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We control the chaotic large-scale spatiotemporal fluctuations inherent in large-scale two-dimensional 
nonequilibrium flows by using global ergostats. We use isoenergetic nonequilibrium molecular dynamics 
to characterize the size dependence of both the shear viscosity and the largest Lyapunov exponent for 
two-dimensional globally controlled dense periodic fluids. Though uncontrolled fluetuations in such 
flows have often been thought to lead to divergent transport coefficients in two dimensions, our numeri­
cal evidence shows instead that the large-system "thermodynamic limit" can be extended to a convergent 
homogeneous "hydrodynamic limit" away from equilibrium, with finite transport coefficients, even in 
two dimensions. 

PACS number(s); 66.20. +d, 03.40.Gc, 05.70.Ln 

I. INTRODUCfION 

It has been well known for over 20 years [1,2] that (the 
Green-Kubo expressions for the) transport coefficients 
diverge in two space dimensions. It has, similarly, but 
much less convincingly, been suggested [3], based on the 
logarithmic divergence of the mean-squared displacement 
[4], that two-dimensional solids do not exist. Both these 
"divergences" are special to two-dimensional systems. 
They reflect the relative importance of fluctuations, rela­
tive to surface effects, in that case [4]. In two dimensions 
both these effects contribute terms of order N- 1/2 to N­
body intensive properties. 

Despite the theoretically based divergences, many [5J 
varied two-dimensional fluid- and solid-phase many-body 
simulations have been carried out, with no apparent 
difficulties. We recently suggested [6] that homogeneous 
global constraint forces can be used to eliminate any such 
divergent fluctuations. Our investigations show that con­
straint forces can be used to construct a "hydrodynamic 
limit" for large-size nonequilibrium systems of any 
dimensionality provided that the corresponding none­
quilibrium state is either stationary or periodic in time. 
The existence of these nonequilibrium limiting states is 
analogous to the extensivity of the free energies in the 
large-system equilibrium "thermodynamic limit." The 
limiting nonequilibrium states are characterized by finite 
shear stresses and heat fluxes in addition to the usual 
equilibrium state variables. 

The many-body systems treated by molecular dynamics 
are typically chaotic, and characterized by a spectrum of 
Lyapunov exponents [6,7]. In the nonequilibrium case it 
is essential to apply "feedback" or "control theory" to 
constrain these large chaotic systems to steady nonequili­
brium states. Thus the molecular chaos inherent in the 
many-body problem of molecular dynamics has long been 
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controlled, with thermostats, barostats, ergostats, etc. 
More recently, control of spatiotemporal chaos has 
caught the attention of specialists in nonlinear dynamics. 
It is possible that these two fields will become more close­
ly coordinated in the future. Two-dimensional viscous 
flows, like those we consider here, have been simulated 
for more than 20 years [4,8]. However, no clear con­
sensus has emerged regarding the size dependence of the 
results [8]. In part, this is because previous investigators 
have examined only a few similar system sizes. Thus the 
range of InN may not have been sufficiently large to 
confirm or deny a logarithmic dependence; in part, the 
lack of consensus reflects the relatively large fluctuations 
found in two-dimensional flows. With the gradual incre­
mental increases in computer speed and capacity, we are 
now able to carry out relatively long and accurate simula­
tions with as many as a quarter million particles. In two 
dimensions, accuracy requires relatively long runs. Thus 
we have reinvestigated the two-dimensional shear prob­
lem. We describe the simulations and the results here, 
after first describing our own understanding of the 
fluctuation-based difficulties associated with two­
dimensional systems. 

We set out to generate convincing numerical evidence 
for the presence or absence of the number dependence of 
two-dimensional viscosities in the low-strain-rate regime 
where the distraction of "string" phases is not present. 
Accordingly, here we study the dependence of two­
dimensional dense-fluid shear viscosity on system size 
alone, using a short-ranged specially smooth repulsive 
potential, and considering systems ranging from 64 up to 
264 196 particles at a strain rate small enough to avoid 
string-phase anomalies but still large enough to minimize 
statistical fluctuations. 

The method used, constant-energy nonequilibrium 
molecular dynamics with shearing periodic boundary 
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conditions, is not new [9]. It is a reliable tool for generat­
ing estimates of the shear and bulk [10] viscosities as well 
as the thermal conductivity (11]. We integrate the none­
quilibrium equations of motion using the classic fourth­
order Runge-Kutta method, for a special short-ranged 
potential [7] with a very smooth cutoff, in order to elimi­
nate numerical errors. We discuss the "divergence" 
problem further in Sec. II. We give the details of our 
model dense-fluid system, together with Enskog's predic­
tions of its shear behavior, in Secs. III and IV. Our nu­
merical shear-viscosity results are then presented and dis­
cussed in Secs. V and VI. 

II. DIVERGENCE OF TRANSPORT COEFFICIENTS 
IN TWO DIMENSIONS 

Green and Kubo's linear response theory, applied to 
classical fluids, suggests that the linear transport 
coefficients can be written as time integrals of equilibrium 
two-time correlation functions. For the case of interest 
to us here, the shear viscosity 7], that coefficient is given 
by the theory in terms of a shear-stress autocorrelation 
integral 

7](t-+ 00 )=( V IkT) 

X fl_oo (PXy(O)Pxy(t')equiHbriumdt' , 
o 

where the angular brackets indicate a canonical-ensemble 
average. Intuition, hydrodynamic mode-coupling theory, 
as well as few-body low-density kinetic theory, all lead to 
the same plausible conclusion: fluctuation amplitUdes de­
cay as 1It in two dimensions, leading to divergent auto­
correlation integrals 7]( t -+ 00 ) ~ Int. This result suggests 
a much less plausible conclusion: transport coefficients 
diverge in two dimensions. The results we present here, 
together with recent independent calculations carried out 
by Gravina, Ciccotti, and Holian [12], indicate that this 
divergence argument has some exceptions. 

What has been shown theoretically is that the Green­
Kubo expressions probably do diverge for infinitely large 
two-dimensional systems so long as boundaries are /lot 

taken into account. There is considerable computer­
based support for this view in diffusive systems [2]. What 
might the demonstration of divergence for infinitely large 
equilibrium systems mean for finite fluids and solids, 
away from equilibrium and with boundaries? For shear 
viscosity, such a divergence might imply the lack of a 
limiting linear stress versus strain rate relation for a two­
dimensional system of any size. Alternatively, it might 
indicate the presence of a linear relation linking stress 
and strain rate, but with a number-dependent divergence 
(probably logarithmic) of the measured transport 
coefficient 7](N) as the system size is increased. 

In either case it is evident that the "divergence" 
somehow reflects the enhanced relative importance of 
fluctuations in two-dimensional systems. The fluctua­
tions are apparent in the dynamics of crystal lattices. 
There the rms spatial fluctuation of a solid-phase atom 
can be evaluated quantitatively, in terms of the crystal's 
frequency spectrum. If this fluctuation is studied as a 
function of system size, an interesting qualitative depen­

dence on the dimensionality of the system is observed [4]. 
For two-dimensional periodic crystals a plot of (8r 2 ) 

versus InN is a straight line with a well-understood slope 
[4]. In three dimensions (8r2) varies instead linearly 
with N 1/3, approaching a finite limit as N increases to 
infinity. Why is there a qualitative dependence on dimen­
sionality [divergence in two dimensions and convergence 
in three] rather than just a quantitative one? 

Thermal mass, momentum, and energy fluctuations in 
portions of a large two-dimensional system can 
confidently be expected to obey the central limit theorem. 
That is, in a small region containing N» I atoms the 
fluctuation amplitUdes for extensive quantities, propor­
tional to N + 112, are of the same order as are the surface 
contributions of the region. The local fluctuations in 
two-dimensional systems have to be maintained by corre­
sponding surface fluxes of mass, momentum, and energy. 
In three dimensions mass, momentum, and energy still 
fluctuate locally, but these thermal fluctuations, of order 
N + 1!2, are negligible, for sufficiently large N, relative to 
the surface area of a three-dimensional region, which 
grows as N + 213 rather than as N + 1/2. 

The large-system Reynolds number for dense-fluid 
flows provides a dramatic example of the relative impor­
tance of fluctuations in two dimensions. For a system 
with a characteristic velocity v, size L, and kinematic 
viscosity (7]1p), the Reynolds number is Re == vL I( 7] Ip). 
For thermal fluctuations with N microscopic particles at 
a temperature T, the uncertainty in the center-of-mass 
velocity t:.v is of order (kT/mN)I12. With an atomistic 
particle size u, the two-dimensional system size is of or­
der L ~NI!2 u. Using an order-of-magnitude estimate 
for the dense-fluid kinematic viscosity (7] I p )~ (kTI 
m )112u, establishes that the uncertainty in the Reynolds 
number remains of order unity, even in the large-system 
limit: 

t:.Re2D = t:.vL I{ 7] Ip) 

~(kT ImN)1/2Nll2u/[(kT1m )1/2u]::= I . 

Thus there is no possibility that the flow of two­
dimensional fluids at very small Reynolds numbers can be 
treated accurately by ordinary hydrodynamics, because 
hydrodynamics ignores fluctuations. In three dimensions 
fluctuations are less important, and these difficulties are 
not so serious. There the center-of-mass contribution to 
the Reynolds number decreases (t:.Re3D 0:: N- 1/6) as the 
system size increases. 

Even in three dimensions, where the large-system Rey­
nolds number is well defined, sufficiently large regions de 
become turbulent and in large volumes fluctuations cer­
tainly decay slowly. Consider, for example, a l-m cube 0; 
water. The cube exhibits turbulence at boundary velocl 
ties of order one mm/s. The time required for fluctua 
tions to dissipate, according to conventional hydro 
dynamics, is on the order of a year for the cube. Brust 
[13] has chronicled Clausius's description of the small 
scale velocity fluctuations ("the kind of motion we cal 
heat"). In what sense can this perpetual thermal motioI 
of a three-dimensional cube of water be said to obey con 
ventional hydrodynamics? At least a spatial average, ane 
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possibly also a time, or ensemble, average, would be re­
quired to make a correspondence. 

Despite the relatively greater importance of boundary 
effects and fluctuations in two dimensions than in three, 
the fundamental underlying ideas of particle and continu­
um mechanics appear to be equally valid in two and three 
space dimensions. Consider conservation of mass, 
momentum, and energy. When these three principles are 
applied locally, to a smooth continuum, the "continuity 
equation," "equation of motion," and "energy equation" 
result. Then the phenomenological continuum descrip­
tions of Newtonian viscosity and Fourier heat conduc­
tion, coupled with suitable initial and boundary condi­
tions, lead to well-posed problems in fluid and solid 
mechanics. 

However, most textbook problems in three­
dimensional fluid and solid mechanics are "solved" by us­
ing symmetry to reduce them, either analytically or com­
putationally, to more tractable one- or two-dimensional 
problems. Plane Couette flow is the simplest example. 
More complex problems involving the unstable growth of 
interface perturbations-Kelvin-Helmholtz, Rayleigh­
Benard, Rayleigh-Taylor, Richtmeyer-Meshkov, etc. in­
stabilities -are likewise typically solved in two space di­
mensions. The results are then applied, and compared to 
real laboratory experiments, in three dimensions. The re­
lationship linking the two-dimensional calculations to 
three-dimensional experiments would be paradoxical if 
two-dimensional transport coefficients really diverged. 
Of course, fluctuations in two dimensions are not good 
representations of their three-dimensional analogs. 

In the smoothed-particle approach to numerical solu­
tions of the continuum motion and energy equations, the 
continuum is replaced by a set of one-, two-, or three­
dimensional spatially smoothed particles which obey or­
dinary differential equations of motion derived from the 
continuum equations [14J. If two-dimensional particles 
cannot obey conventional hydrodynamics, the two- and 
three-dimensional simulations of flows would necessarily 
disagree with one another. We are in the process of in­
vestigating the two- and three-dimensional versions of 
unsteady Rayleigh-Benard instability. In the present 
work we study simpler steady two-dimensional shear 
flows ("plane Couette flow") in an effort to identify 
behavior symptomatic of divergence. 

III. MODEL 

The short-ranged pair potential 

1>(r)::=:100£[1 (rla)2J4::=:100[I-r 2 J4, O<r<a 

has a well-characterized equilibrium fluid-phase equation 
of state [15], as displayed in Sec. IV, so that it is possible 
to apply Enskog's hard-disk transport theory [16J to pre­
dict nonequilibrium dense-fluid properties. In the present 
work, we concentrate on a dense-fluid state of unit 
density-[Na2IV~::=p l.0; op==O.OJ; the particles have 
unit mass [m = l.OJ and unit reduced energy 
[EINE 1.000; o£ (EIN£)-l.443=-0.443J; (kTIE) 

I::=: 01' is -0.310. See Sec. IV for the complete equilib­
rium equation of state for the fluid, 

We have previously simulated small-system shear 
flows, for this same force law, with both moving corru­
gated walls [7] and periodic Lees-Edwards boundary con­
ditions [6,9]. The two approaches showed one qualitative 
difference. The largest Lyapunov exponent A!, which de­
scribes the time-averaged rate, 0:: exp( Alt), at which two 
nearby phase-space trajectories separate, appears to 
diverge logarithmically, Al 0:: InN for N particles, when 
corrugated boundaries are used [7]. In the periodic case 
there is mueh less size dependence. See Fig. I, which is 
based on the data appearing in Tables I and II. In this 
periodic case, it is possible, but far from definitely estab­
lished, that the largest Lyapunov exponent increases log­
arithmically. If so, the dependence is very weak, 
Al :::::;0.001 InN. Our corrugated-boundary results indicat­
ed a coefficient orders of magnitude larger. Thus the 
boundary conditions play a crucial role in determining 
the system's Lyapunov spectrum. 

Certainly the simplest hydrodynamic flow is a steady 
uniform shear. In the prototypical case the stream­
velocity component in the x direction, ux' varies linearly 
with y. As the strain rate E::=:du Idy approaehes zero,x 
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FIG. 1, Dependence of the largest Lyapunov exponent on 
system size at strain rates of O.10(E/ma 2 
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TABLE 1. Potential energy, shear viscosities, largest 
Lyapunov exponent, and shear-stress fluctuations for square 
periodic two-dimensional systems of N unit mass particles at 
unit density. The pair potential is loo(l-r2)4. The steady 
shear strain rate dux Idy for all of these plane Couette flows is 
0.10 and the total energy per particle E IN:= [<P +K]IN is 
l.(X)() in each case. The mean-squared fluctuation in the shear 
stress, (I::.P;y), is expected to vary as liN. The maximum shear 
for each run is indicated, where unit shear requires 2()()() time 

of 0.005 each. 

N ¢IN A\ 

64 0.3052 3.074 1.291 0.129 8.52 40 ()()() 

144 0.3042 3.092 1.302 0.130 8.47 18 ()()() 
256 0.3039 3.103 1.307 0.131 8.44 11 ()()() 

576 0.3036 3.116 1.312 0.131 8,43 10 ()()() 
1024 0.3035 3.124 1.312 0.131 8,45 6()()() 

2304 0.3034 3.132 1.319 0.132 8,41 3()()() 

4096 0.3034 3.135 1.315 0.131 8,41 1800 
9216 0.3034 3.139 1.319 0.132 8,42 570 

16384 0.3033 3.141 1.317 0.132 8.44 270 
32400 0.3033 3.143 1.319 0.132 8.55 140 
65536 0.3033 1.324 0.132 8.55 200 

146689 0.3033 1.323 0.132 8.41 100 
264 196" 0.3033 1.322 0.132 8.61 30 

'This number, 514X514, rather than 512X512, was used to im­
prove the computational efficiency of the simulation. 

both SHod and Dolls algorithms produce equal linear 
shear viscosities, but the two approaches differ in non­
linear responses, of orders £2 and e, to shear [17] 
(Evans's [8,17] term Sllod refers to its close relationship 
to the Dolls tensor algorithm). We have used the SHod 
approach, with Corio lis's acceleration £PY' 

dxldt=(Pxlm)+£y, dyldt=(pylm) , 

dPxldt=Fx EPy-(;Px, dpyldt -(;pY ' 

-EPxy VI2K, K="2,(p2I2m) , 

Pxy V "2, (Pxpy Im)-"2, (XijYijo/;j Ir ij ) , 

and the similar alternative Dolls tensor algorithm, in 
which Coriolis's force contribution to dPxldt, -EPy, is 
replaced with a similar contribution, Epx, to dpyldt. 
In either case, the kinetic part of the pressure-tensor 
component Pxy includes a sum over all N particles, while 
the potential contribution is a sum over all N (N 1 ) 12 
distinct particle pairs. The friction coefficient (; is chosen 
so as to maintain the internal energy, E=K+<P, con­
stant in time. There appears to be no significant 
difference between the two approaches at a strain rate of 
0.10(E/ma 2 

)1/2. For simplicity, we tabulate only those 
results based on the SUod algorithm. 

In describing the results of our numerical work we 
choose units with E, m, and a, all equal to unity. (Notice 
that there is no connection between the potential energy 
parameter E and the shear strain rate E.) We use the clas­
sic fourth-order Runge-Kutta integrator with a time step 
of dt =0.005. A force with three continuous derivatives 
at the cutoff radius introduces "local" (one integration 

step) trajectory errors of order dt 5. These are of the same 
order as those from the integrator, and so do not degrade 
trajectory accuracy. The linked-list method [18], in com. 
bination with Lees-Edwards's periodic shearing boundary 
conditions [9], was used. 

IV. ENSKOG THEORY 

Enskog's theory of dense-fluid transport has survived 
70 years' effort to supplant it. The theory proceeds by 
scaling the low-density results of the Boltzmann equation 
to high density, including both kinetic and collisional 
contributions to transport. For a general two­
dimensional fluid it is first necessary to use the fluid's 
thermal pressure, T(ap laTl v , to estimate the collisional 
part of the hard-disk pressure: 

[PV-NkTldisks [TV(aPlaTl v NkT]ftuid' 

At unit reduced density and temperature 
[p I; kT/£=I], PVIN£ and EIN£, respec­
tively, are 5.04 and 1.44. In the vicinity of this standard 
state, the following expansions apply: 

PV IN£=5+88p+2.58£+98p 2+28p8E , 

kT IE= 1-8p+0. 78E-0. 88l-0.58p8E ; 

e/E=EIN£ 

= 1.443+ 1. 58p+ 1. 58r+2.48p2+ 1. 28p8r , 

8p=(Na 2 IV)-1.000, 8E=(EINE)-1.443 , 

8r=(kT /£)-1.000 . 

For the conditions of our simulations, 8p is 0.0 and 8E is 
-0.443, so that this approximate equation of state pre­
dicts that NkT is [1-0.443 XO. 7]N£ =0. 69N E, in good 
agreement with the data from our simulations. The cor­
responding thermal pressure contribution to PV is 
2.5X L5NE=5.4NkT. 

For numerical evaluations, we use the V I Va = 1.65 en­
try from Ree and Hoover's hard-disk fluid table [19], so 
that our soft potential corresponds to a hard-disk fluid 
expanded about 65% from close packing. The corre· 
sponding reduced compressibility factor of 5.1 has a 
second virial coefficient contribution of 1.10: 

[PV INk Tldisks 

=1.00+1.10+0.94+0.71+0.49+'" =5.1. 

The hard-disk viscosity coefficient, according to Gass 
[16], can then be written as the sum of three terms: 

TJdisks=0.28(mkTla 2 )1/2(l.1O)[0.24+ 1.00+3.58J ' 

where the ratio of the kinetic to the potential contribu· 
tion (0.24+0.50)/(0.50+3.58), is about 1/5. Using 
(kT IE ~-=O. 69 and a disks =0. 78( V IN) 1/2 leads to a 
numerical viscosity estimate 1.6, which lies about 20% 
higher than our simulation results. 

For the thermodynamic state we have investigated we 
have also estimated the sound velocity c (used in Sec. V) 
from our approximate equation of state. The calculation 

http:0.24+0.50)/(0.50+3.58
http:la2)1/2(l.1O)[0.24
http:1.00+1.10+0.94+0.71+0.49
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is most easily carried out by computing the isentropic 
equation-of-state derivative 

by iterating the [Rankine-HugoniotJ relation 

6.E=E2 E J =(p )6.V=(P2 +P1 )( VI - V2 )/2 

for neighboring values of the volume, VI and V2 • The re­
sulting sound velocity is c =4.55(e/m )1/2. 

V. RESULTS 

Keyes's old mode-mode coupling estimate [4] of the 
logarithmic fluctuation contributions to the viscosity for 
a similar thermodynamic state was 7% for an increase of 
just over tenfold in N. In the present work we have accu­
mulated usable viscosity data over a larger range in N, 
covering more than three orders of magnitude. In Fig. 2 
we display the viscosities, with expected errors indicated, 

. fN- I12as a function 0 and InN. Based solely on Keyes's 
old estimate for the dependence on InN, the expected 
change in the viscosity 1] should be approximately 20% 

7] 

1.32 

T (U
t I': 

1.31 

f 
1.30 t,. 

1.29 

= 0.25 f 
1.28 

12~O'::O------:-C.L02:-··-~C·..L.04-·--·-0..J..O-6---O-.OL----..i..0-"--0-'-.1'2--·--........lC.,4
s O 1 

IjJR 

1.32 

i = 0.1 T 

17] ff J 
"1.31 

1 
¢ 

1 
1.30 1 

. 11 E 0.25
129 I-i 1 

~ " -
1.28 

± 
1.27 

4.0C 5.00 6.00 7.00 8.00 9.00 10.00 11.00 '2.00 13.00 

InN 

FIG. 2. Steady isoenergetic shear viscosities for N two-
dimensional particles interacting with the potential 
l00o[ 1-(0- Ir)2 J4 with an internal energy equal to N E. The er- . 
rOr bars indicate estimated standard deviations for the viscosi­
ties. The number of particles ranges from 64 to 264 196. 

in the range of InN shown in the figure. In the region 
where the data vary smoothly, from about 1024 to 
264 196 particles, a change of 0.03 InN would lead to an 
increase exceeding 10%. Instead, our data show a much 
smaller increase for these larger values of N. 

Our numerical results are given in Tables I and -II. The 
shear viscosity coefficients [1](Nl] for N=64,144, 
256,576, ... ,264 196 were all determined with expected 
errors substantially less than 1% as shown in Fig. 2. We 
have suppressed all of our viscosity results for even small­
er systems. The irregular nature of the data for the 
smaller systems together with the lack of significant N 
dependence for the larger systems rule out a meaningful 
least-squares fit, though the data do suggest, as shown at 
the top of Fig. 2, an inverse dependence on system size 

1/2 . ' 
a: N . It 1S clear from our data that there is no loga­
rithmic dependence of viscosity on system size, even at a 
level one or two orders of magnitude below the old 
mode-coupling predictions. There is instead a very mod­
est shear rate dependence, hardly large enough to be 
worth including in hydrodynamic simulations. 

We conclude that the shear viscosity is well defined, in 
two dimensions, when a global constraint of constant en­
ergy is used to stabilize the hydrodynamic state. Neither 
N dependence nor hydrodynamic instabilities are ob­
served, at Reynolds numbers as high as 50000. As we 
emphasized earlier (6], there is numerical evidence that 
our periodic boundary condition is much less intrusive 
than is a rigid one. Here we find no evidence whatsoever 
for the logarithmic transport divergence predicted by the 
kinetic and mode-coupling theories [IJ. It is therefore 
very desirable that those theories be extended to take into 
account global boundary conditions of the type used 
here. 

TABLE II. Potential energy, shear viSCOSItIes, largest 
Lyapunov exponent, and shear-stress fiuctuations for square 
periodic two·dimensional systems of N unit mass particles at 
unit density. The pair potential is loo(1-r2)4. The steady 
shear strain rate dux /dy for all of these plane Couette fiows is 
0.25, and the total energy per particle E IN =0 [<P +K]lN is 
1.000 in each case. The mean-squared fluctuation in the shear 
stress, {/::"p1,), is expected to vary as liN. The maximum shear 
for each run is indicated, where unit shear requires 800 time 
steps 0[0.005 each. Trials with N=4096 and steps of 0.01 pro­
duced results not different from these. 

N <PIN 

64 0.3073 
144 0.3064 
256 0.3062 
576 0.3060 

1024 0.30S9 
2304 0.3058 
4096 0.3058 

16384 0.3058 
32400 0.3058 
65536 0.3058 

146689 0.3058 
264196 0.3058 

3.069 
3.088 
3.099 
3.111 
3.118 
3.123 
3.126 
3.133 
3.132 

1.276 
1.284 
1.285 
1.293 
1.292 
1.295 
1.295 
1.297 
1.297 
1.296 
1.297 
1.299 

0.319 
0.321 
0.321 
0.323 
0.323 
0.324 
0.324 
0.324 
0.324 
0.324 
0.324 
0.325 

8.65 
8.61 
8.58 
8.57 
8.61 
8.56 
8.52 
8.64 
8.72 
8.53 
8.52 
8.26 

50000 
30000 
10000 

6200 
4000 
1200 
1000 

530 
330 
250 

60 
50 

http:2--�--........lC
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VI. DISCUSSION 

The long-standing view that two-dimensional transport 
coefficients diverge, based on analyzing the Green-Kubo 
expressions [20] for those coefficients, does not take 
the boundaries into account, despite the fact that both 
boundaries and fluctuations make contributions of order 
N- l12 to the intensive properties of two-dimensional N­
body systems. Our work here treats systems with global 
boundary conditions. Our viscosity results suggest that 
the predicted divergence, if it exists in any case at all, 
must be boundary dependent. 

It is of course possible that a real long-time divergence 
could be masked in our own computer simulations. The 
simulations include three characteristic times, the "defor­
mation time" 1It, the "sound traversal time" Vl12 Ie, 
and the "diffusive traversal time" V(pir]). For our larg­
est simulation and at the lowest strain rate these times 
are roughly 10, 113, and 200 000. If stress-stress correla­
tions were broken at the deformation time, one might ex­
pect to find a significant increase in visoosity at lower 
rates, but still with no significant number dependence at 
any fixed rate. 

After most of our numerical work had been completed, 
we became aware of related work on the Green-Kubo and 
subtraction-technique evaluation of two-dimensional 
shear viscosities [12]. Gravina, Ciccotti, and Holian con­
clude, from their studies on relatively small systems, that 
there is no evidence for a substantial rate dependence ei­
ther. Where the error can be in the simple diffusion­
equation arguments predicting a logarithmic divergence 
remains a mystery. 

There is certainly the possibility that Green-Kubo and 
nonequilibrium simulations measure different transport 
coefficients, so that one method or the other may show 
more number dependence or larger fluctuations. The 
work presented here, together with the complementary 
work of Gravina, Ciccotti, and Holian, suggests that all 
of the current computational approaches agree that 
viscosity is a meaningful material property in two dimen­
sions. Real laboratory experiments, on thin films, could 
provide a welcome confirmation of these results. 

There is a different divergence, which is real, 
significant, and easily quantified, associated with the 
nonequilibrium phase-space probability density itself, in 
both two- and three-dimensional systems. Consider 
shearing a system, initially at equilibrium, in the absence 
of ergostats or thermostats: 

dxldt (pxlml+ty, dyldt (pylm), 

In this case, the thermodynamic work performed by the 
two terms linear in t, during a time interval I::..t, is 
I::..E - J~tPXy Vi;; dt, so that the energy at that time 
exceeds the initial equilibrium energy Eo. Because the 
comoving probability Idr, initially proportional to 
exp( IkT), is not changed by the adiabatic work, this 
probability can be expressed in terms of the equilibrium 
probability for the energy at t = I::..t. In terms of the 
current energy, Eo + I::..E, we have 

I non equilibrium I!equilibrium = exp( + I::..E I k T) . 

In the case that an ergostat is used to maintain the en­
ergy constant, the probability density, relative to the 
eqUilibrium one, also changes, and by exactly the same 
amount. This result follows directly from the integration 
of Liouville's theorem in D dimensions: 

d lnlldt = -.L [aq laq +ap lap] 

.L ap lap =ND(; 

/10 exp[ -i:(NDV) 

x J1 

(Pxy I2Kldt'] 
o 

Then the ensemble-averaged energy change, from in­
tegrating (jPxy lr' up to time t is given, in the linear ap­
proximation, by the autocorrelation integral of the rate­
of-energy change. This leads directly to the macroscopic 
Green-Kubo identification of the shear viscosity: 

7]([-+ 00 )=( V IkT) 

x J/-. 00 (p (olP ( t') equilibriumdt' ,xv xvo . . 

as well as to the conclusion that the phase-space distribu­
tion is divergent on a multi fractal phase-space attractor 
[6,21]. For our isoenergetic simulations, it is straightfor­
ward to show that the co moving nonequilibrium phase­
space probability density I continually increases with 
time: 

din! Idt == -tPxy V IkT . 

In the long-time limit the time-averaged right hand side 
approaches the intrinsically positive quantity 7]eV IkT, 
showing that lnl diverges, exponentially fast, on the aver­
age, with time. This continuing increase of lnl with time 
signals the divergence of I as it collapses onto a mul· 
tifractal strange attractor [6]. Perhaps this collapse can 
somehow help to limit the size of fluctuations. The num­
ber dependence of the divergence of I has recently been 
well documented [6]. 

Because the boundaries are not considered in tht 
derivation, the long-time-tail divergence (as opposed tc 
the phase-space density divergence) might be suspect. 
Here we have seen that the numerical shear viscosities f01 
two-dimensional systems of between 322 and 5142 parti· 
cles provide no evidence for such number dependence. 

We conclude that the logarithmic divergence of two· 
dimensional transport coefficients is implausible, both or: 
physical and numerical grounds. This finding, after somE 
25 years of nonequilibrium simulations, fully support 
Barker's assessment of the relationship betweer 
Green-Kubo and nonequilibrium simulations: 

"It seems to me that to constrain the molecula: 
dynamicist to use only Green-Kubo is somewhat analo 
gous to constraining the experimentalist to measure th 
viscosity by studying only the decay of spontaneousl 
arising velocity fluctuations. If this requires a theory c 
its own, so be it!" We hope that these results will help t, 
stimulate the theoretical advances recommended b 
Barker. In the meantime there would seem to be n 
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problem in applying two-dimensional transport 
coefficients to the simulation of two-dimensional hydro­
dynamic flows. 

Note added in proof. Onuki [23] and Ernst, Cichocki, 
Dorfman, Sharma, and van Beijeren [24] have indepen­
dently derived finite two-dimensional viscosities which 
contain a logarithmic dependence on strain rate con­
sistent with our results. 
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