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Quasiharmonic crystals have long provided useful data 
for developing perturbation treatments of more realistic 
materials.! The lattice-dynamics model, even when restricted 
to nearest-neighbor interactions and to close-packed crystal 
lattices, has been very useful in elucidating the equilibrium 
thermoelastic statistical mechanics of real three-dimensional 
crystals? The detailed frequency spectrum of the elastically 
isotropic two-dimensional triangular lattice, including the 
contributions of free-surface Rayleigh waves? was worked 
out a decade ago. 

The computational treatment of two- or three­
dimensional crystals is simplest when periodic boundary 
conditions are used. In this case the N-particle equations of 
motion, in D dimensions, can be solved by diagonalizing a 
set of N D-dimensional matrices. where each matrix COITe­
sponds to a set of D normal-mode vibrations.! For the two­
dimensional triangular lattice, this approach was followed 
over 20 years ago, leading to quantitative relations for the 
number dependence of the vibrational entropl and mean­
squared displacementS 

I:::..SINk=0.27326-(1 N; 

(r2)lr'i=0.367 55 In N. 

The entropy and mean-squared displacement are both given 
relative to the predictions of the single-frequency Einstein 
model, and apply to the stress-free case. The two constants, 
available with five-figure accuracy from extrapolated com­
puter simulations, were ultimately evaluated exactly.5,6 

During the past 20 years the simulation of transport 
properties in two dimensions, hampered by relatively large 
long-lived fluctuations, has finally led to the suggestion that 
finite coefficients can be defined, even in the iarge-system 
limit,7 despite the apparent divergence of the corresponding 
Green-Kubo expressions for these properties.8 Though the 
fluid results are still puzzling, the logarithmic divergence of 
particle vibrations, with size, is certainly well-understood, at 
least with periodic boundaries.5 The rigid-boundary case is 
much more demanding, from the computational standpoint, 
as the full dynamical matrix, 2NX 2N, needs to be diagonal­
ized to find the quasiharmonic properties. Nevertheless, com­
puters today are quite capable of diagonalizing matrices with 
several million matrix elements. 

We have evaluated and diagonalized the dynamical ma­
trices for a series of close-packed structures, all with the 
maximally symmetric hexagonal structure: 1, 7, 19, 
3n 2 -3n-d,... , 2107 particles, embedded into a confining 
crystal of fixed particles. The seven-atom hexagon (n 2), 
e.g., interacts with 12 additional fixed atoms, which surround 
it. The last calculation (n 27), corresponds to a hexagonal 

crystallite, 27 atoms on a side, and confined by 6n 162 
neighboring atoms. The 4214 vibrational frequencies were 
evaluated as eigenvalues of the corresponding 4214X4214 
matrix. 

For all 27 cases both the entropy and the mean-squared 
displacement were measured, relative to the simplest (n =: N 

1) Einstein model prediction. The results are shown in 
Table I. These numerical data can be described by the fol­
lowing approximate relations, for large N: 

I:::..SINk=0.273 O(N­

{r2)lr'i 0,35 6 In N+OOn N/N 1 

The entropy result agrees with the known periodic case, con­
firming that thermodynamic quantities are independent of the 
boundary details for sufficiently large systems. The displace­
ment data, on the other hand, establish that the relatively 
large role played by fluctuations and boundary conditions in 
two dimensions affects the coefficient of the logarithmic di-

TABLE L Vibrational entropy and mean-squared displacement, relative to 
the predictions of the single-oscillator Einstein model, are listed for hexago­
nal crystallites of 3 n 2 - 3n 1 nearest-neighbor Hooke's Law particles em­
bedded in a rigid hexagon of 611 fixed particles. 

11 N t1SINk 

0.00000 1.00000 
2 7 0.110 15 1.26599 
3 19 0.15937 1,464 18 
4 37 0.18569 1.615 89 
5 61 0.20203 1.73880 

6 91 0.21317 1.84234 
7 127 0.221 25 1.931 94 
8 169 0.227 40 2.011 01 

9 217 0.23223 2.081 83 
10 271 0,236 14 2.14601 
11 331 0.23935 2.20471 

12 397 0.24205 2.25882 
13 469 0.24435 2.30901 
14 547 0.24633 2.355 83 
15 631 0.248 OS 2.39972 
16 721 0.24957 2.44101 
17 817 0.25091 2.48002 
18 919 0.252 11 2.51698 
19 1027 0,253 18 2.552 10 
20 1141 0.254 15 2.58556 
21 1261 0.25503 2.617 51 
22 1387 0.25583 2.64809 
23 1519 0.25657 2.677 40 
24 1657 0.257240 2.70S 555 
25 1801 0.257861 2.732638 

26 1951 0.258436 2.758729 
27 2107 0.258969 2.783901 
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vergence significantly, changing it from 0.368 to 0.356 , but This work was supported, in part, by the Lawrence Liv­
without changing the functional fonn established in the pe­ ennore National Laboratory, under the auspices of the United 
riodic case. White's experimental fluid data, cited in Ref. 5, States Department of Energy, through Contract No. W-7405­
detennine this coefficient within an uncertainty of 15%. Eng-48, in part, by a grant from the Agency for Defense 

; It may well seem strange that large-crystal rms fluctua­ Development, Republic of Korea, and, in part, through an 
tions can depend upon crystal size much more strongly than 
does the entropy. There is a simple analog in one dimension.9 

Though the limiting [convergent] large-crystal entropy per 
particle is the same for rigid and for periodic boundaries, the 
[divergent, proportional to NJ rigid-boundary mean-squared 
displacement approaches twice the periodic value for large 
N. Two-dimensional problems lie mostly beyond the reach of 
analysis. 10 

This work on two-dimensional crystallites was stimu­
lated by correspondence with Bocquet (Lyon) who is study­
ing the dependence of two-dimensional transport properties 
on the boundary conditions using mode-coupling theory and 
nonequilibrium molecular dynamics. We hope that continu­
ing advances in computational capacity and speed will make 
it possible to compare these crystalline results with accurate 
large-system viscosities within the next few years. 
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