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Abstract: 
Atomistic Molecular Dynamics and Lagrangian Continuum Mechanics 

can be very similarly adapted to massively-parallel computers. Millions of 
degrees of freedom can be treated. The two complementary approaches, 
microscopic and macroscopic, are being applied to increaSingly realistic 
flows of fluids and solids. The two approaches can also be combined in a 
hybrid simulation scheme. Hybrids combine the fundamental constitutive 
advantage of atoms with the size advantage of the continuum picture. 

1. Introduction 
The computer revolution is rapidly progressing from millions of 

degrees of freedom to billions, and from gigaflops to teraflops. The impact 
of this ever-faster ever-cheaper computational power on physics and 
materials science is both exciting and unpredictable. Certainly we will 
have access to more realism and understanding, and to more detail in 
simulation. The consequences strain the imagination. 

These gains are being achieved through parallelism in computation, the 
subject of this Conference. Para!lel computers do best with problems 
which can be partitioned into weakly-interacting parts. Nodal 
descriptions of these parts are then assigned to individual processors. 
With more programming effort, the assignment of parts to processors can 
be made dynamically, redistributing coordinates, velocities, and energies 
as the nodes move. Again, with more effort, "Load Balancing" can be 
achieved by transferring work from busy processors to their less-busy 
neighbors. Even in the simplest case it is necessary to communicate at least 
some positions and velocities between neighboring processors, so as to 
calculate the accelerations. The time involved in such "Message-Passing" 
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needs to be small compared to the simulation time steps. At the moment, 
the hardware limits imposed on this parallel simulation approach are 
changing much more rapidly than the software can follow. As a result, it is 
a frustrating task to remain at the state of the art. It is much simpler to use 
the best readily-available commercial equipment. 

With the help of Tony De Groot, who is in the process of building yet 
another massively-parallel machine, this one with 256 transputers, and my 
wife, Carol Hoover, who has been working on the S12-node CMS 
Connection Machine at Minnesota for a year, 1 am in the fortunate 
pOSition of seeing the best in both the home-built and commercial worlds of 
computer hardware. Tim Pierce, a student in our Department, who is also 
a full time programmer at the National Energy Research Supercomputer 
Center, has provided enthusiastic help and insight in implementing and 
visualizing new approaches to physical problems. My talk represents the 
recent efforts of all these colleagues, and so it is typical, though on a small 
scale, of the trend away from individual efforts and toward cooperating 
research groups. 

The headlong advances in hardware are a cliche. But caution is 
desirable because more is not necessarily better. Atomistic force models 
proliferate and undergo ad hoc adjustment. Continuum "Failure Models" 
for simulations of elastic-plastic flow and fracture are a small industry. It 
is difficult, in both these typical cases, to have confidence in the predictive 
ability of the models. They inspire confidence only when used as 
interpolation devices. Extrapolation to new problems is risky. 

Computers need to be used wisely. Cost-effective projects are likely to 
be neither so grandiose nor so predictable in their outcomes as are the so­
called "Grand Challenges" - the genome, weather, and proton-mass 
problems. Lorenz' "Butterfly-Effect" weather model, Feigenbaum's 
logistic map studies, and Mandelbrot's complex-plane version of that 
map, have all had impacts completely out of proportion to the small-scale 
calculations leading to their discoveries. As computing machines evolve, 
their enhanced capacity and speed can be used for a more comprehensive 
treatment of flow and failure properties in which strengths are exploited 
and weaknesses avoided. 
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2. Equations of Motion 
Dynamics means motion. Newton's Second Law of motion can be 

applied equally well to individual atomistic masses or to the lumped 
continuum mass densities associated with individual nodes. In either case, 
the simplest way to generate approximate solutions of the equations of 
motion is to iterate Stoermer's "leapfrog" recipe through a series of 
timesteps separated by intervals of length dt: 

Here past, present, and future are the three times {t-dt,t,t+dt). Future 
coordinate sets (qt+dt) can be calculated from the present and past ones, 
{qt-dtl and {qtl, by using present accelerations {at}. It is straightforward to 
generalize Stoermer's algorithm to include the velocity-dependent driving 
and constraint forces required in nonequilibrium simulations. 

Stoermer's algorithm has several nice features. It is patently time­
reversible. Yoshida showed that there is a hidden and significant 
Hamiltonian basis underlying this simple reversible algorithm. The finite­
difference solutions of Stoermer's equations, using forces from a 
Hamiltonian H, trace out a sequence of phase points {q,p}. These same 
phase points lie on the exact continuous trajectory generated by a slightly­
different perturbed Hamiltonian, H + t.\H, where t.\H is linear in the 
timestep dt. This Hamiltonian basis for Stoermer's algorithm accounts for 
its excellent stability properties. 

In addition, for either atomistic or continuum simulations, the 
Stoermer leapfrog algorithm minimizes storage requirements. In 
continuum mechanics the largest pOSSible timestep is typically used, so as 
to minimize spurious numerical diffusion. In atomistic mechanics a 
smaller, more conservative, choice is typical. If more thorough, or more 
speculative, investigations require it, even higher accuracy can be obtained 
from fourth-order integrators. 

In the continuum case the degrees of freedom at locations (rJ have 
associated with them all the variables considered by molecular dynamics: 
denSity (or mass), velocity, and energy. But in addition the pressure tensor 
and heat flux vector must be known in order to evaluate the time evolution 
of a continuum system. 
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3. Work, Heat. and Boundary Conditions 
In the atomistic case the flows of momentum and energy are local 

mechanical variables. By measuring these, relative to the local stream 
velocity, the pressure tensor and heat flux vector can be identified. Thus, 
the dynamical aspect of the First Law of Thermodynamics, usually written 
dE == dQ - dW, can be made more-explicit: 

dE/dt =dQ({opJ)/dt- dW({OqJ)/dt. 

As indicated here, the two types of power associated with 0) extracting 
heat Q and (ii) doing work W involve momentum and coordinate changes, 
respectively. About ten years ago the thermal part of thermodynamic 
energy flows was introduced into the differential equations of 
nonequilibrium molecular dynamiCS in a novel way. This thermostatted 
molecular dynamics incorporated frictional constraint forces, 

{FCONSTRAINT =-1;p} ; 

~AUSS == -d<I>/dt/(2K) or 1;NOSE-HOOVER == f[(K/Ko) -1)dt/1:2 . 

<I>({q}) and K({p}) are the potential and kinetic energies. The friction 
coefficient(s) {1;} obey one of the two feedback equations ("differential 
control", based on Gauss' Principle of Least Constraint, or Nose-Hoover 
"integral control") and thereby control the temperature(s) of selected 
degrees of freedom. Similar feedback ideas could be used to stabilize the 
zero-point energies associated with individual molecular degrees of 
freedom, so as better to describe quantum systems. 

The external heat sources or sinks represented by either of these 
reversible friction coefficients {1;} undergo entropy changes, dSEXTERNAL/dt 
=d(Q/T)/dt, where T is the temperature associated with a particular 
source or sink, and the sum of these changes can be proved to satisfy the 
Second Law of Thermodynamics. Through either the Gauss or the Nose­
Hoover feedback equations of motion, the time-averaged values of the 
friction coefficients {<1;>} can also be directly related to the spectrum of 
Lyapunov exponents {/.}. These relationships are: 
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<dSEXTERNAL/dt> <L~> == <-LA.> ~ 0, 

where the equals sign corresponds to the case where the net heat transfer 
vanishes. Though the individual friction coeffidents fluctuate, and can be 
either positive or negative, the time-reversible microscopic equations of 
motion containing them have stable long-time solutions only in the case 
that the time-averaged friction coefficient sum is non-negative and the 
Lyapunov-exponent sum is negative. This inequality is the mechanical 
form of the Second Law of Thermodynamics. In geometrical terms the 
inequality states that, over time, phase-space volumes must shrink. Long­
term growth, in a stationary state, would mean illegal instability. 

The signatures of nonequilibrium states, either stationary or time­
periodic, are the multi fractal strange attractors which they generate in 
phase space. Figure 1 shows such objects for five small few-body systems. 

Figure 1. Two-and Three-Dimensional Poincare sections of multifractal 
strange attractors with <L~> == <-LA.> 2! O. These time-reversible 
distributions were all generated with time-reversible nonequilibrium 
equations of motion. For detailed references, see "Nonequilibrium 
Molecular Dynamics: the First 25 Years", Physica A 194,450 (1993). 
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It is still an unsolved problem how to describe the topological 
"lumpiness" of these objects. For larger many-body systems a geometric 
description of phase-space attractors is thoroughly hopeless. Instead, a 
simpler time-averaged description of the local rates of dissipation can be 
expressed in terms of the Lyapunov spectrum. The spectrum of Lyapunov 
exponents quantifies the direction-dependent stability of the underlying 
phase space flow. Each exponent describes the time-averaged rate of 
growth, or decay, of one of the principal axes of a comoving and 
corotating infinitestimal phase-space hyperellipsoid. 

. Because dissipation always corresponds to overall decay, the sum of 
the Lyapunov exponents is necessarily negative. Thus a comoving phase­
space volume must shrink, and eventually vanish, as time goes on. On the 
other hand, the steady-state or time-periodic strange attractor, to which 
the motion is restricted once transients have decayed, must be stationary. 
The apparent paradox of "stationary shrinkage" can be resolved by noting 
that the zero-volume attractor has a reduced dimension [the "information 
dimension"]. Kaplan and Yorke suggested estimating this attractor 
dimension by finding the number of Lyapunov exponents in the spectrum 
required for their sum to vanish [corresponding to a topological object 
which neither grows nor shrinks]. Information dimensions have been 
estimated for nonequilibrium systems of up to a few hundred particles. 

Today, just as in the early days of simulation following the Second 
World War, a IOO-hour computer calculation represents a reasonable 
upper limit on one's attention span. In such a calculation today we can 
calculate only a few hundred Lyapunov exponents. A complete spectrum 
of N exponents requires following N additional trajectories, each 
described by N ordinary differential equations of motion. The work 
involved typically varies (at least) as the cube of the number of phase­
space coordinates N. My work with Harald Posch on systems with up to a 
few hundred degrees of freedom established that losses in dimension 
(embedding dimension less information dimension) can be substantial. The 
problem of characterizing this loss is one which will become much simpler 
with the next generation of parallel computers. 

In the continuum case the proper treatment of material boundaries is 
less natural than in the atomistic case. Surface energy, essential to 
understanding failure, is most often ignored in numerical continuum 
treatments. The usual finite-element or finite-difference treatments rely 
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on spatial grids, either "Eulerian" grids, fixed in space, or comoving 
"Lagrangian" grids, fixed in the material and following the flow. 

To simplify intercomparisons between microscopic and macroscopic 
simulations, and to facilitate hybrid simulations, we have chosen here to 
concentrate on a "smoothed" or "smeared-out" free-Lagrange form of 
continuum mechanics called "Smoothed-Particle Hydrodynamics". This 
approach, invented by Lucy and Monaghan about 20 years ago, is nearly 
isomorphic to molecular dynamics, and so provides a natural extension of 
that microscopic approach. The equations of motion in smoothed-particle 
hydrodynamics incorporate accelerations depending upon the particle 
stress tensors fa} and on the gradients of normalized weighting functions 
(w(rij)}, which represent the mass distribution in the vicinity of each 
particle. We will describe this approach in more detail in Section 5. 

~olecular Dynamics 
In atomistic simulations, the goal of realism, quantitative agreement 

with experiment, remains elusive. After all, there is no practical approach 
to a nonequilibrium quantum many-body problem. But the still-worthy 
goal of understanding the mechanisms underlying classical non equilibrium 
processes is now firmly within our grasp. Simulations of flows in channels 
with walls, of inelastic collisions between large bodies, of plastic flow with 
rapid deformation, and of shock deformation are becoming commonplace. 

With CRA Yl-speed work stations, simulations involving 10,000 atoms 
are routinely feasible. In the 40-hour length of what most people consider 
a "long calculation" such a system can be followed through several sound 
traversal times. By linking together 1000 fast processors there is no 
difficulty in treating several million atoms, for a few specimen simulations. 
The Los Alamos CM5 "Connection Machine" has recently been used to 
provide timing tests for systems of as many as 108 individual atoms. 

Figures 2 and 3 illustrate the simulated plastic deformation of solid 
silicon. The workpiece was originally a perfect cube, containing 373,248 
silicon atoms. It was deformed by pressing a tetrahedral indentor into the 
workpiece. Though the microscopic details of the deformation are 
complicated, the energy relationships for the deforming silicon turn out to 
be relatively simple, justifying both the microscopic mechanistic approach 
and the macroscopic thermodynamiC deSCription of the results. 
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Figure 2. Final configuration of 373,248 silicon atoms after indentat~on~ 
The temperature, maintained by a single Nose-Hoover thermostat IS b% 
of melting. The indentation velocity is about 1/3 the sound velocity. 

Figure 3. The initial positions of those atoms which interact with the 
indentor in Figure 2 are shown as a stereo pair. The images have been 
reversed, so that they need to be viewed with crossed eyes. 
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SILICON INDENTATION 
373,248 ATOMS 
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Figure 4. Variation of the work of indentation W v'l'ith the tetrahedral 
indentation volume V for crystals of 373,248 silicon atoms. The energy, 
length, and mass units are 50 kilocalories/mole, 0.21 nanometers, and the 
mass of a silicon atom, respectively. The intercept is proportional to 
surface energy, while the slope is proportional to the plastic yield strength. 
C = Cold and W = Warm correspond to temperatures of about 15% and 
45% of the melting temperature. The smooth-indentor speeds, with unity 
corresponding to 2.7 kilometers/second, are given. 

In Figure 4 the macroscopic work of deformation W is displayed as a 
function of indentation volume V, so as to separate the bulk and surface 
contributions to the energy. For a tetrahedral indentor of height h, the 
volume of indentation V is (31/ 2/8)h3. We have separated the surface 
contributions ("" h2) from the bulk contributions ("" h3) by plotting W /y2/3 
as a function of Vl/3. The intercept then provides a surface energy 
estimate while the slope provides the yield strength. Our work on a 
variety of such systems shows that slowing the simulated indentation rate, 
to about one-tenth the sound speed, and increasing the workpiece size, to 
10,000 atoms, provides very reasonable estimates of the quasistatic large­
crystal yield strength, without much further sensitivity to speed or size. 

Reproducing the rate- and temperature-dependence of the shapes of 
indentation pits is a challenging goal for continuum mechanics. To make 
headway on this problem with conventional continuum mechanics requires 
that a failure criterion be specified. The criterion allows computational 
nodes to divide, introducing new free surfaces within the material. 
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With the use of work stations it is possible to analyze such 
nonequilibrium atomistic flows for information required for 
complementary continuum simulations. Where do the new surfaces come 
from in indentation? This question can be answered by coloring particles in 
the indented crystal according to their depth, but at positions 
corresponding to the undeformed crystal. Figure 3 shows those atoms 
destined to become surface atoms during the course of the indentation 
process. Detailed knowledge of this kind is vital to constructing faithful 
continuum models for failure. 

5. Smoothed Particle Hydrodynamics 
Smoothed particle hydrodynamics converts the partial differential 

equations of continuum mechanics into ordinary differential equations for 
particles. The resulting particle motion equations have nearly the same 
form as the molecular equations. The "particles" or nodes, each with mass 
m, can be imagined to be distributed ("smoothed") over space, with a 
weighting function w. The smoothed-particle equation of motion for the 
ith particle is a sum of pair interactions with nearby particles (n: 

where cr and p are local values of the stress tensor and mass density, 
and where the pairwise-additive weighting function w(rij) is 
normalized and short-ranged. A simple choice for w, a caricature of 
a Gaussian weighting function, but with two vanishing derivatives 
at a maximum cutoff radius (here I, for simplicity) is Lucy's: 

w(r) 0< (1 + 3r)(1 r)3, for r < 1 . 

In validating the smoothed-particle approach it is natural to begin by 
checking that the linear hydrodynamic laws are satisfied. We have first to 
establish that shear flow and heat flow are correctly treated by the modeL 
We did so by carrying out simple simulations of the types shown in Figure 
5. The top and bottom boundaries are defined by constrained rows of 
smoothed particles, with fixed temperature and velOcity. If the density of 
these particles is sufficiently high, the resulting barriers resemble Ashurst's 
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"fluid wall" boundaries. The boundaries act as sources and sinks of 
momentum and energy, while preventing an outflux of mass. To prevent 
the occasional escape of bulk particles through the boundary, a Maxwell 
Demon reflects the normal velocity of any particle reaching the boundary. 
We built our confidence in the smoothed-particle method by verifying that 
the viscous shear stress and linear heat flux expected between walls of 
different temperatures and velocities were correctly reproduced, with 
statistical uncertainties of no more than a few percent. 

Figure 5. Snapshot from a smoothed-particle shear flow simulation. 
Reservoirs, with temperature and average velocity fixed, are modelled by 
the constant-velocity constant-temperature smoothed particles. 

Most applications of smoothed-particle hydrodynamics have been 
astrophysical. These are hard to validate because no independent 
trustworthy solutions are available. Because we wish to simulate 
relatively simple laboratory flows of fluids and solids we have chosen to 
investigate a simpler fluid flow problem, the Rayleigh-Benard instability. 
This problem is two-dimensional, which simplifies visualization, and has 
previously been studied both with molecular dynamics and with 
conventional continuum methods. The three-equation caricature of this 
problem generates Lorenz' familiar "butterfly" attractor. Note that the 
smoothed-particle equations of motion reduce exactly to those of 
molecular dynamics [with pair potential w(r)] in the special case that the 
stress tensor is replaced by a hydrostatic stress corresponding to a two­
dimensional isentropic ideal gas with (j <X _p2 . 
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The nonlinear Rayleigh-Benard problem combines all three kinds of 
hydrodynamic flows: mass, momentum, and energy. In Rayleigh-Benard 
flow a compressible fluid, in a gravitational field, is simultaneously heated 
from below and cooled from above. Two of the many earlier approaches 
to this problem, one atomistic and the other continuum, are shown in 
Figures 6 and 7. Snapshots from Rapaport's atomistic Rayleigh-Benard 
simulation are shown in Figure 6. The system, hot on the bottom and cold 
on the top, transports heat with convective rolls. Rapaport's side walls 
are insulating. Figure 7 is a typical snapshot from Goldhirsch, Pelz, and 
Orszag's continuum simulation of Rayleigh-Benard flow, based on a 
different boundary condition, with the temperature of the side walls 
varying linearly from the top to the bottom temperature. 

In preparation for hybrid simulations combining the atomistic and 
continuum approaches, we have simulated this unstable Rayleigh-Benard 
flow too, using a variety of boundary conditions. The constitutive model 
illustrated here is an ideal gas (with constant heat conductivity and shear 
viscosity). See Figures 8 and 9 for some of our sample results, not far from 
the 776-particle threshhold for convective transport. Our comparisons so 
far suggest that our particle description of the flow is inherently more 
chaotic than are the more-traditional Eulerian approaches. 

In our first efforts to replicate Rayleigh-Benard flow we again used 
Lucy's weight function, and noticed an unphysical tendency for the 
smoothed particles to clump together. The model's bland acceptance of 
high-density collapse occurs because the gradient of the weighting 
function, which contributes to the repulsive force between the particles, 
vanishes (linearly) as r approaches zero. This tendency toward collapse 
can be eliminated by using an even simpler form for the weighting function 
(with a repulsive cusp at the origin): w(r) oc (1 r)3. Unfortunately, 
weighting functions such as this, with cusps at the origin, provide a less­
accurate interpolation than do the flat-topped functions. The range of the 
weighting function is important too. In two dimensions our results for 
simulations using several hundred smoothed particles suggest that an 
interaction range covering about a dozen particles is optimum. 
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Figure 6. Rapaport's simulation 
of Rayleigh-Benard flow. The 
time exposures [left] show vertical 
oscillations of the two vortices. The 
underlying fluid consists of 57,600 hard 
disks at about half the freezing density . 

.. ". .. _-----­

Figure 7. Goldhirsch, Pelz, 
and Orszag's simulation of 
Rayleigh-Benard flow. 
Boundary collocation, with 
322 points, was used. This 
Figure [right] shows a four 
roll convective structure 
which recurs periodically 
between two mirror-image 
structures, each of which is 
dominated by a single 
diagonal roll. Here the 
fluid is incompressible. 
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Figure 8. Smoothed-particle Hydrodynamic simulation of Rayleigh­
Benard flow for an ideal gas at unit mean density. The dimensionless 
analog of the Rayleigh number, gh3/(vK), where v and K are the kinematic 
viscosity and thermal diffusivity, is 25 x 106. 200 of the 776 smoothed 
particles are fixed, to define the four boundaries. The smoothed velocities 
{<v>} of the individual particles are shown as arrows. 
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Figure 9. Smoothed-particle Hydrodynamic simulations of Rayleigh­
Benard flow. See Figure 8. Here gh3 / (VK) is near the apparent convection 
threshhold, 6 x 106. The snapshots are for three different simulations, with 
weighting function ranges of 2.0(left), 2.5(center), and 3.0(right). 
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6. Surfaces. Failure. and Hybrid Models 
Failure, whether of a liquid or a solid, involves the energy cost of bond 

breaking. New surfaces form through microscopic and chaotic irreversible 
processes. Despite the chaos, a detailed atomistic description of such a 
failure process is a straightforward application of Newton's motion 
equations. No special boundary conditions or constitutive assumptions are 
required. Figure 10 shows the breakup of a hot liquid drop. 

Throughout any such failure process the forces on each atom follow 
from the same continuous force law. In the solid-phase deformation 
shown in Figures 2 and 3, our 373,248-atom crystal of indented silicon did 
not crack, even though solid silicon is normally a brittle material. The 
ductile behavior results because the strain energy, proportional to the 
solid's volume, does not exceed the surface energy necessary to nucleate a 
crack. Crack energy varies as area, so that large enough specimens do 
crack. The ductile small-scale behavior makes it possible to machine 
normally-brittle materials provided that sufficiently small tools (typically 
micro scale Single-point diamonds) are used. 

t* =tv' Elm/a =13.7 

t* =71.4 

100a 
I I 

100a 
t--1 

t* =33.0 

t* =109.8 

Figure 10. Fragmentation of a (two-dimensional) liquid drop of 14,491 
liquid atoms, as described by Lennard-Jones' potential. From Blink's 1984 
Ph. D. thesis work at the UniverSity of California at Davis/Livermore. 
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With a failure strain of order 1%, the elastic energy stored in a solid 
workpiece volume V is approximately O.OOOlEV, where B is the bulk 
modulus. The modulus itself is an energy density, of order e/(J3, where e 
and (J describe the strength and range of a nearest-neighbor interaction. 
When 0.0001Ve/(J3 exceeds the surface energy, (e/(J2)V2/3, brittle fracture 
occurs. For fracture (V/cr3) must be of order 1012, a bit bigger than the 
biggest feasible simulations. Thus a quantitative study of the limits of 
ductile machining, including fracture, requires a supporting substrate for 
the atomistic indented region in which to store the failure energy. The 
continuum substrate needs to join smoothly to the atomistic region, and to 
transmit phonons and heat, without excessive scattering at the boundary. 

, From the continuum perspective, failure is complicated by phase 
discontinuities and by surface tension. There is no problem in treating 
those parts of a solid remote from the indentor. For most of the workpiece 
material Hooke's Law should do. But whenever fracture occurs, an 
atomistic separation occurs, with a part of the stored energy of the solid 
localized on a fresh surface, and with the recoil of the fracture surfaces 
depending sensitively on unstable multiple-valued regions of the phase 
diagram. It is therefore logical to combine the accurate atomistic 
description of failure, in the region of the indentor, with the more efficient 
continuum model for the remote substrate. Such a description can be 
facilitated by spanning the junction with a "hybrid" model combining 
atoms with Lagrangian zones. This is a promising research area . 

We have already studied, as is described in our 1992 Computers in 
Physics article, a cell-based approach to a hybrid model, filling some 
Lagrangian zones with atoms while treating others as continua. The 
impulses due to atomistic collisions with a zone wall (treated by 
constructing image particles on the other side of that wall) can then be 
summed up and used to accelerate those continuum nodes contiguous to 
that wall. 

An aesthetically appealing method for joining the atomistic and 
continuum models is to use a particle description for them both. The 
enhanced continuum fluctuations in this approach resemble the thermal 
motion of an atomistic system. In the next Section we describe such an 
approach, in which the atomistic and continuum descriptions both use 
particles. It is to be expected that, in the absence of thermal motion, both 
descriptions provide exactly the same adiabatic response to accelerations. 
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7. Simple Hybrid Model 
The simplest hybrid atomistic+smoothed-particle description has a 

fixed weighting function w(r), varying neither in time nor in space. 
Provided that the masses of the smoothed particles are the same as those 
of the atoms we then have a variety of ad hoc recipes which could be used 
to accelerate the atomic masses and the continuum nodes. The weighting 
function itself appears to be crucial to the success of the smoothed-particle 
approach. How should it be chosen? A choice based on reproducing the 
pair distribution function is a natural one. Thus the fundamental 
statistical mechanics of the correspondence between the atomistic and 
smoothed-particle distribution functions is well worth pursuing. 

Even with an appropriate weight function selected, the hybrid 
dynamics is not entirely straightforward. In order to use the current 
information (r,v,e} for the atoms and the nodes to calculate the time 
derivatives {r,v ,Ed, stress, smoothed density and velocity, and the velocity 
gradient need to be estimated. In the mixed case this means estimating 
values for the tensors (cr / p2) and 'Vv for an atomistic particle. This can be 
done by summing the local contributions to the stress tensor and density in 
the neighborhood of the particle using the weight function w. Once this 
averaging has been completed, the pair contributions to the accelerations 
can be based on a coupling parameter A: 

It is natural to choose the values (O,I/2,I} for the three possible types of ij 
combinations. A successful hybridization of the two approaches must 
reproduce r_ot only mechanical and thermal equilibria; it must also describe 
the linear transport of momentum and energy consistently. 

For the atomistic part of these simulations we chose a very simple pair 
potential, with three vanishing derivatives at the cutoff, r = 1: 

9(r) = 100(1 - r2)4 . 

In the smoothed-particle part of the simulations we use the constitutive 
model measured for this force law, including the transport coefficients 11 
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and 'K. For this purpose, a limited portion of the energy-density phase 
diagram was covered, using 100 particles. The specific heat and pressure­
volume-energy constitutive equations could then be expressed as low­
order polynomials in density and energy. 

The smoothed particle idea has such flexibility that combinations of it 
with other forms of mechanics suffer from excessive richness. 
Nevertheless, the promise of hybrid simulations demands an exploration 
of this uncharted but promising territory. At the time of this writing (June, 
1993) we have not completed hybrid simulations of shear flows and heat 
flows. I expect to describe such simulations in my talk in October . 

, Much still remains to be done in extending the range of applications for 
smoothed particle hydrodynamics. One particularly promising application 
of the smoothed-particle approach is the study of mesoscopic 
hydrodynamic fluctuations. The method is ideal for treating fluctuations 
on intermediate length and time scales. 

8. Summary 
With massively-parallel teraflop computers on the near horizon the 

transition from millions to billions of degrees of freedom is quite near. 
This development suggests connecting the microscopic models with more 
macroscopic approaches, so as to combine microscopic realism with 
macroscopic size in dealing with real problems . 
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Microscopic Simulations of Silicon Indentation: 
W. G. Hoover, A. J. De Groot, and C. G. Hoover, "Massively Parallel 

Computer Simulation of Plane-Strain Elastic-Plastic Flow via 
Nonequilibrium Molecular Dynamics and Lagrangian Continuum 
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