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Levesque and Veriet developed a time-reversible and "bit-reversible" computa­
tional leapfrog algorithm. Their algorithm uses integer arithmetic and is exactly 
time reversible to the last computational bit describing the particle coordinates. 
We generalize their idea, developed for atomistic molecular dynamics, to 
smoothed-particle continuum mechanics. In the special case of a two-dimen­
sional isentropic ideal gas, these two approaches, one microscopic and the other 
macroscopic, are isomorphic. In the more general nonadiabatic case, but still 
without dissipative terms, our continuum extension of the leapfrog scheme 
remains stable and also exhibits the exact time and bit reversibility associated 
with Levesque and Verlet's atomistic approach. 

KEY WORDS: Time-reversible; smoothed-particle; continuum mechanics; 
chaotic. 

,. INTRODUCTION 

The "leapfrog algorithm" of atomistic molecular dynamics(1) 

is patently time reversible. Any "trajectory," a selection of discrete time­
ordered coordinates {r{ n dt} }, going forward in time, is mathematically 
equivalent to a time-reversed trajectory {r{ -n dt}} obeying the same 
motion equations. But ordinarily computer roundoff errors lead to small 
errors in the last decimal place. Such errors grow in time, with Lyapunov 
instability, as exp( At), restricting the effective time reversibility of trajec­
tories to just a few "Lyapunov times," that is, a few times 1/).. For a 
description of Lyapunov instability in many-body systems see ref. 2. 
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Levesque and Verlet<ll showed that the irreversible effect due to round­
off error plus Lyapunov instability can be eliminated entirely by using an 
integer representation of coordinate space {r}. Here we explore that same 
idea from the standpoint of macroscopic continuum mechanics, employing 
a version of continuum mechanics, smoothed-particle applied mechanics, 
which closely resembles microscopic molecular dynamics, but which 
extends the state space to include densities {p} and internal energies {e} 
for each particle. 

In Section 2 we describe smoothed-particle continuum mechanics and 
point out the special case in which this approach becomes isomorphic to 
molecular dynamics. In Section 3 we apply an extension of Levesque and 
Verlet's bit-reversible algorithm to a more general smoothed-particle 
situation, still without dissipation, and demonstrate, by computer simula­
tion, that both numerical stability and exact time reversibility hold for the 
extension. Section 4 contains a short summary as well as a conjecture, 
suggested by this work, concerning the possibility of further extensions. 

2. SMOOTHED-PARTICLE APPLIED MECHANICS 

Monaghan(3) and Lucy(4) developed a convergent finite-difference 
approximation to the solutions of the continuity, motion, and energy 
equations of continuum mechanics. Their finite-difference equations arise by 
interpolation of the field variables onto an irregular grid of relatively moving 
points. The interpolation involves a smoothing or weighting function w(r) 
with a finite range equal to a few times the interparticle spacing. In the 
usual case w has no angle dependence. By interpolating the hydrodynamic 
velocity and internal energy onto the moving grid points, the "smoothed" 
hydrodynamic partial differential equations are transformed into ordinary 
differential equations for the motion of the points. This simplification is a 
key advantage of the method. In brief, the value of any point function f 
(a field variable such as velocity or internal energy) can be represented by 
a sum of weighted contributions from all nearby grid points: 

The motivation for this definition is the simple form which gradients take: 

In the simplest case the weighting function wand its gradient Vw have 
a fixed finite range (so as to include several points in the average). Many 
forms have been used. Here we consider points in two space dimensions 
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with unit mass and with a weighting function(2) w(r) which vanishes for 
r> 1: 

w(O<r<1/2)=(40/7n)(1 6r2 +6r 3
) 

w(1/2 < r < 1) = (80j7n)(1 r)3 

The weighting function can be thought of as describibg the smearing out 
or smoothing of the mass associated with each point to a neighborhood 
with unit radius. The integral of w is normalized to unity: 

LI 

2nrw dr= 1 

In smoothed-particle mechanics it is usual to compute the density at each 
point by superposing the contributions from all nearby points (rather than 
by integration of the continuity equation). At location i, for instance, 

(1a) 

where the sum over j includes the term i = j. The usual continuum equation 
of motion, 

dv/dt= (l/p)V·O' 

in the comoving frame, is rewritten using the identity 

in the symmetric form: 

In the absence of heat conduction the comoving energy equation takes a 
similar form: 

The set of ordinary differential equations (1a )-(1c) can then be solved, 
using Runge-Kutta integration, for the motion of all the particles together 
with the time development of their densities and energies. For some recent 
applications of this approach see ref. 5. We have recently applied this 
approach to the chaotic Rayleigh-Benard problem, (6) the simulation of 
gravitationally excited unstable convection in a system heated from below 
and cooled above. 

-




1078 Kum and Hoover 

The equations of motion (1 b) become isomorphic to the equations of 
molecular dynamics in the special case that the stress is that of a two­
dimensional isentropic ideal gas, 0 - (1/2) p 2, where I is the unit tensor. 
In this special case w(r) behaves as a pair potential function <I(r), with the 
equations of motion for particles of unit mass: 

The continuum energy equation likewise corresponds exactly to atomistic 
conservation of energy in this case. In the next section we consider a finite­
difference approximation to a more general, nonisentropic case in which 
the stress depends separately on both density and energy. 

3. TIME-REVERSIBLE CONTINUUM MECHANICS 

The leapfrog representation of the continuum particles' equations of 
motion can be combined with a time-symmetric energy equation to give the 
following explicit algorithm: 

r + - 2ro + r == dt2L ([(mo/p2); + (mo/p2)j] .Vjwij)o 

e + e == - dt L [(ma/p2); + (mo/p2)j]0 : vijCv';wij)o 

2dtvij==(r+-r~L-(r+ r )j 

The initial values required are coordinates and energies at two successive 
times, t = dt and 1 = 0, for instance. Numerical tests indicate that this 
scheme is stable, with local errors which are third order in the timestep dt 
and global errors which are second order. That the scheme is stable is by 
no means obvious a priori. For example, a similar difference scheme for the 
first-order differential equations of molecular dynamics, taken from Milne's 
text, (7) 

2dtv . 2dt(F/m)0r+ r 0, 

though formally equivalent to the leapfrog scheme for a doubled timestep 
of 2dt, turns out to be unstable for molecular dynamics. (8) 

After our successful trials in one dimension suggested the possibility of 
stability for this approach, we tested this scheme in two space dimensions 
with the hydrostatic nonlinear equation of state 

p == - a == p2 - 1 + e 
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containing both tensile and compressive parts as well as thermal expansion. 
The numerical results for 25 particles of unit mass in a 2.5 x 2.5 periodic 
container with initial internal and kinetic energies of 25 and 25 conserved 
energy well with timesteps of 0.01 and 0.02, showing the expected second­
order global errors. The energy errors are plotted in Fig. 1. The overall 
density in this case is 4, around which the smoothed-particle sum fluc­
tuates. The particles were initially arranged in a square lattice with random 
velocities summing to zero. The ordered arrangement gives way to dis­
ordered fluid arrangements of the type shown in Fig. 2. 

Following Levesque and Verlet,P) we replaced the coordinates and 
energies by 32-bit integers, carrying out intermediate operations in floating 
point arithmetic and then truncating the results for the {r} and {e} to 
integers. Tests showed bit-perfect time reversibility (as would be expected 
from the time symmetry of the difference equations) over computations of 
tens of thousands of timesteps. We conclude that the same reversibility 
properties which apply to molecular dynamics can be extended to the 
Euler equations of continuum mechanics by using the smoothed-particle 
approach. 
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Fig. 1. Time development of the 25-particle energy error (with a total energy fluctuating 

dimensions about 50.0) using generalized leapfrog timesteps of 0.01 (below) and 0.02 (above) to solve 
Eqs. (la)-(lc) of the text. A timestep of 0.04 is unstable. At time 10 the velocities were 
reversed and the simulations returned exactly ("bit reversibly") to the initial condition shown 
in Fig. 2. 
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Fig. 2. Initial and final configuration (time 1000, with timestep 0.0 I) for 25 periodic con­
tinuum particles with the equation of state P - 1 + e. The time-averaged internal and 
kinetic energies are 33.94 and 16.05. The vertical bars indicate (from left to right) internal, 
kinetic, and total energy. 

4. SUMMARY 

A time-symmetric difference scheme extending Levesque and Verlet's 
atomistic algorithm to continuum problems is stable and precisely time­
reversible (bit-reversible for an integer state space). In the special case of an 
isentropic ideal gas, the smoothed-particle approach to the continuum 
simulation produces trajectories identical to those found in molecular 
dynamics, so that the continuum weight function w(r) is equivalent to an 
atomistic potential function ¢(r). We were unable to find a similar time­
symmetric stable formulation in the continuum case when dissipation is 
present. We were also unable to extend Levesque and Verlet's approach to 
the atomistic case with a constrained kinetic energ/8

. 
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{dr/dt == v; dv/dt == (F/m) - (v} 

(== (1/2K) L F· v; dK/dt == 0 

We conjecture that a stable time-symmetric bit-reversible algorithm for 
these atomistic isokinetic equations cannot be found. From the physical 
standpoint, this might be expected, because such thermostatted equations 
can be used to drive steady nonequilibrium heat currents, producing multi­
fractal strange attractor and repellor objects in the phase space. (8,9) These 
fractal structures are the antithesis of the conserved phase volume which 
characterizes equilibrium flows, 
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