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Nonequilibrium molecular dynamics: 
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Equilibrium molecular dynamics has b~en generalized to simulate noncquilibrium systems 
by adding sources of thermodynamic heat and work. This generalization incorporates 
microscopic mechanical definition, of macroscopic thermodynamic and hydrodynamic vari­
ables, such as temperature and stress. and augments atomistic forces with special boundary. 
constraint and driving forces capable of doing work 011. and exchanging heat with. all 

otherwise :"'ewtonian system: 

The underlying Lyapunov instability of these nonequilibrium equations of motion links 
microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydro­
dynamic behavior as described by the second law of thermodynamics. 

Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, 
intense heat conduction. shock-wave propagation, and nonequilibrium phase transformation 
have all been simulated. The nonequilibriurn coupled with 
ments in parallel computer hardware. are enabling simulations to approximate real-world 
microscale and nanoscalc experiments. 

1. .Motivation! goals 

Three strong motivations led directly to nonequilibrium molecular dynamics: 
it furnished a welcome check for Green and Kubo's linear-response theory of 
transport; it promised success in nonlinear problems; it furnished a 
new tool for understanding real phenomena. These goals parallel 
reviews [1] of the motivation underlying nonequilibrium statistical mechanics. 
In 1977. in a perceptive speech in Kyoto ,Kubo likewise discussed the 
prospects for theoretical physics. Pointing out that physicists arc not afraid to 
shun formalism and to face facts, Kubo emphasized that nonlinear problems 
were the only problems left. To solve these problems, once computers became 
available, nonequilibrium moleeular dynamics had to be The 
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development was carried out by many people [3]. It is natural that they had, 
and still have, similar ideas at about the same time. 

2. Relation to thermodynamics and hydrodynamics 

A century ago, Lyapunov analyzed the dynamic stability of differential 
equations. Linear analysis of the growth of a trajectory perturbation, 8 ex 0, 
gives just three possibilities: decay, oscillation and divergence. The last case ­
divergence and exponential "sensitivity to initial conditions" - defines 
Lyapunov instability. The biggest Lyapunov exponent A) gives the average rate 
at which two neighboring trajectories diverge, oCt) "'" 0(0) expC"-)t). The rate at 
which the area of an ellipse, defined by three neighboring trajectories, diverges 
defines the next exponent, and so on: A(t) "'" A(O) expC"-lt + A2t). Lyapunov's 
"instability chaos" is the fundamental link between reversible microscopic 
nonequilibrium dynamics and irreversible macroscopic physics. 

Lyapunov's ubiquitous exponential divergence underlies Boltzmann's 1872 
concept of "molecular chaos", the random orientation of collision partners in a 
low-density gas. Boltzmann's equation in turn links microscopic molecular 
chaos to macroscopic irreversibility and transport properties. (See fig. 1 for 
portraits of Boltzmann and Lyapunov.) It was not until 1967 that Lorenz' 
analysis of weather forecasting popularized and underscored the importance of 
Lyapunov instability [4]. Now, the "butterfly effect", "chaos" and "Lyapunov 

Fig. 1. Our founding fathers, Boltzmann and Lyapunov. 
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instability" are familiar parts of our physics vocabulary [5J and ingredients 
in our understanding of nonequilibrium molecular dynamics. 

Both temperature and thermostats are missing in Newtonian mechanics. 
Both are required to simulate the energy flows described by the thermo­
dynamics and hydrodynamics of non equilibrium systems. Kinetic theory 
furnishes the operational definition of temperature through the ideal-gas 
thermometer. In nonequilibrium molecular dynamics temperature is always 
measured by kinetic energy. 

Theoretical analysis is greatly simplified if the generalized constraint and 
driving forces of nonequilibrium molecular dynamics are both deterministic 
and time-reversible. The simplest "thermostat" can be based on Gauss' 
principle of least constraint. The corresponding constraint forces keep the 
kinetic energy of a selected set of degrees of freedom constant (for a general 
background consult Hoover [6]). A more elegant alternative Gibbsian con­
straint force, producing the canonical distribution rather than the isokinetic 
one, was discovered by Nose in 1984 [7], and was recently generalized by 
Bauer, Bulgac and Kusnezov (for references and the most general approach, 
see ref. [8]). 

We will see that Gibbs' definition of entropy, Seq == k(ln f), and the 
corresponding equilibrium definition of temperature, T (aEI as)1/' are twin 
casualities of these thermostat definitions. None of the reversible deterministic 
thermostats provides a nonequilibrium analog for the equilibrium Gibbs en­
tropy. The nonequilibrium Gibbs entropy diverges! Despite this lack of a 
nonequilibrium entropy the incorporation of heat flow through the time­
reversible thermostat forces leads to a microscopic understanding of the 
macroscopic second law of thermodynamics [9]. We will see that this under­
standing involves Mandelbrot's fractals and Lyapunov's instability spectrum. 
The irreversibility can occur in few-body systems. Even one-body Brownian 
motion can be treated in this way [8]. 

3. Computational advances 

In the 1950's Alder, Wainwright and Wood used the computers at Livermore 
and Los Alamos to show that a few dozen hard spheres could characterize both 
solid and fluid phases. Alder and Wainwright also showed that, apart from 
fluctuations, the evolution of unusual initial states is described by the 
Boltzmann equation [10]. 

At both weapons laboratories, high-explosive work spawned an active 
interest in shock waves. By 1967, the year of Lorenz' seminal work, hard 
spheres were passe. Vineyard, Rahman and Verlet were successfully extending 
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molecular dynamics to smooth pair potentials [11]. At Livermore I tried to use 
Rahman's ideas to make movies of shock-induced soft-sphere melting [12]. The 
movie project ultimately failed for lack of a reliable data storage device. 

But times change. At Livermore we have progressed through seven succes­
sive incarnations of CDC and CRAY computers, each more powerful than its 
predecessors. Now these once-remarkable supercomputers are dinosaurs, giv­
ing way to machines like Tony De Groot's SPRINT, which is 100 times more 
cost-effective. Now we ean follow and display the motion of millions of atoms 
on a university budget [13]. The size and time scales of such simulations are 
approaching those of real microscale and nanoscale experiments. Another four 
or five orders of magnitude improvement is forecast in the near future [14]. 

Simulation algorithms are changing too. In the 1950's solving Newton's 
equations of motion for a few dozen hard spheres was a challenge. In 1960 
Vineyard was the first to formulate interesting nonequilibrium boundary 
conditions for particles with continuous forces [11]. Today, we can treat 
far-from-equilibrium flows with a million atoms realistic interatomic 
forces. Boundary. constraint and driving forces, added to the usual atomistic 
forces, furnish the sources of mass, momentum and energy crucial to most 
nonequilibrium flows: 

These new motion equations are still deterministic and still time-reversible. But 
they are not "symplectic", so that phase volume can vary with time and exhibit 
irreversible behavior. Nevertheless the solution algorithms arc based on Stor­
mer's ideas from nearly a century ago. As computer capacity continues to 
expand, calculations incorporating electronic, as well as atomic, coordinates 
will become commonplace. 

4. Nonequilibrium molecular dynamics develops 

During the ten years leading up to Howard Hanley's 1982 Boulder confer­
ence on Nonlinear Fluid Behavior, efficient algorithms consistent with the 
Green-Kubo relations were discovered for diffusion, shear and bulk viscosity, 
and heat conductivity [15]. Gauss' isokinetic thermostat was formulated as a 
differential equation with Fc == - ~p ~ 4Jp /2K. (CP and K are the potential and 
kinetic of the thermostatted degrees of freedom.) In 1982 it was not 
clear to outsiders that Green-Kubo linear-response theory was an exact 
limiting case of the nonequilibrium simulations. Only specialists knew. 



454 W.G. Hoover I 25 years of nonequilibriuln behavior 

Nonequilibrium molecular dynamics was exposed to the scrutiny of the 
experts attending Howard Hanley's 1982 Boulder Conference, Konlinear Fluid 
Behavior [16]. Discussion eentered on the validity and reversibility of the 
motion equations, nonlinear response theory, the proper boundary conditions, 
and on the relation of calculations to properties of real molecules. By now 
these questions have been substantially resolved. For useful summaries see the 
reprint volume Simulation of Liquids and Solids [17] and the proceedings of 
Michel Mareschal's Brussels meeting, Microscopic Simulations of Complex 
Flows [18]. 

It has been confirmed that the finite-word-length accuracy of the simulations 
does not limit the validity of the results. Yorke, Yoshida, and others [19] have 
established the existenee of "shadmv trajectories" which lie close to computed 
ones. Yoshida's "shadow trajectories" are the most interesting. As a simple 
illustration of his general result, consider the smooth (q, p) trajectory gener­
ated by the "Yoshida Hamiltonian" Hy = ( +qp dt + p2)/2. The trajectory 
approaches the harmonic oscillator one as dt is reduced. For finite dt the 
(Hamiltonian) trajectory is of course symplectic, conserving phase volume. But 
it also (surprisingly!) traces out the phase-space points generated by an 
algorithm equivalent to Stormer's: 

qt+dl = ql + p, dt , 

Partly in response to discussions at Boulder I became convinced that the 
study of small systems was necessary to an understanding of non equilibrium 
systems. Gary Morriss and I reported on some of these results at the Enrico 
Fermi Summer School at Lake Como in 1985 [20]. The small-system and 
time-reversibility studies both showed that Gibbs' entropy diverges for 
nonequilibrium steady states! 

I continued working on small systems while on sabbatical in Vienna, working 
with Karl Kratky and Harald Posch while corresponding with Denis Evans, 
Brad Holian and Gary Morriss. I became convinced that the Kawasaki­
Visscher-Evans-Holian-Morriss exact-but-formal response theory [15] had 
conceptual problems when applied to nonequilibrium steady states. The equa­
tions for the phase-space distribution function diverged. A key consequence of 
the divergence was that Gibbs' statistical definition of temperature in terms of 
the phase-space entropy S =' - k (In f), T (a E/ as)v, had to be abandoned. 
When the phase-space density f( q, p, I) collapses onto a strange attractor 
Gibbs' entropy diverges. Thus temperature must be defined according to 
kinetic theory: 3NkT L p2/m. 

A family of one-body "Galton Board" problems that I began to study with 
Tony Ladd in 1983 and followed up with Bill Moran [21] showed that the 
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fractals popularized by Mandelbrot generally underlie nonequilibrium systems 
and even some equilibrium ones. 

We have studied several such few-body strange-attractor examples [21,22]. 
In every case the equations of motion were deterministic and time-reversible, 
and in every case Lyapunov instability broke the symmetry to provide irrevers­
ible behavior. Two- and three-dimensional Poineare cross-sections cutting 
through five typical three- and four-dimensional multifractal strange attractors 
are illustrated in fig. 2: 

1. Isokinetic dissipative motion in the Galton Board (top left); 
2. Field-driven conductivity in a sinusoidal potential (top right); 
3. Two-body shear flow a shearing Galton Board (bottom left); 
4. One-dimensional, one-particle thermodynamic PV cycle (bottom middle); 
5. Viscous dissipative motion in the Galton Board (bottom right). 

By 1987 the realization that time-reversible deterministic nonequilibrium 
molecular dynamics always produces fractal structures led us to understand the 
second law of thermodynamics as a time-symmetry breaking of Lyapunov­
unstable thermostatted flows [6,9]. The examples in fig. 2 illustrate the general 
rule that, despite time reverSibility of the motion equations, the Lyapunov 
exponents, which give the averaged rate of expansion and contraction in phase 

Fig. 2. Five deterministic time-reversible nonequilibrium strange attractors stabilized by Nose­
Hoover thermostats. 
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Fig. 3, Equilibrium and nonequilibrium Lyapunov spectra (3N Lyapunov exponent pairs) for a 
boundary,driven shear flow, 

space, always have a negative sum in steady nonequilibrium flows. For 
homogeneously thermostatted systems Sarman, Evans and Morriss have shown 
in addition that each such pair of exponents undergoes an equal negative shift 
[23]. The general case is more complicated. Fig. 3 illustrates the shift of the 
spectrum for an inhomogeneous eight-body system, a shear flow thermostatted 
at the boundaries. 

The predominantly negative Lyapunov exponents shrink the occupied phase 
space, not only in volume, but also in dimensionality, well below the equilib­
rium values [24]. A more complete quantitative understanding of the large­
system dimensionality drop awaits the teraflop and petaflop machines of the 
next decade [14]. 

5. Some conclusions 

From the pedagogical standpoint the main conceptual point revealed by 
analyzing computer simulations is clear: Lyapunov's mechanical instability 
underlies Boltzmann's thermodynamic stability. Thus the microscopic sensitivi­
ty to initial conditions provides the averaging required for the inexorable 
work-to-heat dissipation associated with the second law of thermodynamics. 
The macroscopic second law of thermodynamics can be derived from the 
microscopic mechanical equations describing time-reversible deterministic ther­
mostats. The Nose-Hoover thermostats fundamental to this derivation neces­
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Fig. 4. Lee Lorenz' 2S May 1992 New Yorker drawing. 

sarily involve feedback. For a recent illustration of the feedback concept, see 
fig. 4. 

6. Recent and future applications of nonequilibrium molecular dynamics 

Let us highlight a few recent examples of nonequilibrium flows and cite 
recent books for more [6,15-18,20]. Brown and Clarke recently pub­
lished very detailed density and temperature profiles for a nonequilibrium 
shear flow driven by isothermal boundaries Their profiles, reproduced in 
fig. 5, indicate the finite extent of boundary influences and the eventual 
convergence to a smooth hydrodynamic profile. Despite the relatively large 
gradients no significant nonlinear effects were detected. Nonlinearity does 
occur with higher gradients. Shear-induced spatial ordering and low-density 
nonlinear transport coefficients in shear and heat flows have been carefully 
simulated and analyzed by Hess and Loose [26]. They have found good 
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Fig. 5. Density (left) and temperature (right) profiles for plane Couette flow. 

agreement among three different approaches to nonlinear transport: the 
Boltzmann equation, hydrodynamic stability theory, and simulations. 

Larger gradients can occur in shockwaves. Density can double, with tem­
perature and pressure increasing by many orders of magnitude, all in a distance 
of one or two atomic diameters. The corresponding strain rates exceed 
10 12 hertz. 25 years of nonequilibrium shock-wave studies have shown that 
linear transport theory is a surprisingly good first approximation to this highly 
nonlinear problem. Klimenko and Dremin's seminal shock-wave simulations 
were brought up to date in 1980 [27]; these have now been followed by 
Robertson, Brenner and White's dense-fluid simulations of the shock-induced 
dissociation of chlorine [28]. Salomons and Mareschal have shown that Bur­
nett-level heat-flux contributions improve the hydrodynamic predictions of 
dilute-gas shock-wave structure [29]. 

The Rayleigh-Benard problem, discussed by Lorenz [4], has been the object 
of many simulations. Rapaport, Mareschal and others have used molecular 
dynamics to generate intricate roll patterns which transfer heat between two 
reservoirs through convection [30]. I first saw the details of such patterns in 
Sitges, in 1980, where Gollub [31] showed pictures of some laboratory rolls 
which had not yet stabilized on a time scale of 400 hours. These long times 
emphasize the limits of simulation and experiments. 

The breaking of spatial symmetry in the Rayleigh-Benard problem has 
solid-state analogs. Our indentation simulations, starting out with a perfectly 
symmetric single crystal, show the interesting loss of space symmetry [13] 
shown in fig. 6. Grain growth studies, based on Holian's ideas [13] for 
generating polycrystalline initial conditions, and Abraham's seminal work on 
spinodal decomposition [32] also suggest the generality of symmetry breaking. 
Just as in the breaking of time symmetry, the fundamental mechanism is 
deterministic chaos, Lyapunov instability. 
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7. 	Extending nonequilibrium molecular dynamics 

Applications demand more practical work in the. direction of simulating 
metals and covalent materials. For a recent simulation of recording-head 
lubrication see ref. [33]. This practical emphasis will grow. For realism the 
electrons must be included. There is much to be done with the new ideas for 
electronic motion simulation begun by Car and Parrinello [34]. 

Nonequilibrium simulation has its limits. From an atomic perspective, a 
micron is a long distance and a microsecond is a long time. There is a pressing 
need for extending the scope in time and space. There are many ways to try to 
do this. They need to be tried out and evaluated. Unfortunately these methods 
are fully as time-consuming as is the solution of the partial differential 
equations of continuum mechanics. One promising approach is to consider the 
interaction of continuum zones with particle-filled zones [13]. Another is to use 
smooth-particle hydrodynamics [35]. 
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