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We use Gauss' principle of least constraint to impose different kinetic temperatures on the two 
halves of a periodic one-dimensional chain. The thermodynamic result is heat flow, as predicted 
by the Second Law of Thermodynamics. The statistical-mechanical result can be either a 
phase-space limit cycle or a strange attractor, depending on the chain length and the size of the 
temperature difference. We document the sensitivity of the Lyapunov spectrum and the 
underlying phase-space topology by varying the chain length and the size of the 
kinetic-temperature difference. 

I. INTRODUCTION 

Heat, temperature, and entropy are thermal variables. 
They distinguish thermodynamics from mechanics. Be­
cause mechanical simulations which incorporate thermal 
constraints are becoming increasingly important to under­
standing nonequilibrium flows, I we are simulating simple 
thermomechanical flows, making use of Gauss' and Nose­
Hoover mechanics2

-4 to incorporate kinetic temperature 
into the equations of motion. The resulting mechanical 
simulations have all the crucial thermodynamic and hydro­
dynamic attributes of real macroscopic experiments: non­
linearity, fluctuations, and the irreversible conversion of 
work to heat. These new mechanics, all with time­
reversible deterministic equations of motion, generate both 
equilibrium and non equilibrium ensembles analogous to 
Gibbs' ensembles. For instance, Nose3 has shown that the 
steady state achieved with single-temperature Nose­
Hoover mechanics reproduces Gibbs' canonical ensemble. 

Thermal problems require an operational definition of 
temperature. We adopt the ideal-gas-thermometer defini­
tion, kT= (p2/m) for Cartesian degrees of freedom. This 
definition has the advantage that the temperature so de­
fined could be measured in a "thought experiment," by 
exposing the system of interest to elastic impulsive colli­
sions with the atoms making up an equilibrium ideal gas 
enclosed by a semipermeable membrane. s 

There are (many) alternative possibilities for defining 
temperature.6-8 There are also many ways to impose tem­
perature on selected degrees of freedom, even as a function 
of location and time. Several deterministic methods, based 
on differential or integral feedback, can be used to thermo­
stat the kinetic temperature of selected degrees of freedom. 
These methods simplify theoreticai analysis. Unlike sto­
chastic approaches to thermostating, deterministic meth­
ods also provide reproducible trajectories, an aid to collab­
orative work. The simplest thermostating methods, using 

feedback, include the Gaussian thermostat (based on 
Gauss' principle of least constraint), which prescribes the 
kinetic energy, as well as the Nose-Hoover thermostat, 
which introduces a new temperature control variable into 
the equations of motion, and the family of Bulgac­
Kusnezov-Bauer thermostats which typically use several 
control variables in order to guarantee a canonical distri­
bution for otherwise nonmixing systems. These latter 
forces are sufficient to cause even an otherwise free particle 
to display classical three-dimensional Brownian motion.4 

Here we use Gaussian thermostat forces, primarily for 
simplicity: we wish to adhere as closely as is possible to 
traditional classical mechanics. Accordingly, temperature 
enters as a nonholonomic kinetic-energy constraint im­
posed on an otherwise purely classical motion. Surpris­
ingly, we find that even the simplest possible one­
dimensional system, with purely harmonic, nearest­
neighbor Hooke's law springs, can play the role of a 
nonlinear, dissipative, heat reservoir. It is only required 
that the kinetic temperature be constrained. We use the 
Gaussian constraint forces to keep the kinetic energies of 
two selected groups of degrees of freedom constant in time. 

Nonequilibrium systems maintained in stationary 
states require heat exchange with their surroundings, dis­
sipating and depleting external energy sources. The steady­
state phase-space distribution corresponding to such a non­
equilibrium flow typically occupies either a one­
dimensional limit cycle, a few-dimensional torus, or a 
many-dimensional zero-volume multifractal strange 
attractor.9 Very recently Chernov et al. have established 
this multifractal property rigorously for a simple one-bOdy 
model of electrical conduction. 1O Numerical work. on a 
variety of systems with as many as 100 atoms, strongly 
suggests that this multi fractal behavior is the generic result 
of time-reversible simulations of nonequilibrium stationary 
states. Of course the projection of a many-dimensional mul­
tifractal distribution onto a few-dimensional subspace can 
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destroy the fractal character. Accurate one-body distribu­
tions for gas-phase steady states, such as those obtained 
from Boltzmann's equation, are continuous. 

Fractal phase-space attractors are troublesome for sta­
tistical mechanics in many ways. Their singular nature is a 
telltale symptom of the chaos which underlies them, and 
which frustrates analytic attempts to describe the distribu­
tion. Lacking a smooth distribution, there is no reasonable 
way to generate a nonequilibrium entropy from a fractal 
attractor. 

Entropy has been a traditional means to introduce ther­
mal variables into descriptions of nonequilibrium 
svstems.!1 The fractal nature of our nonequilibrium distri­
b~tions precludes its use here. Zubarev l2 elaborates a dif­
ferent dynamical approach, much more closely akin to mo­
lecular dynamics and related to mesoscopic fluctuation and 
mode-coupling theories. 6 Our own methods are purely dy­
namic, and make no explicit use of ensembles. But the 
dynamical approach we use here is not at all in opposition 
to traditional ensemble theory. For linear transport, the 
entropic, Zubarev, fluctuation, and nonequilibrium molec­
ular dynamics approaches all provide results equivalent to 
Green-Kubo linear-response theory.2,6,1l 

Nonlinear statistical mechanics is still in the early 
stages of development, and lacks a robust theoretical ap­
paratus for the analysis of far-from-equilibrium chaotic 
states. We hope that the investigation of simple examples 
will stimulate advances in broader areas than statistical 
mechanics. Feedback and thermal reservoirs are as neces­
sary to the modeling and understanding of complex atmo­
spheric and biological systems as they are to purely me­
chanical systems. To us, the dynamic approach is most 
basic. This is hardly a new view. In fact, as was emphasized 
to us by an anonymous referee, the most fundamental of 
Gibbs' statistical ensembles, the microcanonical ensemble, 
has its basis in Liouville's theorem. That ensemble 
uniquely fills the requirement that the dynamic phase­
space distribution be stationary. The multifractal nonequi­
librium distributions which we find in the present work 
arise as a consequence of dynamical processes obeying a 
generalized Liouville's theorem, in which comoving phase­
space volumes have an overall tendency to shrink, eventu­
ally collapsing onto a strange attractor. 13 

The "Lagrangian" (moving-with-the-flow) smooth 
contraction and expansion of flows can be described by a 
phase-space continuity equation while the "Eulerian" 
(fixed-in-space) distribution cannot be so analyzed l3 be­
cause the stationary probability density is singular and dis­
continuous on all scales. no matter how small. Neverthe­
less, a stationary me;sure exists. 9,10 The multifractal 
strange attractors are singular, occupying a measure-zero 
portion of phase-space volume in such a way that the lim­
iting density of points measured in the phase space diverges 
locally.

Ii has been amply demonstrated that external fields 
and moving boundaries can provide chaos, mixing, and 
dissipation, even in relatively simple few-body systems.2

,1l 

These simulations typically involve relatively steep anhar­
monic forces. In this paper, we explore the degree of com­

plexity required for dissipative thermodynamic behavior 
and we describe the structure of the resulting phase-space 
distribution functions, Here we approach complexity and 
dissipation from the simplest possible viewpoint, lattice dy­
namics, by analyzing a periodic harmonic chain subject to 
thermal constraints. 

Purely harmonic systems lack the "mixing" necessary 
to satisfy Fourier's linear law, with a heat flux proportional 
to the temperature gradient. Nevertheless, these systems do 
satisfy the more general Second Law of Thermodynamics, 
by transferring heat from hot to cold, and also show phase­
space distributions which share the fractal characteristics 
of more realistic systems. It is because harmonic systems 
are relatively easy to analyze, and have a long history in 
statistical mechanics,14 that we hope that our work stimu­
lates further investigation of these systems. Unlike the ear­
lier work, which generally relies on an infinite number of 
"bath" degrees of freedom, our own work, as well as that 
of Ref. 4, suggests that as few as three or four degrees of 
freedom can represent a heat reservoir. 

We consider an N-particle one-dimensional chain, with 
cyclic ("periodic") boundary conditions, and subject to 
nonholonomic (velocity-dependent) constraints which 
maintain a nonequilibrium steady state, The corresponding 
(cubic) anharmonic constraint forces introduce coupling 
among the chain modes and make the dynamics "interest­
ing" and dissipative. 

Nonequilibrium systems maintained in stationary 
states require heat exchange with their surroundings, dis­
sipating and depleting external energy sources. Such a 
steady heat exchange lies outside Hamiltonian mechanics. 
Thermal energy can only be extracted by velocity­
dependent forces. The traditional method for non­
Hamiltonian heat transfer has been the Langevin equation. 
Heat has been extracted with a phenomenological viscous 
drag force and introduced with a stochastic force. Time­
reversible alternatives have the advantage of portability 
and reproducibility as well as easing the analysis. Here we 
choose Gaussian constraint forces to maintain the temper­
ature of selected sets of degrees of freedom. 

Our Gaussian thermal constraints fix the temperatures 
in two (NI2)-mass sections of the chain. The two sections 
correspond to cold and hot "reservoirs," For simplicity, 
the reservoir temperatures are kept constant, and the par­
ticles at the same temperature are contiguous. For simplic­
ity, we also fix the centers of mass of the two "reservoir" 
regions. For convenience, we choose the particle masses, 
equilibrium spacing, and nearest-neighbor spring constants 
all equal to unity. 

Among the many ways that thermal constraints can be 
implemented, Gauss' principle of least constraint is the 
simplest. Though it is ordinarily reliable, the principle is 
not joo/proo/",IS It works by selecting the smallest possible 
constraint forces according to Gauss' variational principie: 
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Here, and in what follows, the sums indicated by 2: are to 
be taken over all appropriate constrained degrees of free­
dom. To enforce the four constraints, 

. LPr=:OLT=:COLD or HOT, 
J 

straightforward application of the principle2 provides four 
Lagrange multipliers, {SCOLD ,SHOT'7]COLD'7]HOT}: 

I 2:(Fplmh 2:Fl 

lST 2:(ilmh; 7]T==TIj' 


These multipliers appear in the equations of motion: 

where Fe is Gauss' constraint force, -scoU:lP-7]COLD for 
cold particles and -SHOTP-7]HOT for hot ones. The con­
straints of reservoir momentum, imposed by 7]COLD and 
7]HOT' have an additional consequence for the coordinates: 
the centers of mass of the two thermostated regions, {(21 
N)2:q}, are constants of the motion. Thus the four mo­
mentum constraints actually correspond to six phase-space 
constraints, and reduce the dimensionality of the accessible 
phase space from 2N to 2N- 6. 

Simultaneous constraints of vanishing total momen­
tum and fixed kinetic energy K have only one solution for 
two atoms, and that solution is not useful. The two mo­
menta are ± [2mK] 112, so that the two coordinates diverge 
to ± IX; linearly in time. Thus, at least three atoms are 
required in any thermal reservoir. In the simplest case (N 

6), with three "cold" particles and three "hot" ones, the 
momenta are restricted to two ellipses: 

P3 == -PI - P2 ~ [pi +p~+p~]/2 

=:PI+P1P2 +p~ == (3/2) mkTCOLD; 

P6== -P4-P5~ [p~+p;+p~]/2 

==P~+P4Ps+P;== (3/2)mkTHOT' 

Specifying two momenta, one cold and one hot, and four 
coordinates, two cold and two hot, is enough for a six­
dimensional phase-space description. Thus a subspace 
{Ql,P2,q3,q4,PS,q6} is sufficient to describe the thermally 
driven motion of six particles. In this representation the 
remaining variables, {PI ,Q2,P3 ,P4,Qs,P6}, can all be ob­
tained from the constraint equations. We refer to this ap­
proach as "Method 2N-6." 

An alternative to this reduced description is to impose 
the constraints while solving for the motion in the full 
phase space, {QUQ2,Q3,Q4,QS,Q6,Pl,P2,P3,P4,PS,P6} in the ex­
ample just discussed. We refer to this approach as 
"Method 2N." From the mathematical standpoint, the La­
grange multipliers included in the equations should con­
strain the motion to a 2N- 6 dimensional subspace. But, in 
every case the equations tum out to be Lyapunov unstable 
(so that initially insignificant computational errors, in the 
last decimal place, grow large exponentially fast). For this 
reason, it is necessary to insist on double-precision accu­

racy in the integration, and to remove the small drifts in 
kinetic energy and center-of-mass location from time to 
time. If this is not done, the numerical results can diverge. 

The instability of chaotic flows is conveniently de­
scribed through the Lyapunov spectrum {A}, where we 
adopt the conventional ordering: }'I>A2>A3.... The Ly­
apunov spectrum is the collection of the orthogonal comov­
ing exponential divergence (and convergence) rates in the 
appropriate phase space. By definition, the time-averaged 
rate at which two nearby trajectories diverge is exp(}'lt). 
The comoving area with vertices defined by three such 
phase-space trajectories diverges (or collapses) as 
exp(}'lt+}'2t), and so on. 

To diagnose the complete phase-space topology of the 
motion there are two straightforward possibilities. In 

. Method 2N we follow the progress of a set of 2N infinites­
imal orthonormal offset vectors l6 {al,aZ, ... ,a2l,} which 
span a moving 2N-dimensional hypersphere in the 2N­
dimensional space. The hypersphere is centered on a mov­
ing reference system. The comoving space spanned by the 
offset vectors can be called "tangent space" if the length of 
the offset vectors is infinitesimal, rather than just small. 
The 2N offset vectors can be visualized as linking the main 
"reference" trajectory to 2N nearby "satellite" trajectories. 
The relative motion of the satellite trajectories is often lin­
earized, corresponding to choosing infinitesimal lengths for 
the offset vectors. Because each of the vectors has 2N com­
ponents, all told 2N(2N + 1) coupled equations need to be 
solved when this approach is followed. In the present paper 
we have used Benettin's method17 to extract the Lyapunov 
spectrum from the motion of the satellite trajectories. We 
warn the reader that Method 2N, unless followed with due 
care, can lead to errors and misrepresentations in problems 
with constraints, as is outlined below. 

Method 2N- 6 is more nearly foolproof, and follows 
the motion of just 2N- 6 independent offset vectors in the 
(2N - 6) -dimensional tangent subspace which corresponds 
to fixed values of all six constrained sums, 
{2:QT,2:PT,2:(p}lm)}T=COLD or HOT' The nonlinearity of 
the kinetic-energy constraints makes this approach slightly 
more difficult to program. One might well (erroneously) 
expect (as we did at first) that the nonzero Lyapunov 
exponents would be identical for the two choices, 2N­
dimensional space or (2N -6)-dimensional space. Instead, 
the two methods of analysis give quite different results, 
with the unconstrained-space spectrum seriously wrong. 
Nevertheless, there is an interesting correspondence be­
tween Method 2N and Method 2N-6. All 2N- 6 correct 
Lyapunov exponents are present in either case. But the 
naive version of Method 2N introduces six new artificial 
exponents (which can be positive or negative). The pres­
ence of these extra non vanishing spurious exponents was, 
for us, surprising. It complicates the analysis of phase­
space topology in the presence of nonlinear constraints. 

II. ANALYSIS AND RESULTS 

We mentioned that the momentum constraints require 
a minimum of three particles in each reservoir. Accord­
ingly we investigated the two simplest cases possible, six-
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particle and eight-particle chains. The six-particle case cor­
responds to a six-dimensional constrained dynamics with 
five-dimensional Poincare sections which can be analyzed 
graphically. Three of the five dimensions can be used to 
locate {x,y,z} Cartesian coordinates with the other two 
used to orient {e,cb} a vector based at (x,y,z). 

We verified that sufficiently long (millions of time 
steps) double-precision simulations with sufficiently small 
time steps (0.005, with masses, energies, and vibrational 
frequencies of order unity) produce reproducible averages, 
with statistical uncertainties independent of the time step. 
Our first simulations used the naive (false) version of 
Method 2N. These results invariably included at least one 
positive Lyapunov exponent, suggesting the presence of a 
multifractal strange attractor. 

Our attempts to corroborate this assumed multifractal­
strange-attractor interpretation soon revealed a difficulty. 
Despite positive Lyapunov exponents, all the six-particle 
trajectories which we examined in detail approached ro­
bust limit cycles! More investigation revealed the cause of 
this paradox: the positive six-particle exponents were actu­
ally false, a spurious consequence of computer round-off 
error coupled with unphysical instabilities lying outside 
our constraint surfaces. Here is a brief explanation: 

Consider a six-particle reference trajectory, in 12­
dimensional phase space, but restricted to a six­
dimensional subspace defined by the constrained values of 
the six sums {IqT,IpT,2:(p}lm)}T=COLD or HOT' Con­
sider as well a second six-particle satellite trajectory, and 
use Benettin's distance-rescaling technique to keep this sat­
ellite trajectory close to the first. In 12-dimensional space 
distance means [2:{Lll-rLll}]1I2. If both trajectories are 
followed in the full six-particle 12-dimensional phase 
space, but with the separation between the reference and 
satellite trajectories constrained, by rescaling, and with the 
six constraints {2:qT=const, IPT=O, I (p}lm) =2KT} 
imposed at every time step (so that neither the reference 
nor the satellite trajectory can drift away from the six­
dimensional constraint subspace) there is no measurable 
positive Lyapunov exponent. Thus the largest Lyapunov ex­
ponent is zero for the six-particle chains and the motion 
occupies either a one-dimensional limit cycle or a few­
dimensional torus. 

On the other hand, if the satellite trajectory is not 
separately forced (by removing the effects of computer 
rounding errors) to follow the nonlinear kinetic-energy 
constraints, rotation of the reference-to-satellite vector off 
the constraint surface gives a positive Lyapunov exponent, 
the signature of chaos. Rotation causes an unconstrained 
satellite trajectory to weave back and forth through the 
constraint surface {pi+p~+p~ == 3mkTCOLD; p~+p~+p~ 

3mkTHOT}' The unphysical "instability" which then re­
sults gives rise to a false positive Lyapunov exponent. In 
fact, when properly constrained, the satellite trajectories all 
occupy periodic orbits with no positive Lyapunov expo­
nents. 

The eight-particle chains can behave in a very different, 
more complex, way, though they also can exhibit (false) 
dimensionality reductions if the dynamics is not properly 

constrained. The effect of the nonlinear constraints can be 
demonstrated by following two eight-particle constrained 
trajectories, restricting both to the constrained 16 - 6 
=ten-dimensional subspace. When the resulting motion is 
found to be Lyapunov unstable (exponentially growing 
separation between the two trajectories), the maximum 
Lyapunov exponent turns out to be considerably less than 
that found by the "naive" unconstrained reference-satellite 
technique. As a specific example, consider an eight-particle 
chain with cold and hot kinetic energies of 0.3 and 1.7, 
respectively (the atomic mass, equilibrium spacing, and 
Hooke's law force constant are all taken to be unity). The 
maximum Lyapunov exponent found using the naive ver­
sion of Method 2N in the full l6-dimensional Cartesian 
phase space is 0.19. If the separation in the constrained 
ten-dimensional space is considered instead (by constrain­
ing the cold and hot satellite kinetic energies) the maxi­
mum Lyapunov exponent is three times smaller, 0.063. 

To aid those readers who wish to repeat these calcula­
tions, or to pursue others ones using Gaussian mechanics, 
we outline the simplest numerical method for imposing the 
appropriate constraints on the tangent vectors for the cor­
rect version of Method 2N, using the eight-particle case to 
illustrate. 

It is convenient to impose all six constraints together, 
at regular intervals of a few time steps. After computing 
(fourth-order Runge-Kutta integration is the most conve­
nient choice) the ten (2N less six constraints) new offset 
vectors: 

{o} = {Oql ,OQ2,Oq3 ,OQ4,OQ5,OQ6,OQ7,DQ8, 

OPl ,OP2 ,OP3 ,OP4 ,ops ,bP6,OP7 ,oPs}, 

the center-of-mass constraints can be imposed by subtract­
ing mean values. For instance each of the offset vectors has 
the four coordinate offsets of the "cold" particles {I ,2,3,4} 
reduced by (oQl +DQ2+0Q3+DQ4)/4 and the momentum 
offsets reduced by (op! + 8P2+8P3 +0P4) 14. The kinetic 
energy constraints imply additionally that both the cold 
and hot sums, 

{PIOPl +P20P2+P3DP3+P4DP4 and P5DPS+pijP6-+-P70P7 

+PgOPs}, 

vanish. Lagrange-multiplier analysis then shows that each 
of the cold and hot momentum offsets, {op;} and {8p J, 
respectively, should be reduced by " 

I (pDplmkoLDPi I (poplm)HOTPj 
or 2

I(p2Im)COLD I(p Im)HOT . 

It is satisfying to verify that these adjustments make neg­
ligible differences in the local (time varying) Lyapunov 
exponents, but do serve to constrain the global trajectories 
of the offset vectors to the portion of tangent space satis­
fying all six constraints. 

In the more direct Method 2N - 6 the motion of the 
2N-6 tangent vectors is followed by integrating sets of 
linearized motion equations. Including the reference trajec­
tory this means that a total of (2N - 6) (2N - 5) first-order 
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FIG. I. Lyapunov spectra for periodic chains of six (left) and eight (right) particles are shown as dots connected by lines. There is a separate curve for 
each ofthe ten cases shown in Table I. The temperature difference between the cold and hot reservoirs increases from zero (at the right) to the maximum 
of 1.9-0.1 (at the left). The equilibrium spectrum corresponding to the equal-kinetic-energies case is at the right. The six center-of-mass and kinetic 
energy constraints have been taken into account here and the vanishing exponent associated with motion along the constrained phase-space trajectory 
has also been suppressed. so that a total of 2N-7 exponents are shown. For six panicles. except in the equilibrium case, all five exponents are negative, 
and correspond to a stable limit cycle. For eight particles. except very far from equilibrium. at least one of the nine exponents is positive, corresponding 
to a chaotic m ultifractal strange attractor. 

ordinary differential equations need to be solved. For eight 
particles the reduced phase-space state could be specified 
by the set 

{ql ,q2,q3 ,qs ,q6,q7 ,PI ,P2,PS ,P6}' 

with the remaining set, {Q4,qa,P3'P4,P7,Pa}, determined 
from the constraints. The tangent vectors would likewise 
have components 

{oQj ,OQ2,OQ3 ,OQs,OQ6,OQ7 ,OPI ,OP2'OPS ,OP6}' 

The remaining set, {OQ4,OQg,OP3/jp4,OP7,8ps}, could be re­
covered from the derivatives of the corresponding con­
straints: 

{ I 8QT=O, I 8PT=0, I (P:) T=0 1; 
T=COLD or HOT. 

We eliminated programming and algorithmic errors by dil­
igently testing and cross-checking a variety of methods. 
Both the correct version of Method 2N and Method 2N - 6 
gave identical results. Independent calculations were car­
ried out in Livermore and Vienna. 

The Lyapunov spectra found for both the six- and the 
eight-particle chains are displayed in Fig. 1. In the figure 
we show the 2N- 7 exponents remaining after imposing 
the six phase-space constraints on center of mass and ki­
netic energy, and after eliminating the zero exponent cor­
responding to motion along the trajectory direction. For 
both the six- and eight-particle chains the largest of the 
Lyapunov exponents, Al (6) and Al (8), are given in Table 
1. Except in the equilibrium situation the six-particle chain 
has no positive exponents. 

Two-dimensional phase-plane plots {Q,p} of the indi­
vidual particles' trajectories are the best means we have 

found for portraying the eight-particle trajectories. In Fig. 
2 we show, for the eight-particle chain, the variation of 
single-particle orbits for four different values of the cold 
and hot temperatures. For small temperature differences 
the motion is delocalized and chaotic. For very large tem­
perature differences the motion approaches a limit cycle. 
For moderate temperature ratios a positive Lyapunov ex­
ponent results. Fluctuations in the exponent indicate that 
the motion occupies a multifractal strange attractor. For 
the highest temperature differences (always with the total 
cold + hot kinetic energy fixed) the eight-particle strange 
attract or achieves a one-dimensional limit cycle. An exam­
ple appears in the upper left-hand corner of Fig. 2. 

To suggest the way in which these short-chain results 
approach the large-chain limit, we show in addition, in 

TABLE 1. Dimensional contraction 6.D, external dissipation rate dSldt, 
and largest Lyapunov exponent A. as functions of temperature difference 
in six-atom (6) and eight-atom (8) one-dimensional harmonic chains. 
The offset vectors linking satellite trajectories to a constrained reference 
trajectory were restricted to six- and ten-dimensional subspaces of tangent 
space. The total kinetic energy is 2 in all cases. These data were obtained 
from the last half of simulations carried out with .either 200 000 000 (six 
particles) or 100 000 000 (eight particles) time steps of length dt=O.OOI. 

Kc KH AD(6) AD(8) Slk(6) Slk(S) ,1.1(6) ,1.1 (8) 

1.0 1.0 0.0 0.0 0.0 0.0 0.174 0.152 
0.9 1.1 5.0 0.15 0.22 0.046 0.00 0.152 
0.8 1.2 5.0 0.58 0.45 0.18 0.00 0.14 
0.7 13 5.0 1.22 0.70 0.39 0.00 0.118 
0.6 1.4 5.0 2.17 0.97 0.64 0.00 0.096 
0.5 1.5 5.0 3.25 1.29 0.92 0.00 0.078 
0.4 1.6 5.0 4.34 1.67 1.27 0.00 0.067 
0.3 1.7 5.0 5.3 2.20 1.76 0.00 0.063 
0.2 1.8 5.0 8.0 3.01 2.56 0.00 0.000 
0.1 1.9 5.0 9.0 4.72 4.43 0.00 0.000 
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J[0.3,1.7} 

FIG. 2. Single-trajectory phase-plane plots (momentum is the ordinate 
and coordinate the abscissa) for eight-particle chains after the initial 
decay of transients. Kinetic energies of the cold and hot regions are 
indicated. The pair [0.1, 1.9J is a limit cycle. The plotting interval for the 
pair [0.2,1.8) was specially chosen to emphasize the nearly periodic nature 
of the nonchaotic orbit. 

Figs. 3 and 4, the analogous phase-plane plot for a 64­
particle chain together with its complete Lyapunov spec­
trum (127 exponents). For the temperature difference 
shown, with T coLD/THOT=0.1II.9, the motion displays 
no positive Lyapunov exponents so that the motion occu­
pies a few-dimensional torus. We have made no attempt to 
carry out a comprehensive analysis of many-particle 
chains. It would be interesting to analyze the way in which 
these chains approach a continuum limit described by par­
tial differential equations. In the idealized case of chains 
obeying Fourier's law (which our own chains do not) and 
with a temperature-independent heat conductivity, the 
steady temperature profile would have to satisfy the cou­
pled pair of diffusion equations: 

V2TCOLD 0: + T COLD; V2THOT 0: - T HOT' 

Our own computer-generated temperature profiles have a 

L'" I"" I"" I"" '", ",,,,,,,,,,J 
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FIG. 4. Lyapunov spectrum (127 exponents, with a single zero sup­
pressed) for the 64-particle chain corresponding to the trajectory shown 
in Fig. 3. The last half of a simulation with a total time of 20000 was used 
to generate these data. 

more complicated structure than does this Fourier law 
diffusion-equation solution (a hyperbolic cosine in the cold 
region and a cosine in the hot one). . 

The data in Table I show (see the columns giving S/k) 
a nearly linear increase in flow with temperature differ­
ences in the six-atom chain, but a more nearly quadratic 
variation in the eight-atom chain. The large-system profile 
shown in Fig. 3 does show a temperature minimum in the 
middle of the cold region, but has three definite extrema in 
the hot region. These smooth profiles together with the 
relatively simple mathematical structure of the underlying 
harmonic chain suggest that a continuum analysis of these 
profiles and of the relation between overall heat flux and 
temperature difference might be possible. We have made 
no progress in that direction. 

Kaplan and Yorke l8 pointed out that a phase-space 
object with a Lyapunov exponent sum of zero neither 
grows nor shrinks (exponentially) with time. Thus the in­
formation dimension of a phase-space attractor, with 
2;;t <0, can be estimated by counting the number of Ly­
apunov exponents required for the partial sum 2;';t, start­
ing with the largest exponent and adding successively more 
negative ones, to vanish, 2;';L=O. The "Kaplan-Yorke di­
mension" uses linear interpolation in calculating the non­
integral dimension interpolated between successive expo­
nent sumsY We have calculated this dimension using the 
Lyapunov spectra from Fig. 1. 

As we mentioned, Kaplan-Yorke dimensions, calcu­
lated with unconstrained satellite dynamics, are simply in­
correct, and suggest strange attractors for systems which 
may actually follow limit cycles or inhabit few-dimensional 
tori. The correct (constrained) Kaplan-Yorke dimensions, 
for a variety of cold-to-hot temperature ratios, appear in 
Table I. In phase-space dimensionality IlD is the loss, and

FIG. 3. Single-trajectory phase-plane plots (momentum is the ordinate 
IlD is necessarily bounded between 0 (the equilibrium and coordinate the abscissa) for a 64-particle chain with cold and hot 


kinetic energies of 0.1 and 1.9, respectively. value) and the maximum occupied dimensionality less one, 
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2N - 7. This largest possible reduction corresponds to a 
phase-space limit cycle. 

With either Gaussian or Nose-Hoover thermostats 
there are simple relations linking the Lyapunov exponents 
{It}, the contraction rate of phase-space hypervolume, the 
external entropy production dSldt, and the friction coeffi­
cients {S}. Such relations ::;an be derived from Liouville's 
theorem2

,8 by considering the flow of probability density 
f( {q,ph) in the full 2N-dimensional phase space, taking 
into account the constraints which restrict the flow to a 
(2N - 6) -dimensional subspace. Despite the fractal nature 
of the underlying phase-space distribution, the theorem 
can be correctly applied to the analysis of phase-space 
flows in a comoving (as opposed to fixed) frame. 13 

The Lagrange multipliers 1/COLD and 1/HOT do not in­
fluence the "comoving" time derivatives of the phase-space 
volume, ®, or the probability density, f, where both de­
rivatives are measured in a coordinate system moving with 
the flow. The Lagrange multipliers SCOLD and SHOT lead to 
the contraction and expansion, respectively, of the comov­
ing phase volume ®. In the constrained phase space (cor­
rectly taking the four momentum constraints into account) 
the following relations hold: 

_ I'lt (-dln®') (dl~/') 

== ( I' [S+p ( ~~) 1 ) 

[(N-4 )/(2N) ]d(Slk) 

Here the primes indicate the restriction to a (2N-6)­
dimensional subspace of the phase space within which the 
six constraints are satisfied. We have verified all of these 
several connections numerically. They provided useful 
checks on the programming of the motion equations for 
the offset vectors. 

III. DISCUSSION 

Our results show that the simplest possible thermostat, 
a Gaussian constraint force on the kinetic energy, provides 
an adequate thermal bath for a purely harmonic one­
dimensional system. Aside from the two nonholonomic 
constraints, the dynamics is conventional Newtonian dy­
namics. Because the underlying system is harmonic, the 
very interesting features our simulations reveal suggest the 
system as a fertile ground for theoretical analysis. These 
same reservoirs might also prove useful in constructing 
mechanical models of biological systems. 

For us, the major surprise in this work was the intri­
cate topological character of the phase-space distributions. 
The six-particle nonequilibrium problems all converge to 
limit cycles or tori, though a standard method of analysis, 
the naive Method 2N, would wrongly suggest higher­
dimensional strange attractors. The eight-particle results 

show up the difficulty even better. The Lyapunov expo­
nents themselves depend strongly upon whether or not 
constraints are explicitly imposed on the satellite trajecto­
ries. Unconstrained satellite trajectories appear to be con­
siderably less stable (larger maximum Lyapunov expo­
nents) than satellite trajectories with constrained kinetic 
energies. The present work shows that the nonlinear nature 
of the thermal constraint can change the magnitude of the 
Lyapunov exponent by as much as a factor of 3. We also 
find that nonlinear constraints present in a reference sys­
tem need to be explicitly incorporated in satellite systems 
too, to avoid tangent-space rotational forces. 

Another crucial feature of these calculations, obvious 
in retrospect, but frustrating prior to discovery, was the 
need for brute-force implementation of the center-of-mass 
constraints, both in coordinates and momenta, to avoid 
drift. This sensitivity would have been more difficult to 
uncover in a typical three-dimensional many-body simula­
tion. 

Intuition suggests that the loss of phase-space dimen­
sion ilD should behave quadratically for small deviations 
from equilibrium. The results shown in Table I are consis­
tent with this idea. The first few small-deviation eight­
particle data suggest the relationship, 

(ilD)/(D-l) ;::d.7[ (KHOT-KcOLD) I 

(KHOT +K COLD ) ]2. 

Here, D is the total embedding dimension of the con­
strained phase space, 10, so that, for the maximum tem­
perature difference, the eight-particle ilD must be 9, cor­
responding to a limit cycle. This small-deviation parabola 
for ilD turns out also to be nicely consistent with a van­
ishing maximum Lyapunov exponent, corresponding to a 
limit cycle, for KHOT greater than 1.75. This threshold 
value for chaos agrees with that found numerically (by 
carrying out nine simulations equally spaced in kinetic en­
ergy, with KnOT between 1.70 and 1.80) within the numer­
ical uncertainty of 0.01. 

The fact that substantial losses in dimensionality occur 
in an otherwise purely Newtonian system, subject only to 
thermal nonholonomic constraints, strongly suggests, as 
we found previously,19 that similar dimensionality reduc­
tions could be found in simulating two- or three­
dimensional systems. Larger-scale simulations can be bet­
ter carried out when computer capacities have increased.2o 
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