
PIIYSICAL REVIEW E VOLUME 52, NUMBER 5 	 NOVEMBER 1995 

Viscous conducting flows with smooth-particle applied mechanics 

Oyeon Kum and William G. Hoover 
Department ofApplied Science, University ofCalifornia at Davis/Livermore and Lawrence Livermore National Laboratory, 


Livermore, California 94551-7808 


Harald A. Posch 

Institute for Experimental Physics, University ofVienna, Boltzmanngasse 5, Vienna A-1090, Austria 


(Received 26 May 1995) 


Smooth-particle methods have a 20-year history of solving complex problems in fluid and solid 
mechanics. Here we first discuss the method, pointing out an interesting and fruitful parallel linking 
smooth-particle methods to atomistic molecular dynamics. We then assess the accuracy and applicabili­
ty of the method by comparing a set of smooth-particle Rayleigh-Benard problems, all in the laminar re­
gime, to corresponding highly accurate grid-based numerical solutions of the continuum equations. 
Both transient and stationary smooth-particle solutions reproduce the grid-based data with velocity er­
rors on the order of a few percent. 

PACS number(s): 66.20. +d, 03.40.Gc, 05.70.Ln 

I. 	INTRODUCTION fluid heated from below (7-11]. 
For simplicity, but without lack of generality, we study 

Smooth-particle applied mechanics (1-6] is a grid-free the Rayleigh-Benard problem in two dimensions. The re­
particle method for solving the partial differential equa­ quired details appear in Sec. IV. These include the equi­
tions of fluid or solid mechanics. It is equally applicable librium and nonequilibrium constitutive relations, as well 
in one, two, and three space dimensions. The mass, as the thermomechanical boundary conditions required 
momentum, and energy of a simulated flow are all calcu­ to contain and drive convecting systems. In Sec. V we 
lated by summing up particle contributions. Each parti­ generate and summarize conventional grid-based contin­
cle is smoothly distributed in space according to a uum results with which our smooth-particle simulations 
"weight function" or "smoothing function" w (r). The can be compared. We find that the smooth-particle ve­
smooth-particle formulation simplifies the calculation of locities agree with the accurate grid-based data within a 

';()rresponding spatial derivatives {Vp, Vv, V T(p, e)1 few percent. 
<. the comoving fluxes {P,Q} in such a way as to pro­ The continuum results we obtain in Sec. V show an in­> 

vide the right-hand sides of ordinary differential equa­ teresting very nearly linear dependence of the flow's 
tions for the time development of the particle positions, kinetic energy per particle KIN on the inverse square 
velocities, and energies [t,v=r,e}. Thus the mathemati­ root of the Rayleigh number, Ra- ln (Ra=gaL 3.6.TI 
cal structure of this macroscopic continuum solution (VK)], for a factor-of-2 change in Ra-In. This simple re­
method resembles that of the ordinary differential equa­ lationship facilitates the comparison of our smooth­
tions of microscopic atomistic molecular dynamics. We particle results, discussed in Sec. VI, with fully converged 
discuss the weight function, which characterizes the continuum predictions. Section VII is devoted to the 
method, as well as the formulation and structure of the conclusions we draw from our study. 
associated ordinary differential equations, in Sec. II. We 

n. BASIC EQUATIONS OF SMOOTII-PARTICLEemphasize and discuss the connection with molecular dy­
APPLIED MECHANICSnamics in Sec. III. 

Like molecular dynamics, smooth-particle methods Lucy and Monaghan have independently developed the 
can be applied in two or three space dimensions nearly as smooth-particle approach [1,2] to solving the usual evolu­
easily as-in one. Their implementation .on parallel com­ tion equations-the continuity equation, the equation of
puters is also straightforward. For these two reasons, motion, and the energy equation-for a continuum fluid 
smooth-particle methods are often applied to complex as­ or solid:
trophysical problems (1,2] such as colliding planets and 
stars, for which correct answers are unknown and grid­ dlnpldt=-V·v, 
based methods are prohibitively expensive. To evaluate 

dv/dt= IIp)V·p,the adaptability and fitness of this method to more typi­

cal problems in applied mechanics £3], we have recently 
 de/dt -(llpl[Vv:P+V·Q].
carried out a detailed investigation [4,5]. Here we de­
scribe the application of this technique to a fundamental The notation for the flow variables is standard, and it is 
hydrodynamic instability problem, the Rayleigh-Benard written here in terms of the time derivatives/ollowing the 

~blem of convective heat conduction in a gravitating flow, the "comoving" or "Lagrangian" derivatives. 
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Each individual smooth particle is distributed in space function is, by definition, unity. In two dimensions, 
according to its smooth weight function w(r<h). As a r3u 

J, 2'lTrw dr =1 . result, the flow variables and ~hcir spatial gradients all o 
take the form of sums involving all particle pairs that lie 
within the range h of the weight function. The density is 
a simple summed superposition of smooth-particle contri­
butions. At the location r, the density p(r) can be calcu­
lated by summing up contributions of all particles at loca­
tions {rj} lying within a cutoff distance h of the location 
r: 

p(r)= 2: mjw(r-rj ) . 
) 

In its motion, the jth smooth particle carries with it a 
mass mj' moves at a velocity Vj' and carries with it a total 
energy made up of internal and kinetic parts: 
mj[e) +(vj/2)]. 

For simplicity, in the present work we choose all of the 
smooth-particle masses equal to a constant mass m. The 
time development of the individual particle velocities and 
energies is described below by ordinary differential 
motion and energy equations. To find the local flow den­
sity requires only a simple sum rather than the integra­

. tion of the conventional continuity equation. 
In the smooth-particle work described here we use ei­

ther Lucy's form [1] or Monaghan's uB-spline" form [2] 
of the weight function w: 

WLucy(Q < r < 30- )=(5/9'lT0-2)[ I +(r /0-)][ 1-(r /30- )]3 , 

WMonaghan(0 < r < 1.50" ) 

= (40/63'lT0"2)[ 1-(2/3)( r /0- )2+ (2/9)(r /0- )3] • 

WMonaghan 0.50" < r < 30" )=(80/63'lT0"2)[ 1 (r /30-)]3 • 

See Fig. 1. We have arbitrarily chosen the range of the 
weight functions, h, the "cutoff" distance, equal to 30", to 
be about three times the nearest-neighbor distance for all 
particles. Despite this finite range, and despite the spline 
nature of Monaghan'S weighting function, both choices 
have been judiciously constructed to have continuous 
first and second derivatives for all r. The two vanishing 
derivatives at the cutoff enhance the smoothness of the 
field variables as well as the ease of integrating the 
motion and energy equations. 

The spatial integral of any smooth-particle weight 
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FIG. L Lucy's and Monaghan's weight functions w(r). The 

functions are normalized, with a spatial integral of unity. We 
have used a range of h =3a=3( V INlll1. 

With h =30-, and at unit number density n0-2=1, bulk 
particles in two dimensions typically interact with 20 to 
30 neighbors, providing a sufficiently smooth description 
of the field variables, as suggested by the numerical re­
sults in Fig. 9, discussed later. 

There are many alternative ways to quantify the 
smoothness and accuracy of the smooth-particle descrip­
tion. One useful approach, followed in Ref. [5], is based 
on the observation that a symmetric lattice of smooth 
particles, when used to describe a jluid, necessarily corre­
sponds to an extremum of the energy and also typically 
to a spurious shear modulus. Numerical evaluation of 
these spurious moduli, as a function of increasing 
smoothing length, indicates a rapid convergence to zero. 
Typical shear moduli, for our choice of the smoothing 
length, are of the order 1% of the bulk modulus. 

The main advantage of the smooth-particle method is a 
simplification of the evaluation of spatial derivatives 
(Vp,Vv,VT,V·P,V·Q}, leading to ordinary, rather than 
partial, differential equations of motion for the particles . 
With smooth particles, spatial derivatives can be evalu­
ated in several ways [2], of which two seem to us to be the 
most useful IS]. To begin, we define the hydrodynamic 
density, velocity, and energy at a point in terms of sums 
over nearby particles: 

p(r)= 2: mw (r-r)) , 

) 


p(r)v(r)= 2:mvjw(r-r)) , 
) 

p(r)e(r)= 2:mejw(r-rj) • 
) 

The temperature at r, required for heat flux calculations, 
is evaluated from the density and energy per unit mass by 
using the thermal equation of state T (p, e). 

For the jlux-generating variables, such as the velocity v 
which provides the viscous part of the pressure tensor P, 
and the temperature T which provides the heat flux vec­
tor Q, a useful form for the gradients at the smooth­
particle locations follows from the gradients of pv and 
pT: 

V(pv)=pVv+vVp­

(VV)i= 2: m [(Vj-Vi )/Pij]Vi Wij, 

j 

V(pT)=pVT+TVp­

(VT)i= 2:m[(Tj Ti)/pij]ViWij . 
j 

To symmetrize these expressions, the mean density Pi' 
can be chosen as either an arithmetic or geometric mea~ 
of Pi and Pj- We have used the geometric mean in all of 
our work. Knowing the.velocity and temperature gra­
dients makes it possible to apply the constitutive relations 
of Newton and Fourier to associate shear stresses and 
heat fluxes with each of the smooth particles_ 
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For flows of conserved variables, such as the momen­
um and energy fluxes, an alternative form of space 
ierivative, which provides an exact conservation of 
nomentum and energy in the bulk flow, is preferred: 

V,(P /p)=(V'P)/p-(P /p2).Vp----l>­

\ - P)l/Pi= ~m[(P/p2)i+(P/p2)j]'ViWij' 
j 

V·(Q/p)=(V·Q)/p-(Q/p2 )·Vp----l>­

(V'Q)Jpi ~m[(Q/p2)i+(Q/p2)j]'ViWjj' 
j 

With these choices the smooth-particle motion and ener­
gy equations become 

£SPAM 7m [(P /p'I;+(P /p'ljl·V,W,j+g I· 
ej =- ~ (m /2)[(P /p2)j +(P /p2)j ]:(Vj-Vj )VjWjj 


j 


where SPAM denotes smooth-particle applied mechanics. 
As emphasized in Ref. [2], the underlying differential 
identities, on which the definitions of {Vv, VT, V'P, V'Q} 
are based, are not at all unique, so that other systems of 
"smooth-particle" equations can be developed. For ap­
plications of a different representation of the gradients, 

. usinp.-l1aussian weight functions, see Ref. [6]. 
T nooth-particle approach outlined here is perfect­

: ly general, in that any constitutive relation can be used. 
[n our own work we have used Newtonian shear viscosi­
:y, zero bulk viscosity, and Fourier heat conduction, all 
.vith constant transport coefficients, but the method is it­
;elf not at all restricted. General dependences of the 
:ransport laws on such variables as plastic strain or ten­
ior stress invariants can easily be included. One special 
:;ase is of particular interest in illuminating some lim ita­
::ions of smooth-particle applied mechanics by relating it 
:0 molecular dynamics. This special case [12], in which 
~he pressure varies as p2, is discussed separately in Sec . 

. III. For generality in our hydrodynamic applications, we 
treat not only the ideal gas constitutive law but also two 
more realistic dense-fluid equations of state, all with sim­
ple linear tra~sport laws. 

Because the density, the gradients, and the Eulerian 
time derivatives at each particle location involve the eval­
uation of pair sums, the smooth-particle method has to 
proceed in three separate stages. First, the density at 
each particle is calculated. Next, the pressure tensors 
(P j, from {Vv J, and the heat flux vectors {Q J, from 
{VTl, are worked out. Finally, the pressure and heat 
flux gradients {V, P, V .Q 1are evaluated, allowing vand e 
to be evaluated for each particle. The very smooth na­
ture of the integrands makes the use of the classical 
fou rder Runge-Kutta method an efficient approach 
to tn..; mtegration of the particle equations. The most 
time consuming step, finding all those interacting neigh­

bor pairs that lie within a range h, requires implementing 
a linked-list algorithm [13], with a time proportional to 
N InN, where N is the number of particles. 

Boundaries provide the crucial link between the fluid 
system of interest and the surroundings with which it in­
teracts. The boundaries affect the pressure gradients and 
temperature gradients that govern the particle equations 
for {v,e}. There are two natural ways to confine a sys­
tem with boundary particles. See Figs. 2 and 3 for exam­
ples. First, sufficiently many particles, flxed in space, as 
well as a leak-proof, perfectly rigid, elastically reflecting 
wall, can be used. The fixed boundary particles of Fig. 2 
provide a high..density container region capable of repel­
ling approaching particles. 

At the fixed boundaries both the parallel and the per­
pendicular velocity components vanish. In implementing 
the thermal boundaries required in the Rayleigh-Benard 
problem, the temperatures of the boundary particles must 
likewise be fixed. It is nearly as easy, and it is also more 
"realistic," to use instead a mirror boundary condition in 
which all approaching particles produce reflected images 
(as shown in Fig. 3). The image particles can be assigned 
velocities and temperatures independent of all the other 
particles in their vicinity. For still a different treatment 
of boundaries, using a continuous distribution of external 
particles, see Ref. [6]. In Sec. IV, we describe the appli­
cation of both of our discrete-particle boundary ap­
proaches to the classic problem of Raleigh-Benard insta­
bility. 

III. RELATION OF SMOOTH·PARTICLE APPLIED 

MECHANICS TO MOLECULAR DYNAMICS 


In the special case that the pressure is inviscid and 
varies as the square of the density P ct:. p2, the smooth­
particle equations of motion 

!rSPAM=t, -7m [(PIp'I,+(PIP'ljl·V,wij +g I 

FIG. 2. Rigid boundary rows of fixed particles (with specified 
temperatures) are used to confine the bulk fluid. The fixed 
boundary particles are shown as open circles, while the bulk 
smoothed particles are indicated by arrows with a length pro­
portional to the individual particle velocities. The illustration 
shows an ideal gas Rayleigh-Benard flow with 

IkB =O.5(mE)\ 12 la at a Rayleigh number of 10000. 
There are 5000 bulk particles in a rectangular 50u X lOOa box. 
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FIG. 3. Reflected image particles follow the motion of corre­
sponding bulk fluid particles, but with specified values of veloci­
ty and temperature. The reflected boundary particles are shown 
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as open circles, and the bulk smoothed particles are indicated 
by arrows with a length proportional to the individual particle 
velocities. The illustration shows an ideal gas with 
1J=k/kB =0.5(mcYI2/a at a Rayleigh number of 10000. 
There are 5000 bulk particles in a rectangular 50a X l00a box. 
All particles lying within a distance 3a=3( V /N)112 of the 
boundary generate reflected image particles. 

become identical to the equations of motion of molecular 
dynamics [5,12,14] 

{i\ 0:: -Vd>JMD , 

with w (r) playing the role of a pair potential. The result­
ing smooth-particle trajectories are likewise identical to 
the classical trajectories of atoms following Newton's 
equations of motion [12]. Though special, and applying 
exactly only to the isentropic equation of state for a two­
dimensional ideal gas, the quadratic equation of state 
P cc p2 differs only slightly from that of a three­
dimensional isentrope P ccp5/3 and is also helpful in un­
derstanding any fluid flow in which the quotient P / p2 is 
approximately constant. This isomorphism with molecu­
lar dynamics is particularly useful in understanding the 
peculiar behavior of the smooth-particle equations at 
high pressure and also provides an interesting version of 
the reversibility paradox. These two consequences are 
discussed below. 

First, we comment again that smooth-particle applied 
mechanics necessarily incorporates artificial viscoelastic 
effects, resulting from the particulate nature of the 
smooth-particle continuum fields, providing spurious 
elastic constants and transport coefficients. Even with a 
"fluid" constitutive equation, sufficiently high pressure 
can force the underlying smooth particles to freeze, 
behaving as a (thoroughly artificial) solid. In the very 
high-pressure case P-H.tJ, no pair of smooth particles 
can have a separation lying between 0 and h. This causes 
a peculiar limiting lattice structure with many particles 
per site. Though these spurious effects vanish as the 
range of the weighting function increases [5], in certain 
circumstances-an example, with two particles per site, 
appears in Fig. 4-they give rise to qualitative, as op­
posed to quantitative, errors in simulations. Accurate ap­
plications of the smooth-particle approach require that 
these spurious effects be negligibly small. A detailed 
analysis of this artificial freezing out of convective 

FIG. 4. "Freezing" of the smooth-particle fluid. There are 
512 bulk particles in a rectangular 16aX32a box. A grid-based 
solution of the Navier-Stokes equations shows that this prob­
lem, with a Rayleigh number of 3000 (about twice the critical 
value) and the dense-fluid equation of state has a convective 
solution with two rolls. A smooth-particle solution, for the 
same conditions and equations of state, using Monaghan's 
weight function with a range h =3a, leads to an unphysical 
high-pressure freezing out of the smooth-particle motion. Simi­
lar results are obtained by using Lucy's weight function. 

motion appears in Sec. IV. 
Second, in addition to emphasizing the practical need 

for vigilance in simulating fluid flow with smoothed parti­
cles, the isomorphism of smooth-particle trajectories to 
atomistic ones is also relevant to an academic under­
standing of the irreversibility paradox Boltzmann studie 
over a century ago. Boltzmann devoted much of his life­
time to understanding and explaining the fact that micro­
scopic particles, obeying Newton's time-reversible equa­
tions of motion, can give rise to macroscopic hydro­
dynamic irreversibility, as described by the second law of 
thermodynamics. In our special case, the smooth­
particle analysis of a two-dimensional ideal gas, the mac­
roscopic equations being represented are the time­
reversible Euler equations for an inviscid nonconducting 
fluid, but the model used to describe them is expected to 
be that of a fluid composed of particles interacting with 
the potential function w(r), and hence having an atomis­
tic viscosity and heat conductivity. Thus Boltzmann's 
paradox (microscopic reversibility __ macroscopic ir­
reversibility) is reversed for the smooth-particle represen­
tation [macroscopic time-reversible equations __ (irrever­
sible) microscopic molecular dynamics]. The exact rever­
sibility of the smooth-particle equations, and their rela­
tion to molecular dynamics for an Euler fluid, has recent­
ly been analyzed in detail [12]. 

IV. RAYLEIGH-BENARD SIMULATION WITH SPAM 

For fluids that expand when heated, the effect of gravi­
tational forces on the resulting density gradient can lead 
to convection currents [4,5]. Then heat is transporter" 
more efficiently, by a combination of conduction and COl. 

vection. This situation is shown in Figs. 2 and 3, where 
the gravitational acceleration is downward while the 
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motionless top and bottom boundaries are held fixed at 
cold and hot temperatures, respectively. We have simu­
lated such prototypical Rayleigh-Benard problems by us­
ing both Lucy's and Monaghan's weight functions with 
three different equations of state, given in Eqs. 0-3) 
below. The simplest of the three state equations is the 
icl:- - ~as law, appropriate to a dilute gas, 

P=pe, {3e=e/kBT=l, (1) 

where kB is Boltzmann's constant per unit mass. We have 
also used van der Waals' fluid equation of state (2) and a 
typical dense-fluid equation of state (3) as determined by 
a set of molecular-dynamics simulatious [4]. 

Van der Waals' equation applies to both gases and 
liquids. The equation augments the ideal-gas equation of 
state to include both the effects of attractive forces 
(through parameter a) and excluded volume effects 
(through parameter b). In the single-phase region of the 
phase diagram, 

{3P=[p/(t-pb)]_{3ap2, {3e=1.0-{3pa , 

a =f.a2/2m 2, b =a2/2m . (2) 

We choose these values for the two material properties, a 
and b, so that the unit reduced number density 
na2=Na2/V'=pa2/m =1 somewhat exceeds the critical 
reduced number density (2/3) and that our reduced tem­
perature range O. S< mkB T /f. < 1. S lies well above the 
critical reduced temperature mkB Tc /f.=(8/27). 

In addition to the ideal gas and van der Waals models, 
we have also used a more complex equation of state [4] 
from molecular dynamics-a quadratic expansion of the 
pP 'e and energy about a reference state at unit re­
du(.., __ density and temperature: 

PV/Nf.=S+80n +2.Sou +9(on)2+20nou , 

mkBT/f.= I-on +0. 70u -0.8(on)2-0.Sonou , 

u =me /f.=E /Nf.= 1.443+ 1. Son 

+ 1. S07+2.4(on )2+ 1. 20n 07 , 
(3) 

ou=(E/Nf.) 1.443, 

07=(mkBT /f.)- 1.000 . 

At the reference state the reduced energy and pressure 
are given by u =E/Nf.=1.443 and Pa2/f.=5. Notice 
that we use u to indicate a reduced energy. The thermal 
equation of state, linking energy to temperature, is re­
quired for heat flux calculations. 

It should be noted that this quadratic dense-fluid equa­
tion of state (3) is not quite '''thermodynamically con­
sistent." For instance, the Maxwell relation based on 
differentiating Helmholtz's free energy A with respect to 
temperature and volume 

a2({3 A )fa{3aV =(aE /aV)T=a2({3A)fa va{3 

-a[({3p)fa{3] v , 

/3= l/mkBT 

is not exactly satisfied. This means that thermodynamic 
cycles can be constructed in such a way as to violate con­
servation of energy. To illustrate, consider just linear 
var!8tions around the reference state. (aE /a V), evalu­
ated from the energy equation, is - LSf./a2

, whereas 
a({3p)fd{3=P +ap /a1n{3, evaluated by combining the 
mechanical equation of state and the energy equation, is 
L2Sf./a2• This lack of consistency causes no apparent 
trouble in smooth-particle simulations. On the other 
hand, we believe that it is the underlying cause of a slow 
divergence, at very long times, of some of our attempts to 
find corresponding Navier-Stokes "solutions." 

Our dense-fluid equation of state (3) was especially use­
ful in revealing a fundamental shortcoming of the 
smooth-particle method in treating dense fluids at very 
high pressures. Our early attempts to compare Navier­
Stokes and smooth-particle solutions for the molecular­
dynamics-based equation of state led repeatedly to 
"frozen" states, with the smooth particles crystallizing 
into static hexagonal-symmetry structures with either one It

I I(Lucy) or two (Monaghan) particles per site. See Fig. 4, I ; 
for example. With exactly the same imposed boundary ~; 1 

conditions, the Navier-Stokes equations easily generated ; :' 
reproducible convecting flows. 

This unphysical high-pressure freezing can be traced to 
the form of the smooth-particle equation of motion, as 
discussed in Sec. III. At sufficiently low pressures a typi­
cal smooth-particle kinetic energy exceeds the maximum 
value of the effective potential energy from which the 
smooth-particle accelerations are determined: 

At sufficiently high pressure, on the other hand, P( V/N) 
approximates me2, where e is the speed of sound, so that 
ordinary hydrodynamic flows, with compressibility but 
with velocities much smaller than the speed of sound, 
cannot overcome the potential barrier to smooth-particle 
motion. 

A more precise criterion for the applicability of the 
smooth-particle technique for fluids can be based on an 
analog of Lindemann's melting criterion. In two or three 
space dimensions, melting occurs when the fluctuation in 
the nearest-neighbor separation is of the order of 10%. 
For the corresponding potential energy to be available 
from the flow, the pressure cannot be too large: 

mv 2 >2Pn-2[w(0.9a)-w(a)] . 

For our Lucy weight function, the combination in square 
brackets is about O.Oln. The dense-fluid equation of state 
(2), which was fitted to a set of eqUilibrium molecular­
dynamics simulations, has 2Pn 1~me2, where c is the 
sound speed. Under supercritical and moderately dense 
conditions, the van der Waals equation of state (2) has a 
considerably lower pressure relative to the speed of 
sound. Thus, though the smooth-particle approach pro­
vides a good description of the van der Waals flow as well 
as ideal-gas flows based on (1), it can fail to describe 
convection-as shown in Fig. 4-for the alternative 
equation of state given in (3). The difference lies in the 
smooth-particle treatment of the pressure gradient. In 
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conventional continuum mechanics, a constant pressure 
addition does not affect the accelerations at all because 
they depend upon the gradient-V·P. In smooth-particle 
mechanics such an addition does affect the accelerations, 
through the combination (P I p2)·VW. 

In our smooth-particle work we have used not only 
two different types of boundary conditions, fixed particles 
and moving reflected image particles, but also two 
different system shapes, with aspect ratios of 1 and 2, in 
order to make contact with earlier calculations [7-11]. 
A system with periodic lateral boundaries and an aspect 
ratio of 2 corresponds closely to Chandrasekhar's classi­
cal analysis [7], which predicts-for sticking 
boundaries-that stable convection begins to occur as 
the Rayleigh number exceeds 1708. A square system, 
with specified temperature on the boundaries, corre­
sponds to the simulation of Goldhirsch, Pelz, and Orszag, 
using a spectral method [9]. These workers did not esti­
mate the precise critical Rayleigh number for this system. 
In both cases we control the boundary values of tempera­
ture and velocity by specifying these for all image parti­
cles. 

Both Chandrasekhar and Goldhirsch-Pelz-Orszag con­
sider the nearly incompressible Boussinesq approxima­
tion. This leads to small but definite deviations of our 
fully compressible results from theirs, as is discussed 
quantitatively in Sec. V. Though we first believed that 
the small deviations fromChandrasekhar's analysis were 
due to our relatively large temperature gradient (with 
l!. T <=:::: ( T», additional calculations with much smaller 
temperature differences l!.T produced only small changes, 
so we believe that the Boussinesqapproximation is re­
sponsible for the disagreements. The usual theoretical 
perturbation analyses typically assume either an isochoric 
or an isobaric thermal diffusivity. In fact, for a compres­
sible fluid, any hydrodynamic process is neither isochoric 
nor isobaric, so that an intermediate heat capacity is ap­
propriate. A short discussion of the limitations of the 
Boussinesq approximation, with references, appears in 
Ref. [15]. 

In addition to the equilibrium equation of state, ir­
reversible momentum and energy transport must be de­
scribed. For simplicity, we have in every case chosen 
constant, and equal, reduced transport coefficients, corre­
sponding to a Prandtl number of unity. We have ex­
plored the two simplest choices. First, 

1]=k IkB <X (mE)1/2 Iff , 

where 1] is the shear viscosity, k is the thermal conduc­
tivity, and kB is Boltzmann's constant per unit mass. 
Second, 

where v is the kinematic viscosity and K is the thermal 
diffusivity K=k l(pCv ). Cv is the isochoric specific heat. 
The transport coefficients 1] and k are defined by 
Newton's and Fourier's laws: 

PXy=-1][(au /ay}+(auylax}], Qy=-kaTlay.x 

Though the two choices above are equivalent for the 

reference state, they in fact lead to slightly different criti­
cal Rayleigh numbers, close to, and bracketing, 
Chandrasekhar's analytic result based on the Boussinesq 
approximation. 

In the continuum simulations we have assigned the 
densities and fluxes of image particles to match those of 
the corresponding bulk particles. Thus the density and 
fluxes are continuous at all system boundaries. To satisfy 
the condition of static equilibrium at an exactly constant 
density, we have further chosen the magnitUde of the 
gravitational acceleration to satisfy the static force bal­
ance equation 

(ap laT)pdT-pg dy =0 . 

Thus, for the ideal gas equation of state, g is chosen equal 
to kBl!.TIL, where mkB is Boltzmann's constant, L is the 
system height, and l!.T is the temperature difference 

Tcold' For the dense-fluid and van der Waals equa­Thot ­

tions of state, we have used the same constant-density 

condition, evaluating the thermodynamic derivative 

(ap laT)p' All of our simulations have been carried out 

with the overall reduced density equal to unity; most 

have a mean reduced temperature mkB ( T) IE = (mkB I 

d[T hOI + Tcold]l2 of unity as well. 

V. CONTINUUM FLOW SOLUTIONS 

WITH A REGULAR GRID 


We obtained grid-based continuum solutions in order 
to test the accuracy of our smooth-particle results, 
though one aspect of these solutions, as discussed below 
and illustrated in Figs. 5 and 6, has some independent in­
terest of its own. Only a brief description of our method 
for solving the Navier-Stokes equations is warranted be­
cause the approach we developed turned out not to be 
new [11]. We spanned the system with a grid of square 
cells, evaluating {v,e,av lat,3e lat I at the grid points 
and {p,p,Q,apI3t J at the cell centers. The centered­
difference equations for the time development of {p, v,e 1 
at these fixed locations were integrated with the same 
fourth-order Runge-Kutta integrator that we used in the 
smooth-particle work. The required values of density 
from cell centers just outside the system were set equal to 
the nominally constant reference-state value of unity. 
With this scheme we found no trouble in obtaining fully 
converged results for systems of several thousand cells. 

Two aspects of the continuum results were especially 
interesting. First, we found that there is a considerable 
range of Rayleigh number values (from roughly the criti­
cal value, at which flow begins, to four times that value, 
as shown in Figs. 5 and 6) for which the kinetic energy of 
the convective rolls varies almost exactly linearly when 
plotted as a function of Ra-1/2. Furthermore, the slopes 
and intercepts of these lines also varied almost exactly 
linearly with L -2. These two simple linear dependences 
made it possible to extrapolate accurately (five significant 
figures can easily be obtained) to a fully converged criti­
cal Rayleigh number using just a few calculations, with 
either N XN or N X2N square zones and with N values of 
30, 40, 50, .. , . Such highly accurate extrapolated re­
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ture . 't}g the lateral boundaries is a linear interpolation be­
twe, .e temperatures of the two horizontal boundaries. The 
points'shown are the results of corresponding Lucy-weighted 
smooth-particle simulations using 1600 particles. 

VISCOUS CONDUCITNG FLOWS WITH SMOOTH-PARTICLE ... 

0.012 0.016 0.020 0.024 0.028 0.012 0.016 0.020 0.024 0.028 

Ra-1t2 Ra-1t2 

FIG. 5. Fully converged (L - 00 1 variation of reduced kinetic energy K /Ne with Rayleigh number Ra with periodic lateral boun­
:laries, fixed upper and lower boundaries, an aspect ratio of 2, and f/=k/kB cc (mEl 1f2 /a. Both ideal gas (leftl and van der Waals 
:rightl results are shown. In the ideal-gas case additional results using v=f//p=K=k/(pCv lcc(e/ml1f2a are included for compar­
'.son. The Lucy-weighted smooth particle points shown, for comparison to the Navier-Stokes solutions, are the results of simulations 
using 5000 particles. 
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mlts are shown in Figs. 5 and 6 for the two kinds of 
)()undary conditions. These numerical results make it 
)ossible to assess the accuracy of the smooth-particle 
jolutions discussed in Sec. VI. 

VI. SMOOTH-PARTICLE APPLIED MECHANICS 

FLOW SOLUTIONS 


Our smooth-particle calculations were typically carried 
out with from 500 to 5000 particles, though even a mil­
lion ,,"rticles could be used on a modern parallel comput­
er. hundred particles can easily generate convincing 
and realistic convection currents. See Fig. 7 for a 512­
particle flow using van der Waals' equation of state. 

Not only the final states of these simulations but also 
the approach to these convecting states are described 
semiquantitatively, with errors of the order of a few per­
:ent. In Fig. 8 we compare the approach to the steady 

0.002 r-----,.-------, 

w
Z 0.001 
~. 

0.000 

... Van der Waals .... ... ... ... ... ... ... .... 
........... ... 

"''''1 
'------'-----""--

0.006 	. 0.009 0.012 

Ra l12 

FIG. 6. A fully converged (L-+oo l variation of reduced 
steady-state kinetic energy K /Ne with the Rayleigh number Ra 
in square systems with four reflecting boundaries. The tempera­

state for an ideal gas using the smooth-particle method to 
that found by solving the Navier-Stokes equations, as de­
scribed in Sec. V. In both cases we use the same simple 
initial velocities 

vx o:sin(1Tx/L)sin(21Ty/L), -L <x < +L , 

Vy 0: cos(1Tx/L)coS(1Ty/L), -L/2<y < +L/2 

with an internal energy distribution corresponding to a 
uniform temperature gradient. 

Errors of less than about 1 % are disguised by the fluc­
tuations inherent in the smooth-particle method. These 
fluctuations are the analog of kinetic temperature in 
molecular dynamics, a measure of the mean-squared devi­
ation of individual particle velocities from the average ve­
locity in their neighborhood, (v 2 ) - {v)2. Because the 
kinetic energy of the continuum flows was found to vary 
nearly linearly with Ra- I12, we have chosen the kinetic 

00 0 0 0 0 0 0 °0 0 0 0 ... t; 0 0 0 Q 0 . 0 

00 0000000 0 0 0 00 
o 0 0 00 0 00 0 0 00 00 0 0 ~ 0 

0 
00 0° 0 0 °00 00 

0 
00 0 0 

0 
0 0 0 

o Q ..... 0 u 0 °0 0 0 0 0 0 0 0 00 , 

o <:p 00 0 0 0 0 0 0 g 0 Co 0 0 00 0 0 0 00 0 i 
o 0 0000 CO 0 0 0 0 0000° 00 C 0 

0 
° 0 00 0 0 

0 
0 0 ~ 0 I 

FIG. 7. Rayleigh-Benard simulation of a van der Waals fluid 
using Lucy's weight function. There are 512 bulk particles in a 
rectangular 16aX32a box. The mean reduced number density 
na2= I is half the maximum, and the mean temperature is 27/8 
times the critical temperature. 



---

.. ~ 

4906 OYEON KUM, WILLIAM G. HOOVER, AND HARALD A. POSCH 52 

50 

40 .... 
bIl 
I. 
~ 30 N avier-Stokes_-----~w_________________ 
~ 

~ ~ 
.:: 20 Smooth Particle..... 
41 
I: 
~ 10 

~' 
0 

0 1000 2000 3000 4000 5000 
Time 

FIG. 8. Approach of the kinetic energy to the steady two-roll 
state for the continuum and Lucy-weighted smooth-particle 
methods, applied to an ideal gas [Rayleigh numbers 10000 and 
11=k/kB =0.5(me)112/a ]. The initial condition has a uniform 
temperature gradient and two simple rolls, with the functional 
form given in Sec. VI corresponding to a total kinetic energy 
about one half the final value. 

energy of the smooth-particle flows (p /2) (v)2 for a 
quantitative comparison. We compared the Navier­
Stokes and smooth-particle kinetic energies per unit mass 
for Rayleigh numbers 5000 and 10000. A comparison at 
a still lower Rayleigh number of 2500 was abandoned. In 
this last case the smooth-particle simulation exhibited rel­
atively large fluctuations, while fluctuations are ignored 
in the hydrodynamic solution. From the Navier-Stokes 
calculations, the corresponding infinitely fine-mesh limits 
are 0.003 40 and 0.004 81 for Rayleigh numbers 5000 and 

10000. From the smooth-particle results, using the 
ideal-gas equation of state, these same specific energies 
are 0.0030 and 0.004 6. Th'-"!s the energy errors are no 
worse than 10%, so that velocity errors are of the order 
of 5%. Smooth-particle kinetic-energy data are all' 
shown in Figs. 5 and 6, again with velocity fields corrC\.._ 
to about 5%. Comparisons of the density and tempera­
ture contours appear in Fig. 9. We view the good agree­
ment of the smooth-particle and the Navier-Stokes re­
sults as completely satisfactory, provided the pressure is 
low enough to allow for smooth-particle fluid flow. 

Figure 10 displays an interesting feature associated 
with Monaghan's weight function with h /(1 = 3 and at 
unit reduced density. The smooth particles have a ten­
dency to move in closely associated pairs. This feature is 
common to both the flows (an ideal gas and a dense fluid) 
shown in the figure. Under these same conditions Lucy's 
weight function shows no such pairing phenomenon. In 
the ideal-gas case the two rolls shown in the figure give 
way to a single roll at lower values of the Rayleigh num­
ber. 

At higher values of the Rayleigh number the "robust" 
smooth-particle technique continues to provide solutions 
when our centered-difference regular-grid continuum 
solutions begin to fluctuate. In this regime more sophisti­
cated grid-based techniques would be required' for a 
quantitative comparison with the SP AM simulations. It 
is the robust, highly stable aspect of smooth-particle ap­
plied mechanics, for extreme conditions and at high 
speeds, that accounts for its popUlarity in studying a 
variety of strongly nonequilibrium fluid and solid flow r 

[3]. 
We ourselves have used the method to study the in-

FIG. 9. Density (upper) and temperature (lower) distributions for the continuum (left) and smooth-particle (right) methods usi 
the ideal-gas equation of state with iJ==k/kB =O.5(m€)II2/a • There are 5000 bulk particles in a rectangular SOX l00a box. The 
Rayleigh number is 10000 and the aspect ratio is 2. The total initial kinetic energy of the 5000 particles was about 9€. The distribu­
tions correspond to a time of 5OOO(ma</€ )1/2. 
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VISCOUS CONDUCTING FLOWS WITH SMOOm-PARTICLE •.. 

FIG. 10. Two Rayleigh-Benard simulations with temperatures of 1O.0ElmkB and O.5ElmkB' using Monaghan's weight function. 
There are 2500 bulk particles in a rectangular SOa X SOU box. The left-hand simulation uses the ideal gas equation of state, and the 
right hand simulation uses the empirical dense-fluid equation of state described in the text. The transport coefficients are 
1J=k IkE =O.8(mE) I12 la in the ideal-gas case and O.4(mEl I12 /a in the dense-fluid case. The gravitational field strength was chosen 
to give a Rayleigh number of 350000 in both cases. In the ideal gas the two rolls merged into one for small Rayleigh numbers near 
the critical value. Temperature varies linearly with distance along the vertical sides of the box. . 

ten: 1 of strong shock waves with material interfaces, 
the ",,-lchtmyer-Meshkov" instability, and found good 
agreement with theoretical estimates of the instability 
growth rate [5]. A sample simulation result, for the 
growth of a sinusoidal interface perturbation under shock 
wave conditions, is shown in Fig. 11. The corresponding 
perturbation growth rate agreed with linear stability 
theory to within 2% in this case [5]. 

VH. CONCLUSIONS 

Smooth-particle applied mechanics provides a robust 
and simple approach to reasonably accurate solutions of 
many continuum problems, including Rayleigh-Benard 
instability. It completely avoids grid-tangling and mesh 
instabilities. In some cases, smooth-particle solutions re­
quire many fewer degrees of freedom than do equally ac-

FIG. 11. Time development 
of a sinusoidal shock front per­
turbation using a smooth­
particle description for two ideal 
gases initially differing by a fac­
tor of 4 in density. The width of 
the system is 30U. The height is 
lOOa. The early growth rate of 
the interface perturbation is ap­
proximately linear in the time 
and lies within 2% of the 
theoretical calculation, as is de­
scribed in Ref. [5J. 
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FIG. 12. Two equivalent views of an ideal gas simulation at a 
Rayleigh number of 10000 and with 'Y/=klkB =O.S(mE)ll2u . 
There are SOOO bulk particles in a rectangular SOu X l00u box. 
In the lower view the velocities have been evaluated on an 
1800-point square grid, still covering the same SOu X l00u area, 
using Lucy's weight function with a range of 3u=3(VIN)112. 
The distributions correspond to a time of SOOO(mu2 /£)112. 

curate finite-difference or finite-element solutions. Con­
siderably fewer smooth particles are required than atoms 
in corresponding molecular-dynamics simulations of 
Rayleigh-Benard convection, for instance. Nevertheless, 

::11. 

the smooth-particle trajectories are essentially Newtonian 
trajectories, for particles with mass m, subject to an 
effective potential function 2Pn -2w(r). Accordingly, 
high-pressure subsonic problems, with v2 «c2

, cannot be 
reliably solved by using this method. 

The smooth-particle method promises to be of special 
interest whenever it is desirable to include fluctuations r'~ 
to evaluate accurate flow quantities on a regular gil 
This latter feature is desirable for the calculation of fast 
Fourier transforms of field quantities and for automatic 
rezoning. Figure 12 illustrates two velocity-arrow views 
of the same flow field: first, the individual smooth­
particle velocities; second, the averaged flow velocities 
computed at the vertices of a square grid. Because the 
smooth-particle results we find lie within a few percent of 
fully converged solutions of the compressible continuum 
equations, it is economically desirable to develop this 
method further. 

Although we have not carried out detailed studies it is 
clear that the convergence of the smooth-particle approx­
imation to a compressible continuum fluid or solid also 
guarantees convergence of the long-wavelength density 
fluctuations to the corresponding Debye spectrum. 
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