0546 +0.4864 
1024 304 0.200 0.428 -0.0325 +0.0005 +0.1012 +0.4813 +0.0432 +0.4883 
400 575 0.500 0.431 -0.0272 +0.0048 +0.1082 +0.4774 +0.0290 +0.4907 

1024 500 0.500 0.431 -0.0274 +0.0048 +0.1081 +0.4773 +0.0291 +0.4908 
4096 320 0.500 0.431 -0.0273 +0.0048 +0.1083 +0.4774 +0.0290 +0.4907 
400 500 1.000 0.442 -0.0214 +0.0075 +0.0951 +0.4719 +0.0209 +0.4935 

1024 760 1.000 0.442 -0.0218 +0.0074 +0.0941 +0.4724 +0.0212 +0.4936 
4096 470 1.000 0.442 -0.0218 +0.0074 +0.0945 +0.4723 +0.0210 

of the molecular stress has no simple continuum analog. of this force is random, the decay time should vary as the 
In most of the cases appearing in Tables I and II this con­ square of the ratio (kT Im)112 IFrandom' The resulting es­
tribution to the shear stress is barely significant. timate for the kinematic viscosity, I,v 13, where A is the 

The small-strain-rate viscosities found at the two ener­ mean free path, turns out to vary as T312. This argument 
gies considered can be estimated on the basis of a simple describes the temperature dependence of our viscosities 
argument. Imagine that the thermal velocity, (kTim) 1/2 very well and also provides semiquantitative agreement 
is gradually degraded by a fluctuating random force with the numerical values 
Frandom (which would vary as the mean slope of the Lucy 1l=3S(mkT)1!2(kTIw) , (4.3)
potential function multipled by the square root of the 

number of interacting neighbors). Because the direction restricted to the case of unit number density, Na 2= V. 


TABLE II. Kinetic and potential parts of the stress tensor for Lucy's potential cp( r < h = 30') = (5E0'2 11Th 2)[ (1 +(3r Ih l][ 1 
-(rlhlP using a Gaussian ergostat imposing a fixed total energy E=!,cp(rjj)+!,(p 2 /2m) =NE. The container is square, with 
V = N 0'2. The potential energy is given; the kinetic and potential parts of the pressure tensor are arranged in pairs 
[kinetic,potentiaIJ. The time step in the fourth-order Runge-Kutta simulations was 0.005(m0'2/E)1/2. A simulation of the Green­
Kubo viscosity with N= 1024 and for an elapsed time of 40000 provided the estimate 7]= 14.0(mE)11210' with a hydrostatic pressure 
of 1.024( E/0'2), of which O. 539(EI0'2) is the kinetic contribution. In the tabulated numerical results we have chosen units with m = 1, 
E= 1, and 0'= 1. The total time of the run is expressed in units of 1"= I Ie. The four simulations indicated by an asterisk (*) are in the 

discussed in the text. 

N th e (<PINe) 

1024 22 0.001 0.461 -0.0129 +0.0002 +0.5398 +0.4847 +0.5384 +0.4847 
1024 16 0.002 0.461 -0.0271 +0.0003 +0.5417 +0.4847 +0.5365 +0.4848 
1024 20 0.005 0.461 -0.0682 +0.0009 +0.5538 +0.4845 +0.5349 +0.4849 
1024* 86 0.008 0.436 -0.1317 +0.0005 +0.901 +0.488 +0.227 +0.488 
1024* 105 0.009 0.441 -0.0806 +0.0009 +0.907 +0.484 +0.212 +0.484 
1024* 189 0.010 0.424 -0.1384 +0.0000 + 1.055 +0.492 +0.097 +0.492 
1024* 169 0.011 0.456 -0.1150 +0.0016 +0.673 +0.484 +0.415 +0.484 
1024 296 0.020 0.458 -0.1802 +0.0026 +0.6774 +0.4832 +0.4078 +0.4852 
1024 78 0.050 0.458 -0.2557 +0.0040 +0.7465 +0.4818 +0.3370 +0.4876 t 

'I:' 

1024 308 0.100 0.458 -0.2675 +0.0042 +0.8281 +0.4802 +0.2552 +0.4900 
1024 472 0.200 0.458 -0.2549 +0.0036 +0.9028 +0.4788 +0.1809 +0.4923 
1024 550 0.500 0.459 -0.2124 +0.0012 +0.9761 +0.4775 +0.1057 +0.4951 
4096 165 0.500 0.459 -0.2120 +0.0014 +0.9769 +0.4771 +0.1057 +0.4949 

, 

1024 
4096 

760 
250 

1.000 0.462 
0.462 

-0.1733 +0.0016 
-0.1735 +0.0013 

+ 1.0090 +0.4764 
+ 1.0091 +0.4765 

+0.0664 +0.4971 ~,~
.c; 

:.;, 
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FIG. 8. Dependence of the normal stress function, 
(Pxx -pyy )/i;.2, on reduced strain rate for E=N£ and 
E = N £/2, based on simulations with 1024 Lucy particles. Unit 
stress corresponds to £/a2 while unit strain rate is (£/ma 2 )112. 

We expect that a similar argument would provide an 
effective heat conductivity for the Lucy potential, but we 
have not checked this notion. 

V. GREEN·KUBO CORRELATION FUNCTIONS 

FOR LUCY'S WEIGHT FUNCTION 


We found that the Green-Kubo integrand for shear 
viscosity, shown in Fig. 9, requires extremely long simu­
lation times for convergence. The convergence is evi­
dently not even relevant [4,5] for times greater than 
dt Ide, although the plotted data suggest that exponential 
decay is an accurate representation for times from about 
5(ma2/e)1/2 to 80(ma 2/e)1/2. The canonical-ensemble 
Green-Kubo expression for shear viscosity [3,5,19] is 

11= ( V IkT) f '" <Psh (0 )Psh (t» equilibriumdt , (5.1) 
o 

where the time-dependent pressure components P sh can 
represent either PXY or (P P )/2 in two dimensions. xx yy 

By comparing the two correlation functions for Pxy and 
(P - P )/2, an idea of the uncertainties results. Thisxx yy 

comparison, and the long simulation times required to 
obtain the correlation function, suggests that nonequili­
brium methods are much more efficient than the Green­
Kubo approach for this soft Lucy potential. 

Many theoretical investigations, summarized in Ref. 
[4], have concluded that two-dimensional transport 
coefficients are ill defined, based on the large-system 
divergence of the corresponding Green-Kubo expres­
sions. On the other hand, our own investigations, past 
[5,15] and present, show that the two-dimensional viscos­
ity is apparently well defined in a homogeneously ergos­
tatted large-system "hydrodynamic limit." 

The situation is still somewhat unclear, at least to us. 
Our own viscosity work, along with that of others [20], as 
well as diffusion studies, in systems with rigid boundaries, 
of Bocquet [21], all suggest no divergence of transport 
coefficients for large two-dimensional systems. Bocquet 
and Barrat have recently published their theoretical and 

0.0003 

0.0002 

0.0001 

o '"-'--~,~---'-----'--
o 20 40 60 80 100 

FIG. 9. Green-Kubo integrand for 1024 Lucy particles at an 
energy of E=N£ and unit density, Na2 = V. The mean temper­
ature is O.539£/k and the integrated viscosity, 14.0(mcl I/2 /a, 
is not inconsistent with our more-extensive nonequilibrium 
simulations. The simulation time is 40000(ma2/cl l12 • This ex­
tensive simulation was required to eliminate apparent oscilla­
tions in the correlation function. A semilogarithmic plot of the 
same data reveals a good straightline exponential decay up to a 
time of 80(ma2/£)1/2. Here unit stress is £/a 2. 

computational studies of boundary effects on transport in 
three dimensions [22]. Their two-dimensional work is in 
preparation. 

We imagine that the theoretical predictions of diver­
gence reflect the relative importance of fluctuations in 
two dimensions. In two dimensions, both boundaries and 
fluctuations produce effects of order N 1/2. This fact led 
us to study the boundary dependence of mean-squared­
displacement divergence in two-dimensional crystals 
[15,23]. We found that this quantity diverges logarith­
mically fo! both types of boundaries, periodic and rigid, 
although with slightly different coefficients. It appears to 
us that viscosity is a useful concept in two dimensions, as 
it is in three. Viscosity only becomes well defined in a 
large-system limit which incorporates thermostats, or er­
gostats, to ensure a homogeneous steady state. 

VI. RAYLEIGH-BENARD PROBLEM 

FOR TWO-DIMENSIONAL IDEAL GASES 


What is Rayleigh-Benard instability? If a fluid expands 
when heated, then the effect of gravitational forces on the 
resulting density gradient can lead to convection currents 
[24]. These convection currents, when excited, typically 
transport heat somewhat more efficiently than does quies­
cent conduction. The dependence of the problem on tem­
perature leads to two noticeable transitions. For a nearly 
incompressible fluid, these transitions can be described in 
terms of the dimensionless Rayleigh number 

(6.1) 

where L is the cell height, D is the thermal diffusivity, 
D =K I(pc), with c the specific heat, and v is the kinemat­
ic viscosity, v= (111p). The gravitational acceleration g is 
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discussed below. At the critical Rayleigh number, steady 
convection currents form. At a considerably higher Ray­
leigh number, the flow becomes chaotic. 

The Rayleigh-Benard problem has been both discussed 
and solved, in many ways [24-27], both analytic and nu­
merical. We imitate the conditions of a recent numerical 
Boltzmann-equation calculation [26] in which the materi­
al is a low-density ideal gas. We found it simpler to solve 
the continuum equations numerically than to attempt to 
extract a numerical solution from the theoretical work in 
Refs. [24,27]. We focus on densities and temperatures 
near unity. If we consider the twin effects of gravitation 
and a parallel temperature gradient, the vertical accelera­
tions can be chosen to minimize density variations: 

FIG. 10. 	Rayleigh-Benard flow of a macroscopic ideal gas us­
pg+(aPlaTlpdTldy=O=g=kf:..TI(mL). (6.2) ing 800 Lucy particles and smooth-particle applied mechanics: 

Thot = 1. S( Elk), Tcold =0. 5(Elk), with gravitational acceleration We further choose the temperature difference between 
g =kt:.TImLy. The volume is 8ooa2 = LxLy. The flow patterns

the upper and lower walls equal to the mean temperature, for (T}lp)=D=K/(pcv)= (0. 10,0. lS,0.20j(E/m)1/2a are not
f:..T= T, so that the Rayleigh number becomes significantly different despite "Rayleigh numbers" of 40 000 

R [kf:..T l(mLTl](f:..TIL)L 4/(Dv)=(L 2kTIm)/(Dv) . (shown 22500, and 10000. Notice that the vertical boun­
daries are periodic and that reflected "image" particles enforce 

(6.3) 	 the horizontal top and bottom boundary conditions of fixed 
temperature and vanishing flow velocity. The image particles Chandrasekhar's analysis [24] (see also Ref. [27]) estab­
are shown as open circles. lishes that quiescent heat flow becomes unstable to con­

vection if the Rayleigh number exceeds a critical value 
Re' With the horizontal boundaries at the top and bot­
tom of the convection cell free of friction, Re is 658. gradients t(VV)i; (VT) .. 1, (iii) calculation of time deriva­

With these boundaries rigid, with vanishing normal and tives [Vi; e;]. 
tangential velocity components, the critical value is First, the densities of bulk particles inside the con­
Rc = 1708. We choose periodic vertical boundaries (rath­ tainer include contributions from reflected image parti­

cles, as shown in Fig. 10. Next, contributions from the er than the reflecting boundaries of Ref. 26), as shown in 
images are used in the calculation of the velocity and Fig. 10. This choice is the simplest consistent with 
temperature gradients. In the bulk fluid, these gradients Chandrasekhar's analysis. Because his choice of rigid 
can best be calculated by starting from the identity hor~zontal boundaries (with v vanishing there) corre­

sponds to an aspect ratio within a percent of 2, we adopt­ pV/ V(p/)-/Vp , 	 (6.4)
ed that choice for a numerical test of the smoothed­

particle method. where / can represent either the velocity or the tempera­


The lateral periodic boundaries are straightforward to ture. This choice leads to the highly desirable absence of 
implement, and require no discussion. For reproducibili­ flux contributions between smooth particles having the 
ty, the top-and-bottom boundary conditions need to be same values of /. Expressing the two gradients, on the 
discussed in some detail. We consider the three steps in­ right-hand side, in terms of the smoothed-particle weight­
volved in solving the smoothed-particle equations of ing function w, and dividing by a symmetrized density 
motion: (i) calculation of densities [Pi J, (ii) calculation of Pij' leads to the following definitions: 

(6.5)[(Vv);=m 7[V;Wij ][Vj -Vi ]lP;j' (VT); m 7[V;wij][Tj-Ti]lPiJ ); Wij w(rij) ' 

where Vv is a second-rank tensor, VT is a vector, and where we can choose either the arithmetic-mean density, 
Pij=(Pi+pj)/2 or the geometric-me!!~ density, Pij=(PiPj)1I2. These choices lead to very similar_results. ~or the 
reflected boundary contributions of [i ,j 1, the images of [i,j 1, we include all pairs of contributions [i ,j land [j ,i J for 
which a particle-image pair has a separation less than the range of the weighting function. See again Fig. 10, in which 
image particles are indicated by open circles. For the image of particle i, vi' and are taken equal to the boundary 
values rather than to the bulk values Vi and T i • 

The equations of motion are based on a different identity, 

(V/)Ip V(j IpJ+(j Ip2)(Vp) , 	 (6.6) 

where / can represent either the velocity V or the internal energy e. This choice is motivated by the fact that it leads to 
the conservation of / in the interaction of particle pairs. For smoothed particles in the bulk fluid, the corresponding 
equations of motion are 
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(6.7) 


The conductive contribution to the energy change has a similar form: 

where Q is the heat flux vector, -KVT. In these cases, 
the reflected image values of the stress tensor and the 
heat flux vector for [T,JJ are taken equal to the corre­
sponding bulk values of particles (i,j). In calculating 
the smoothed-particle boundary contribution to the 
compressive energy change, pde Idt =u:Vv, the image 
stresses are equal to the bulk stresses while the image ve­
locities are given by the boundary values. 

In relatively small-scale simulations of Rayleigh­
Benard flow, with 800 smoothed particles, we found that 
the flow field, shown in Fig. 10, was essentially indepen­
dent of the "transport coefficients." We used state­
independent Newtonian shear viscosity and Fourier heat 
conductivity throughout our work. With the three 
choices TJlp= D =KI(pc)= {0.1O,0.15,0. 20) (elm )1120', 

the flow fields are statistically indistinguishable from one 
another, and correspond to a kinetic temperature of 
~0.OO4£lk. This indicates that the intrinsic viscosity of 
the Lucy flow, though evidently less than our estimate for 

(6.8) 

an energy E = N e12, is still sufficiently great to exceed 
the specified viscosity, and dominates the flow. To em­
phasize this point, we carried out a simulation with the 
viscosity set equal to zero. (Thermal conductivity is still 
required, in order to drive the flow.) Again rolls formed, 
though irregularly and many in number, suggesting the 
presence of viscous dissipation in the smooth-particle 
model of an in viscid fluid. 

A slightly larger system, with 5000 particles, is already 
sufficiently large to give a good representation of the 
macroscopic flow, accurate to a few percent. Figure 11 
shows two flows, at Rayleigh numbers of 40 000 and 
10000. In order to compare these flows to the predic­
tions of continuum mechanics, we have solved the com­
plete compressible continuum equations on a variety of 
rectangular grids, using centered space differences and 
the fourth-order Runge-Kutta method to integrate aplat, 
av lat, and ae lat to a fully converged steady state. 

After several failed efforts, we found that a square grid, 
with v, and e evaluated at the grid points and p, Vv, Ve, 
0', and Q evaluated at the squares' centers provided a 
robust and stable scheme. A fully converged centered-

I.'.lt·.. 
,q,U"""fr~TCOII 

FIG. II. Rayleigh-Benard flows of a macroscopic ideal gas 
using 5000 Lucy particles and smooth-particle applied mechan­
ics: Tho! 1. 5(E/k), Tcold =0. 5(E/k), with gravitational ac­
celeration g = kaT/mLY' The spatially averaged flow patterns 
{(v>l for ('l7/p)=D=K/(pCv)={0.25,0.50j(E/m)1!20' corre­
spond to Rayleigh numbers of 40000 (top) and 10000 (bottom). 
The volume is 50000'2=LxLy. The kinetic energy per unit 
mass, for the lower flow, is O.0046(E/m). 

FIG. 12. Rayleigh-Benard flow, under conditions identical to 
those at the bottom of Fig. II with a Rayleigh number of 
10000. The solution, shown at the top, was obtained by solving 
the compressible fluid equations on a 61 X 31 Eulerian mesh, us­
ing centered spatial differences and Runge-Kutta time integra­
tion. The kinetic energy per unit mass is 0.0048(E/m). The 
solution for 5000 smoothed particles, evaluated at 1800 grid 
points, is shown below for comparison 
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difference flow field for a Rayleigh number of 10 000, cor­
responding to the lower illustration in Fig. 11, appears as 
Fig. 12. The agreement found is quite satisfactory. See 
the figure captions. Though smooth particles can easily 
produce Rayleigh-Benard flows with a convincing ap­
pearance, using fewer particles than required by molecu­
lar dynamics simulations, quantitative results, in two di­
mensions, require on the order of thousands of smooth 
particles for velocity errors of order a few percent. 

VII. CONCLUSIONS 

Shear flows for the long-ranged and relatively soft 
Lucy potential are well described by the model of a 
Newtonian viscous fluid in two space dimensions. There 
is an interesting instability transition at relatively high 
energy, which deserves further study and analysis. Finite 
flow velocities guarantee a finite transport coefficient, 
even in two dimensions. The viscosities we find are essen­
tially independent of system size and strain rate within 
the precision of the computer simulations. There is 
soon-to-be published support for this view in Green­
Kubo simulations carried out by others [20]. Bocquet 
and Barrat, who have studied the effect of boundary con­
ditions on transport in three dimensions [22], are now 
studying boundary effects in two dimensions [21]. 
Smooth-particle applied mechanics, which closely resem­
bles molecular dynamics, can be used to solve continuum 
flow problems with fewer particles than are required for 
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