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Three dynamical methods for computing canonical-ensemble Helmholtz free energies are discussed 
and compared for a thermostatted six-body harmonic chain. We use a Martyna-Klein-Tuckerman ther
mostat [J. Chem. Phys. 97, 2635 (1992)] with six time-reversible friction coefficients to study both single
trajectory and ensemble-averaged free-energy changes. Though all three dynamic methods produce 
identical long-time averages, the one based on Kirkwood's coupling-parameter theory [J. Chern. Phys. 3, 
300 (1935)] converges much more rapidly than do the two based on time-integrated heat transfer. 
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1. INTRODUCfION 

"New" computational free-energy methods have their 
conceptual roots in Gibbs's microscopic statistical 
mechanics and Clausius's macroscopic thermodynamics. 
Entropy furnishes the link between these classic micro
scopic and macroscopic approaches. Gibbs's statistical 
entropy is a measure of the accessible phase-space volume 
SGibbs == kInO, where k is Boltzmann's constant. In the 
case of Gibbs's microcanonical ensemble, the available 
phase volume O(N,E, V) is constrained by the total mass, 
momentum, and energy of the system. Clausius's thermo
dynamic entropy is an integrated measure of the reversi
ble heat taken in, divided by the corresponding ideal
gas-thermometer temperature T. The heat transfers 
(6.Q J take place along a reversible path linking a stan
dard zero-entropy state to the state of interest 

SClausius f{Q/T)dt. 

It was Gibbs's remarkable finding that the microscopic 
state-counting and macroscopic heat-transfer methods of 
determining the equilibrium entropy agree, 
SGibbs ==SClausius' 

Once fast computers became available, numerical 
methods for determining entropy were developed, based 
on these same two definitions [1]. Both microscopic sta
tistical state counting and macroscopic thermodynamic 
integration have been used to determine the entropy S. A 
third computational approach has been developed more 
recently and is unique to computation. The basis of this 
new dynamical approach is the adiabatic principle of 

mechanics. This principle asserts that whenever external 
work is performed sufficiently slowly ("reversibly"l, the 
system occupies near-enough-to-equilibrium states that 
the entropy is a constant of the motion. When state 
changes occur at finite rates, the deviations from equilib
rium are typically quadratic in the rates. The dissipation 
provided by viscosity and heat conduction, as well as the 
thermodynamic dissipation we quantify in this paper, are 
examples. The phenomenological nonequilibrium 
coefficients describing these close-to-equilibrium state 
changes are accessible through equilibrium linear
response ("Green-Kubo") theory. 

Changes in system energy need not be induced by 
mechanical work or by heating. In Section 2 we recall 
Kirkwood's idea for determining free energy by varying 
the Hamiltonian. We then detail Watanabe and 
Reinhardt's suggestion that this idea be applied dynami
cally. A dynamics appropriate to Hamiltonian variation 
is described in Sec. III. It is the Martyna-Klein
Tuckerman generalization of Nose's isothermal molecu
lar dynamics. With the isothermal dynamics of Martyna, 
Klein, and Tuckerman, computation of Watanabe and 
Reinhardt's extension of Kirkwood's free-energy idea can 
be carried out. We extend this approach in Sec. IV. 
There we derive results linking free-energy changes to 
time-averaged values of isothermal friction coefficients. 
Section V describes a particular simple one-dimensional 
chain model, with a known free energy, to which we ap
ply all these ideas. Our numerical results, including an 
evaluation of the complete spectrum of Lyapunov eX
ponents for this system, and our conclusions, make up 
Secs. VI and VII. 
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II. STATIC AND DYNAMIC 

COUPLING-PARAMETER METHODS 


• In the usual situation, thermodynamic work is per

formed by manip~lating some of the system coordinates 


'."1 Work can mvolve a volume change or a shape

·!fs~ge, as well as motion within an external field. Heat is 


. transferred to a system differently, by varying some of the 

'stem momenta (p J at fixed coordinate values. 

$) External work need not affect the particle coordinates 
by prescribing their time variation as in a volume, shape, 
ot field change. Instead, the functional dependence of the 
(orces {F ((q1)} on the particle coordinates (q} can be 
pdually changed. In this way, one thermodynamic ma
terial can be transformed into another. The simplest way 
(0 realize this computational alchemy is to let the poten
tial function <p( (q 1) vary with time. Likewise, and 
equivalently, the Hamiltonian H == <p( [q 1)+K ( (p ] ) 
faries with time. The conventional description of such a 
change of forces, potential energy, and Hamiltonian uses 

coupling parameter A which varies from 0 to 1. If we 
specify a time dependence for the coupling parameter, 
UI'), with a dummy time variable t', we can likewise re
gard the Hamiltonian as changing from Ho, at time 0, to 

Hl at time t: 

(l-A)Ho+AH, =(1-A)Ho+AHt , 

(2.1) 

(l-A)<PO+A<P t • (2.2) 

It is worth emphasizing that H 0, HI' <po. and <Pl are 
themselves functions of A. ),( t') furnishes a linear in

.IeflD01,ltlcmlinking the two material end points. In simu
a thermodynamically reversible process, the cou

parameter A=},(t'), which transforms the Hamil
from Ho at time 0 to HI at time t, must vary 

slowly and smoothly between its initial and 
values, 0 and 1. 

idea of such a varying Hamiltonian was used in 
mechanics by Kirkwood [2], but in the restrict
of equilibrium ensemble theory, without an ex

time dependence for A. Watanabe and Reinhardt 
extended Kirkwood's idea by varying A dynamically, 

time. Either Kirkwood's original approach, or 
and Reinhardt's dynamic generalization of it, 

instance, be used to add a perturbing attractive 
. to a repulsive reference potential, or to add the 
Interaction potential to an ideal gas. 

The nonequilibrium dynamics of an ensemble of trajec
with differing initial conditions, and subject to iso

boundary conditions-contact with a thermal 
at temperature T via thermostatted equations of 

-can be cast in the familiar framework of hydro
The time-dependent density of trajectories in 

Space is the distribution function p(x,t), where the 
position x == ((q1, [p J, [t1) is the collection 

IV-particle, d-dimensional coordinates and momenta, 
""ell as M thermostatting control variables (; J, de

in more detail later. The normalization of p, the 
average of the energy E, and the entropy S are 

by 

~d 

;r

.e
ce 
3, 

f dxp(x,t) , 

E(t)= f dxp(x,t)H(x) (H(t) , (2.3) 

Sit) = - k f dxp(x, t)lnp(x,t)= k ( lnp(t) . 

The internal energy function H (x) is defined by 

where K and <P are the kinetic and potential energies of 
the particles and Hsis the contribution of the thermo
stats. 

Because the trajectories are independent of one 
another, the (2dN + M)-dimensional ensemble "fluid" is 
characterized by a local fluid velocity u( x, t) = i{ x, t), 
which we recognize as the many-body equation of 
motion. This simple dependence of u on position is quite 
different from the fluid velocity to which we are accus
tomed in hydrodynamics, where mass elements transfer 
momentum and energy to one another. Because of this 
simplicity (at the expense of a large number of degrees of 
freedom, of course), the dynamics of an ensemble of tra
jectories in nonequilibrium statistical mechanics requires 
only Liouville's continuity equation for p: 

17+V'(pU)=O= [17+ u,vP 1+pV·u 

=!!.e. +P€ (2.4)
dt 

. - V - _-_d_l_n,-p€= 'u= (2.5)
dt 

where the last expression is the local rate of expansion of 
an infinitesimal phase-space volume element. The rate of 
change of the entropy of the ensemble is therefore given 
by the relation 

s - k ( d ~~p ) = k( € ) . (2.6) 

For the microcanonical (constant-energy) ensemble 
where there is no coupling of the particles to a heat reser
voir, so that the equations of motion are Newtonian 
(Hamiltonian), 

u(x,t)=x(x,t) {q=p/m ;P=F(q)= V<p], (2.7) 

the local rate of phase-space volume expansion is identi
cally zero: 

. [aq 1€=V'u= ~ aq + apap =0. (2.8) 

Thus, for an ensemble of isolated adiabatic systems 
governed by Newtonian mechanics, the entropy is a con
stant: S= k ( €) =0. For an ensemble of thermostatted 
systems, however, S is not constant-when work is done 
on an isothermal system, the heat extracted by the 
thermal reservoirs is directly related to the contraction of 
the available phase space relative to equilibrium. There
fore, we see, qualitatively at least, how the Helmholtz 
free energy A =E TS must be a minimum at equilibri
um. 

$$_e._• .4_.$I_a.._':&_U&_.1341!111110£_:;.ii4i_WIII!III!.III\IIIZIII!I!IU.JdIll!l!l:Ulll!l!liL.2·~-·,,-~------~---____ 
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As usual, in all of our equations the [q J are general
ized coordinates and the (p I are the corresponding con
jugate momenta. Watanabe and Reinhardt [3], following 
the example of Torrie and Valleau [4], made use of the 
adiabatic principle to correlate the free energy for a sim
ple inverse-12th-power soft-sphere Hamiltonian Ho with 
that of a more complicated Lennard-Jones system, in
cluding inverse-6th-power attraction HI> with unbeliev
able success. See Table II of Ref. [3], but, in the case of 
the first two entries, note the discrepancy between the 
number of particles (108) in that Table and the number of 
particles (32) actually cited in the original Ref. [4]. 

Relatively recently, but inspired by Gibbs's vintage
1900 ensembles, extensions of straightforward isoenerget
ic Newtonian computer simulation to new isothermal and 
isobaric forms have developed [5-9]. Reference [9] 
presents a useful overview of these approaches, beginning 
~ith Nose's seminal 1984 paper. With the new deter
ministic time-reversible methods in hand, it is natural to 
study the analogs' of the adiabatic principle for slowly 
changing dynamical systems connected to thermal and 
mechanical reservoirs. Isothermal dynamics, for in
stance, corresponds to a system connected to a constant
temperature heat bath, so that the reversible isothermal 
thermodynamic work corresponds to an isothermal 
change in the corresponding free energy, including heat 
transfer, rather than to an adiabatic change of internal 
energy. We undertake here an exploration of this natural 
extension of the work of Kirkwood, Watanabe, and 
Reinhardt, applying a particularly simple and robust 
computational scheme [9] to a simple model Hamiltonian 
for which analytic free energies are known. 

III. ISOTHERMAL EQUATIONS OF MOTION 

Here we focus on isothermal isochoric dynamics, cor
responding to Gibbs's canonical ensemble. The corre
sponding free energy is the Helmholtz free energy 
A (N, V, T) for a system of N particles in d space dimen
sions, with dN degrees of freedom, confined to a volume 
V, and at a temperature T. The corresponding equations 
of motion must be consistent with the canonical phase
space distribution. In the simplest ["Nose-Hoover"] 
case, the equations incorporate a single friction coefficient 
{; or z, which responds to fluctuations of the kinetic ener
gy about its mean value Ko 3NkT12 in three space di
mensions (d=3) or Ko=NkTI2 in one dimension 
(d 1). The equations of motion can be written in either 
of two equivalent forms: 

ld
q 

=plm·!!£.= V<I>_rp)n' -12 dNdt ' dt !>. n - , , ... , , 

(3.1) 

~=[(KIKo) I]!.? 

or 

1~; =Plm;*= V<I>-vzp t, n =1,2, ... ,dN , 

~ O~ 
dt=v[{KIKo)-l] . 

We use n as a subscript for the dN similar equations of 

motion for the Iq 1 and [p J. The two possibilities fo 
defining the friction coefficient are simply related 
{;=vz =zh. Note that {;, v, and I h have units of fre 
quency, while z is dimensionless. The phase-space Con 
tinuity equations for the densities p([ q }, [p ), ({;}) an( 
p( [q J, [p 1, (z 1) show that the corresponding canonic a 
distributions are stationary: 

PGibbs 0:: exp[ - H(q,p)lkT] exp[ -dN{;2.?12] 

0:: exp[-H(q,p)lkT]exp[-dNz 212]. 

The Gaussian friction-coefficient distribution shows tha 
the friction coefficient, {; or z, takes on values of orde 
N -112, so that the frictional-force contribution to the dy' 
namics of the nth degree of freedom, -{;Pn = -vzp 
vanishes, in the thermodynamic limit, in the same way ~. 
do the fluctuations in intensive thermOdynamics vari 
abIes. 

This single-friction-coefficient representation is ade 
quate for treating some systems-those with stron, 
enough mixing characteristics for a thorough exploratio~ 
of phase space. Such thorough mixing appears to b, 
present in the usual three-dimensional fluid and solid sys 
tems simulated with molecular dynamics [10]. But th, 
single-friction-coefficient dynamics fails to give the com 
plete canonical distribution for sufficiently nonmixin; 
systems, such as a free particle or a one-dimensional har 
monic oscillator. Such systems explore only a part c 
their phase spaces, with that part depending upon the ini 
Hal conditions. Many ideas have been advanced to pro 
vide better mixing through more complicated versions c 
deterministic friction [7-9]. 

In the present work we adopt an elegant generalizatio: 
of the single-friction-coefficient idea to chains of M ir 
teracting friction coefficients, which Martyna, Klein, an· 
Tuckerman introduced [9]. They showed that this ar 
proach can be sufficiently mixing to generate a canonica 
distribution for a single harmonic oscillator. As a start 
ing point, we choose Eq. (10) of Ref. [9] to be the basis fo 
our discussion of canonical-ensemble dynamics. For sim 
plicity we specialize that equation to the case of fou 
thermostat variables !{;j'{;2'{;3'{;4} governed by four pr. 
rameters with the same physical units [massXlength2Ja 
a moment of inertia (unfortunately called "masses" b 
most workers) !QI,Q2,Q3,Q4 J from which the genen 
case, with M thermostat variables and M parameter 
should be,clear: 

dq =plm' dp -F-r.n 1 -1 2 dN

1
dt ' dt - !> lr J / n - , , ... , 


d{;1 

dt =[2K -2Ko]/Ql-{;2{;1 , 


d{;2 
(QI{;i-kTlIQ2 -{;3{;2 ,

dt {3. 
d{;3_ 2 ' 
dt -(Q2{;2- kTJ1Q3 -{;4{;3 , 

d{;4 _ 2 

dt -(Q3{;3 kT)IQ4' 


2K= 2:,p2Im; 2Ko=dN kT. 

.... ca. 
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, tv!artyna, Klein, and Tuckerman observed that the 
thermal feedback associated with the thermostat vari
bles WQ)j is most efficient if their fluctuation times 
~orrespond t~ a t~pical collision time T or, equivalently, 
10 a typical vIbratIOnal frequency v, of the thermodynam
'c system described by the dN coordinate-momentum 
~airs !q,p J. Thus a reasonable choice for the parameter 
Ql is given by 

Q! =dN kTIv==dN kT.? , 

assuring fluctuations of order N- 1/2 in ;1' The remain
ing M -1 thermostat parameters [Q2' Q3' ... ,QM} are 
not directly linked to the thermodynamic system at all. 
Their purpose is to provide fluctuations in the primary 
control variable ;1' through its chain ofinteractions with 
'Z,S3' ... ,SM' Thus the remaining Q's can be set equal 
to Q;>I=kTlv2 ==kT'?, so as to induce fluctuations of 
order v== I IT in the friction coefficients!;; > Il. Then the 
complete set of thermostatted equations becomes 

Jdq = pim; d = F ).' n 1,2, ... , dNl dt t .. 

ds! 
Tt=[{KIKo)-l] 

2
d1r = [dN{;i-{1/.?)] (3.4) 

d1r
3 =[S~-(1/.?)] 

d1r
4 =[S~-{1/.?)] . 

this formulation it is plain to see that the friction 
f:Oetlicilmts have units of inverse time. It is easy to verify, 

direct substitution, that these equations of motion are 
WUSIsrem with the stationary eqUilibrium canonical dis

in the "extended" phase spaces, that is, phase 
including the M friction coefficients [sJ as addi

coordinates: 

PGibb, a: exp[ - H (q,p) I kT] exp [ - i:i Q,s7 12kT 1 ' 
l 

PGibbsO:: exp[ -H(q,p)lkT] 

An alternative, more transparent, way of rewriting the 
Klein, and Tuckerman system of equations (1) 

introduce dimensionless "friction coefficients" [z J 
aSSOciated frequencies Iv], so that s,==viZj' With 

parameter choices 

21 =::dN kTlvi, Q2 =kTIv~ , 
(3.5)23 ... , QM=kT IV'M , 

. Martyna, Klein, and Tuckerman equations give the 
system: 

!dq=Plm.dP=F-VZ P ) n-12 dNdt ' dt I I , -" ... , . 
n 

dZ I , 

dt =vl[(K IKo)- I]-v2Z ZZ j , 


dZ2 _ 2 
Tt-v2(dNzl-1)-v3Z3Z2 , 

(3.6)
dZ 3 _ 2 
Tt- V3(Z2 -1)-V4Z4Z3 , 

dZ4 _ 2 

Tt- V4(Z3-l) , 


2K== !.p 2/m, 2KO==dN kT . 
n 

The inverse-square-root dependence Z I a: N - 1/2, with dN 
thermostatted degrees of freedom, is perhaps clearest 
from (3.4) or (3.6). The choice among the three formula
tions, (3.3), (3.4), or (3.6), is purely aesthetic. Anyone of 
the three formulations generates a time-reversible deter
ministic dynamics, robust and consistent with Gibbs's 
canonical phase-space distribution. In terms of the di
mensionless friction coefficients, the distribution has the 
form 

PGibbsa: exp[ -H(q,p)lkT] 

X exp [- [dNZi+ ;i 1/2 1. 
2 

IV. COMBI~I~G KIRKWOOD'S APPROACH 

WITH ISOTHERMAL MOLECULAR DYNAMICS 


When the underlying Hamiltonian is varied, reversibly, 
under isothermal conditions, the quasistatic change in 
Helmholtz free energy can be written as an integral, over 
the thermodynamic path, of the time-averaged total per
turbation energy (4)t-4>o): 

At-Ao== fot«(Ht-Ho)).~~dt' 

== fot«(4>t-4>o)).~~dt', (4.1) 

It should be emphasized that H t and 4> t - <1>0 are 
not functions of the coupling parameter A. The dynamics 
governing the motion, through H [).U')], does depend on 
the coupling, so that the averages carried out at time t', 
( ) ).' reflect the underlying value of the coupling parame
ter AU'). 

Kirkwood's coupling-parameter version of this rela
tion, 

(4.2) 

is a familiar consequence of Gibbs's equilibrium statisti
cal mechanics. The time-dependent forms follow provid
ed that the motion is quasiergodic, so that the dynamical 
average at time t' corresponds to Gibbs's phase averag{ 
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computed with the coupling parameter A(t'). The Kirk
wood relation in turn follows from the definition of a 
coupling-parameter-dependent canonical partition func
tion Z(Al, related in the usual way to a coupling
parameter-dependent Helmholtz free energy A (Al: 

Z(N, V, T,Al= .I. exp[ -H(Al/kT] 

exp[ A (N,V,T,Al/kT] , 

H(A)=Ho+A(HI-Ho)=Ho+A(<PI-<Pol. 

The ideal-gas-thermometer temperature T, in a classi
cal dynamical simulation, is defined in terms of the mean 
kinetic energy per Cartesian degree of freedom: 
kT=(p 2/m ). This definition is consistent with the col
lisional mechanics of a thermometer [11], even in non
equilibrium situations, where Gibbs's entropy is 
undefined [12]. By separating the Hamiltonian into a 
coordinate-dependent potential energy <p( q) and a 
momentum-dependent kinetic energy K (p), the free
energy difference A 1- Ao can more simply be expressed 
as a potential-energy integral over the coupling parame
ter A: 

(4.3)AI-Ao 

This statistical technique has been used to study the free
energy difference between solids, liquids, and gases, as 
well as the free energy of defects which can be introduced 
by coupling [1]. The 'quasistatic ensemble formulation 
becomes equivalent to a dynamical one when A is given a 
specified, and sufficiently slow, time dependence A= AU). 
Then the integral over A is equivalent to a time integral, 
with dA replaced by (dA/dt)dt =}..dt: 

(4.4) 

The dynamics at the time t' depends upon the Hamiltoni
an H (t') through the coupling parameter A. We wish to 
explore this dynamical method for Helmholtz free-energy 
determination here, for a simple and well-understood 
few-body problem with an analytically known free ener
gy. 

The equations of ••. motion, including the friction 
coefficients {;i J or {Zi l, with i 1,2, ... ,M, can be used 
to derive two alternative expressions for free energy 
based on heat transfer. From the microscopic stand
point, transferred heat corresponds to an energy change 
made with fixed coordinates Iq }. Because the friction 
coefficients !;1M or !Z JM transfer heat to the thermo
dynamic system described by {q,p JdN' thermodynamics 
establishes that, for a process sufficiently slow that the 
quadratic dissipative contributions can be ignored, entro
py changes can be expressed in terms of the time
integrated friction coefficients. 

To show this, we recall that the phase-space density 
p( {x J ) now also contains M friction coefficients ;i among 
its variables: {xl {qn,Pn';IJ, n 1, ... ,dN, 

1, ... , M. If the Liouville continuity equation (2.4) is 
used for evaluating (2.6), one finds after insertion of the 
thermostatted equations of motion (3.3) or (3.4): 

(4.5) 

Hence, the isothermal entropy change is given by 

l:.S /k = J(Q /kT)dt J(8 /k)dt 

J<dN ; I+ .I. ;1) Adt 
I> 1 

- J!.s4t , (4.6) 

which is the desired result. The notation ( >A reminds Us 

that the average of the friction-coefficient sum is affected 
by the parameter A, which is switched from 0 to I in the 
time interval under consideration. 

The isothermal entropy change may also be expressed 
in terms of the heat added to the system through the ac
tion of the reversible friction coefficient; I: 

-(J;, idV 
l:.S/k (p;/mkT)dt) , (4.7) 

nIle 

where the sum is over all dN system degrees of freedom. 
The two expressions (4.6) and (4.7) are equivalent. This 
follows from a computation of the time average 

((d /dtl} [dN;i+ i~l ;;]) Ie • 

For simplicity, we derive this relationship in the special 
case that all the characteristic frequencies are equal, 
{YI =Y= 1/rJ, i = 1, ... ,M. Thus, from (3.4) we find 

o=(~(.p [dN ;1+ .I. ;;])
dt i > I Ie 

d;! [d;; ]) 
= (dN ;lTt+ l~l;i Tt Ie 

(~;,(p2ImkTlYZ) Ie 

+[ -(dN ;')Ie - (;2>1e - (;3 

where all the terms that are cubic in the friction 
coefficients cancel. This establishes (4.7). As a conse
quence, the free-energy change can be written in either of 
two (new) ways: 

AI-Ao=<Pt-<Po+ fl(~;JP2Im) dt' 
o n Ie 

=<PI-<PO+kTJ!.s4t' . (4.8) 

The same derivation can be carried out using the dimen
sionless friction coefficients {z LM' That approach gives 
an equivalent result: 

AI Ao=<Pt-<Po+ Jt(.I.zIYJPZ/m) dt' 
o n Ie 

(4.9)=<Pt -<Po+ kTJ!.vz dt ' , 

where !.vz indicates the time-averaged friction-coeffici~nt 
sum, with z, occurring dN times, and with each frictIOn 

i 
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m is affected 
oto I in the 

be expressed 
'ough the ac. 

(4.1) 

J of freedom, 
valent. This 

n by 

A. reminds uS indicated by 

dal symbol A: 

NleJilN>V",Zi multiplied by its characteristic frequency Vi' 

The analog of Liouville's theorem, for this dynamics in 
which phase volume is not conserved, relates the time 
verage of the friction-coefficient sum to the sum of all 
~e Lyapunov exponents P"aJ for which we use the spe

- 2: A =-A=(!!J~)
a a dt ensemble' 

Vie use a prime in this equation to indicate a long-time 
average, over many periodic full cycles of the switching 
parameter, rather than the one-way average, from 0 to 1 , 

the symbol Lt' without the prime. The 
Lyapunov exponents, one for each independent direction 
in the phase space (including the friction coefficients and 
tbe time), have been designated Aa to avoid confusion 
\11th the Kirkwood coupling parameter A. 

In Sec. V we introduce a simple harmonic-chain model, 
for which the entropy and free energy can be calculated 
analytically. In Sec. VI we apply both these entropy 
methods, one based on time averaging the coupling
dependent heat transfer (;1!,(p 2 Im) and the other based 
on integrating kTLt· We compare these results with the 
Kirkwood, Watanabe, and Reinhardt free-energy calcula

ge 

t' 

system. 

. 

We 

lion in the chain example described in Sec. V. We also 
characterize the Lyapunov spectra for this simple model 

V. HARMONIC-CHAIN MODEL 

Our simple one-dimensional (d = 1) chain model links 
each of N atoms, with mass m, to its two nearest neigh
bors with Hooke's-law springs of force constant K. We 
impose cyclic (periodic) boundary conditions, so that 
atoms 1 and N are nearest neighbors, and keep the system 
center of mass, as well as the momentum associated with 
the center of mass, fixed. The canonical partition func
tion for this system is a product of (N -1) normal-mode 
Partition functions with a coordinate probability density 
depending on the potential energy <1>( [q J ): 

P([qj)o:: exp[-<I>([qj)lkT]. 

temperature T can be :maintained in the chain by us
a variety of reversible thermostats. The simplest of 

is the Gaussian thermostat, which keeps the kinetic 
constant. The Nose-Hoover thermostat intro

a single additional thermostatting variable. Our 
with both these thermostats strongly suggested, but 

did not prove, a lack of ergodicity. We there
explored the relatively simple and elegant extension 

these thermostats discovered (or invented) by Martyna, 
and Tuckerman [9]. These authors showed that 

equations of motion are consistent with an extended 
canonical distribution. They also critically dis

several alternative approaches to isothermal dynam-

Martyna, Klein, and Tuckerman judged that ergodicity 
roost efficiently promoted, for an oscillator system, 

Using at least three thermos tatting variables. For sim
have applied the following version of their 

of motion to a six-atom chain, arbitrarily also 

FREE ENERGY VIA THERMOSTATIED DYNAMIC POTENTIAL- ... 

using, just for the sake of symmetry, six thermostatting 
variables [{;I'{;2'{;3'{;4'{;S,{;6J: 

l~; =(Plm);*~F(q)-{;JP t, n =1, ... ,6 

d{;1
dt [2: (p2ImkT)-6]1~-{;2{;1 , 

d{;2 _ 2 2 
Tt-{;I-( lIT) -~2{;3 , 

d{;3 

dt 

(5.l) 

d{;s _ 2 2 
dt -(;4-(IIT) -{;S{;6 , 

d/ ={;~(I/d . 
We have made the simplest choice for the relaxation time 
r, r= I, in all of our simulations. We have likewise 
chosen all of the Q's equal to kT~. Note that in the di
mensionless thermostatting version, vl=61!2, V2 

=v6= 1. As a supplement, we have also occasionally cal
culated and included a small (of order 10- 12 ) correction 
to the coordinates and momenta to prevent drift in the 
center of mass. Here, the center-of-mass correction is 
only aesthetic. Such a correction turned out to be abso
lutely necessary in a related nonequilibrium problem in
volving the transfer of heat between the thermostatted 
"cold" and "hot" ends of few-particle harmonic chains. 
In that nonequilibrium simulation [13], roundoff errors in 
the cold and hot centers of mass could be amplified catas
trophically by Lyapunov instability. 

A simple extension of the conventional Liouville's 
theorem [9] (2.4) establishes that the stationary Gibbsian 
probability density for these equations of motion, 
p(! q,p,{;J ), has the form 

p<x exp[ (<I>lkT)-(KlkT) 

- (~/2)({;r+ {;~ + {;~+ {;~+ {;;+ (;~)] . 

Martyna, Klein, and Tuckerman's results make it plausi
ble that this dynamics is quasiergodic and chaotic, even 
for a single harmonic oscillator. The results we find here, 
for cyclic chains of six coupled harmonic oscillators, sup
port that view. We also find that statistical averages ob
tained by following a single dynamical system agree with 
those obtained by integrating instead over an equilibrium 
ensemble of initial conditions. 

The "chain" of thermostat variables [{;J controls the 
external heat flow in such a way as to stabilize the kinetic 
energy. Energy is fed into and extracted from the system 
[q,p J6 by the variable {; I' To test the coupling-parameter 
free-energy formulation, we have changed the force con
stant K describing the six mechanical interactions 
smoothly from 1 to 4. This results in a doubling of all the 
chain frequencies and should therefore correspond to an 
equilibrium increase in Helmholtz free energy of 
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NkTln2=6kTln2. It is feasible to accumulate statistics We have solved the linearized motion equations, with the 

by carrying out thousands of cycles of increase and de linearized solution vectors necessary to evaluate the Com. 

crease of K. For convenience we have chosen m = 1, plete spectrum [14]. The solution vectors were kept 

k = 1, and T = 1 in all of our numerical work, where k is orthonormal by applying Gram-Schmidt orthonormaliza. 

Boltzmann's constant. The ideal-gas-temperature scale tion after every few time steps. 

establishes that the time-averaged squared momenta and Because there can be no exponential growth of pertur. 

squared thermostat variables should all likewise be equal bations in the direction of trajectory propagation and be

to unity: cause both the sums 2:q and 2:p are fixed, we would ex


pect to find at least three vanishing Lyapunov exponents 
(p;)=(sT> 1. for our model. 


The Lyapunov exponents associated with a chaotic tra

VI. RESULTS

jectory describe its sensitivity to perturbations in initial 
conditions. For the model system here the motion takes 
place in a 19-dimensional phase space (six coordinates, We have studied three simple alternative representa_ 
six momenta, six friction coefficients, and the time). The tions of the rate-dependent time variation, between I and 
additional time dimension must be introduced because 4, of the force constant Klinear' Kcosine. and Kquad' These are 
the equations of motion vary, periodically, with time. given by the following relations: 

TABLE 1. Free-energy changes A A ~itCh for a cyclic six-atom Martyna-Klein-Tuckerman-thermostatted chain for which the asciI. 
lator force constant varies periodically between 1 and 4 at a rate r, as described by (6.1) of the text. The total run time is t and the 
fourth-order Runge-Kutta time step is 0.005 or 0.01. Linear, cosine, and quadratic force-constant switching data are included in the 
table. The three different free-energy estimates (all of which agree at zero rate), indicated by (Sl2:P" h, (A<I> >,., and 
:z:~= <6bl + b2+ b3 + b4 + b5 + S6 h, are, respectively, based on heat transfer, Kirkwood's coupling parameter, and Liouville's theorem. 
A is the sum of all the Lyapunov exponents. The exact analytic equilibrium free-energy change is AA =6kTln2=4.159. The data 
show that Kirkwood's A<I> approach is best and that the individual estimates can be either too high or too low, depending upon both 
the method and the rate. The time integrals of the Lyapunov-exponent sum and the friction-coefficient sums are given for integrals 
over a cycle. Thus, for the data in the fourth row, the average value of:Z:~ is 0.000 13, and the time integral, over a complete cycle of 
time is 200 X0.000 to the difference 4.082-4.058 =0.024. 

Rate r 1O-6t <bl2:p2Im >i-dt A :Z:, 

Linear 
0.001 0.90 4.452 -4.433 4.163-4.153 4.493-4.477 -0.00001 +0.00001 
0.002 0.82 4.265 -4.254 4.163-4.154 4.311- 4.300 -0.00001 +0.00001 
0.005 0.82 4.021-4.000 4.159-4.138 4.097-4.077 -0.00005 +0.00005 
0.010 0.64 4.076-4.052 4.164-4.138 4.082-4.058 -0.000 12 +0.00013 
0.020 0.50 4.114-4.082 4.170-4.137 4.191-4.158 -0.00032 +0.00032 
0.050 0.82 3.827-3.758 4.189-4.120 3.822-3.752 -0.00175 +0.00174 
0.100 0.82 3.690- 3. 538 4.263 -4.111 3.681-3.529 -0.00760 +0.00760 
0.200 0.82 6.822 - 5. 882 4.891- 3. 952 6.871- 5. 931 -0.09399 +0.09399 

Quadratic 
0.001 2.50 4.210-4.196 4.169-4.156 4.304-4.289 -0.00002 +0.00001 
0.002 2.50 4.137 -4.115 4.175-4.151 4.110-4.089 -0.00002 +0.00002 
0.005 2.50 4.185-4.149 4.177-4.142 4.154-4.118 -0.00007 +0.00008 
0.010 2.50 4.144 -4.108 4.177-4.140 4.128 -4.091 -0.000 18 +0.000 18 
0.020 2.42 4.137-4.103 4.176-4.142 4.146-4.112 -0.00035 +0.00034 
0.050 2.50 4.137-4.097 4.168-4.128 4.148-4.108 -0.00104 +0.00100 
0.100 2.50 4.240-4.187 4.164-4.112 4.261-4.209 -0.00260 +0.00262 
0.200 2.50 5.459-5.118 4.294- 3.952 5.424- 5.083 -0.03410 +0.03410 

Cosine 
0.001 0.75 4.413 -4. 368 4.167-4.146 4.307 - 4. 270 -0.00003 +0.00002 
0.002 0.75 4.138-4.132 4.162-4.153 4.249-4.240 -0.00000 +0.00001 
0.005 0.82 4.206-4.180 4.171-4.146 4.129-4.103 -0.00007 +0.00007 
0.010 0.82 4.213-4.186 4.170-4.141 4.213-4.186 -0.000 14 +0.000 14 
0.020 0.82 4.128-4.093 4.173-4.138 4.104-4.070 -0.00031 +0.00033 

0.050 0.82 4.167-4.126 4.168-4.127 4.211-4.170 -0.00100 +0.00100 
0.100 0.82 4.269-4.212 4.159-4.102 4.283-4.226 -0.00282 +0.00284 
0.200 0.82 6.344- 5. 714 4.453-3.823 6.354-5.724 -0.6295 
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Klinear=[ 4.0- 3.0i rt -1.01], 0 < rt < 2 

Kcosine=[2.5-1.5cos(1Trt)], O<rt <2 (6.1) 

Kquad = [1. 5 -0.5 cost 1Trt) ]2. 0 < rt < 2 . 

In all three cases we characterize the time rate of change 
of the force constant by the rate r. Also, in every case, 
the switching parameter A, which varies between 0 and 1, 
is equal to (K-l)/3. 

Results for all three switching methods are given in 
Tables I and II. The results in Table I were generated by 
foIlowing a single long trajectory. At low rates, hundreds 
of millions of time steps, corresponding to thousands of 
hysteresis cycles of the force constant K, were necessary 
in order to achieve three-digit accuracy. These accurate, 
relatively long single-trajectory simulations established 
that switching times ranging from ten to one hundred os
cillation times are required in order for the transforma
tion to be effectively quasistatic, with a free-energy 
change within O. OlNkT of the equilibrium value. If the 
increasing and decreasing portions of the coupling· 
parameter variations are averaged, then a time on the or
der of ten oscillation times suffices for a free-energy
change estimate valid within a few percent. 

It was somewhat disturbing to find that the results for 
higher frequencies, r =0.2 or 0.5, were not only sensitive 
to initial conditions, but also clearly not ergodic. Thus, 
at these high rates, two simulations differing only in the 
16th digit of 1T, led to quite different (30% discrepancies) 
predictions for the free-energy difference. Evidently, 
sufficiently strong deviations from equilibrium partition 
the phase space into disjoint parts. 

In addition to the long-trajectory simulations of Table 

TABLE II. Ensemble·averaged free-energy changes ~ A for cyclic six-atom Martyna-Klein-
Tuckerman six-thermostat harmonic chains, with the cosine switching function 
KcQ,ine = [2.5 - 1. 5 cost 1Trtl]. The cycle time is 2/r. Both the Kirkwood integrals and the friction
coefficient sums are displayed. The single-trajectory results from Table I are given in parentheses. The 
ensemble results refer to 16384 initial conditions [with both displacements and momenta chosen from 
the equilibrium Maxwell-Boltzmann distribution (kT 1) but with friction coefficients initially zero]. 
The first 40 time units were discarded. Stormer integration, with dt =0.005 for rates of 0.1 and 0.2, and 
dt =0.01 othetwise, was used. The ensemble data for the highest rate, 0.2, show that the long-time 
average corresponds to a power-law saturation, ~ A 00 - ~ Ac "" c -P, where c is the number of cycles and 
the 

~A 

Rate r Cycles (A<1l hdt 

0.020 4.166-4.128 4.127-4.076 
0.020 (8200) (4.173-4.138) (4.104-4.070) 
0.050 1 4,176-4.120 4.163-4.119 
0.050 (20500) (4.168 -4.127) (4.211-4.170) 
0.100 1 4.200-4.094 4.313-4.355 
0.100 (41000) (4.159-4.102) (4.283-4.226) 
0.200 1 4.349-3.946 4.125-4.181 
0.200 2 4,422 - 3.912 4.672 - 4. 456 
·0.200 6 4.465 - 3. 885 5.358 -4. 890 
0.200 16 4.452- 3. 880 5.608  5.079 
0.200 36 4.447 - 3. 879 5.685  5.135 
0.200 5.724) 

I, we have carried out ensemble-averaged simulations, in 
which many (16384) different initial conditions, chosen 
from a canonical distribution, but with the friction 
coefficients all 0, are first allowed to equilibrate, and are 
then followed in time for one or more hysteresis cycles. 
The ensemble data are shown in Table II. The data for 
the highest rate, shown there, can be roughly described 
by a power-law dependence on the number of cycles c: 

AAc=AA",,-BAlcP , 

where p is a fractional power, approximately equal to t. 
For the lower rates, up to 0.10, the extrapolated en

semble averages agree nicely with the single-trajectory 
values of Table I. The good agreement between the en
semble and single-trajectory results is independent evi
dence that the Martyna-Klein-Tuckerman thermostats do 
sample the complete phase space. 

The correct numerical value for the free-energy change 
using the Kirkwood-Watanabe-Reinhardt approach, 

AAlkT=Nln41/2 =4.159 , 

lies within about 0.0 I of the numerical evaluations for the 
lower frequencies. The heat-based methods, using 
<(;1~(p2Im) A and :I~, display noticeably larger fluctua
tions, suggesting that Kirkwood's approach is the best 
approach. 

Due to the continually changing equations of motion, 
these systems are not equilibrium systems, but instead oc
cupy nonequilibrium phase-space distributions. The 
Lyapunov spectra which characterize these nonequilibri
um states have negative sums, reflecting the hysteresis 
and dissipation associated with any irreversible process 

http:4.0-3.0i
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FIG. 1. Lyapunov spectrum for a thermostatted six-atom 
chain, with sinusoidally varying force constants, at a rate 
r =0.1. Despite the nonequilibrium nature of the system, the 
spectrum is nearly identical to the equilibrium one. There are 
19 Lyapunov exponents in the nonequilibrium spectrum corre
sponding to the six coordinates, six momenta, and six friction 
coefficients, and the time used in our phase-space description of 
the motion. In the figure we show nine Smale pairs of ex
ponents. The vanishing exponent corresponding to the time 
variation of the switching parameter is not included. 

(and indicating the collapse of the probability density 
onto a multifractal strange attractor [12J), but are never
theless very similar because the extent of the nonequili
brium behavior is so small. The loss in phase-space 
dimensionality, for the problems studied here, is never 
greater than 0.0 I. 

As a sample we show, in Fig. 1, the Lyapunov spec
trum generated using the sinusoidal switching method at 
a rate of r =0.1. All the exponents, averaged over the 
entire run of length 820000, are shown in the Figure, ar
ranged according to size. The largest and smallest ex

[1] An idea of the variety of free-energy methods can be 
gleaned from the useful reprint volume Simulations of 
Liquids and Solids, edited by D. Frenkel, 1. R. McDonald, 
and G. Ciccotti (North-Holland, Amsterdam, 1986). For 
a biological emphasis, see also M. Karplus and G. A. 
Petsko, Nature 347, 631 (1990). 

[2] J. G. Kirkwood, J. Chern. Phys. 3, 300 (1935). 
M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 
3301 (1990). 

[4) G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 
(1977). 

........ 


ponents, the second largest and second smallest, etc a 
shown as "Smale pairs" of exponents. In addition t~ t~e 
three vanishing exponents to be expected from fixing the 
center of mass, its momentum, and the lack of eXPonen~ 
tial growth in the phase-flow direction, we have found 
two more, so that a total of 5 of the 19 exponents vanish. 

It should be noted that the apparent accuracy of the 
results in Ref. [3], 0.003NkT, is literally "too good to be 
true." Even in the case where those authors compared 
their own 108-atom results with earlier 32-atom data [4] 
(for which free-energy differences of order kT can 
confidently be expected), they reported near-perfect 
agreement. In fact, our own results are not at all miracu_ 
lous, and appear at best only to be competitive with the 
(relatively many) other means for determining free ener
gies. 

VII. CONCLUSIONS 

Though the present isothermal scheme loses its ergodic 
properties at very high driving frequencies, it behaves 
well at frequencies well below the particle-collision fre
quency. At sufficiently low frequencies all three compu. 
tational routes to the free energy appear to yield 
equivalent results, but with a clear advantage to 
Kirkwood's original work-based formulation relative to 
the present alternative methods. The spectacular agree
ment obtained previously appears to be "too good to be 
true." 
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