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Abstract 
MOLECULAR DYNAMICS has been generalized in order to simulate a variety of 

"~ONEQUILIBRIUM systems. This generalization has been achieved by adopting 
microscopic mechanical definitions of macroscopic thermodynamic and 
hydrodynamic variables, such as temperature and stress. Some of the problems 
already treated include rapid plastic deformation, intense heat conduction, strong 
shockwaves simulation, and far-from-equilibrium phase transformations. 
Continuing advances in technique and in the modeling of interatomic forces, 
coupled with qualitative improvements in computer hardware, are enabling 
such simulations to approximate real-world microscale and nanoscale 
experiments. 

1. OVERVIEW 

Equilibrium molecular dynamics has been around ever since Fermi applied 
computers to the many-body problem, at Los Alamos during the Second World 
War. Molecular dynamics began as the routine solution of Newton's equations 
of motion using simple two-body perturbed-oscillator and hard-sphere force 
laws. Nonequilibrium molecular dynamics was developed a generation later, in 
order to simulate nonequilibrium and nonlinear flows of simple fluids as well as 
to check an apparent disagreement between the linear Green-Kubo transport 
coefficients and experimental data. At present we can simulate the motions of 
several million particles, even with the more complex several-body forces typical 
of metals and covalently-bonded glasses. We can also follow the ground-state 
electronic motions for somewhat smaller systems. But atomistic simulation is 
still limited to micron and nanometer length scales and to microsecond and 
picosecond time scales. These lengths and times are increasingly relevant to 
experimentalists. Near-term increases of another three [or maybe six, once 
optical computers become a reality] orders of magnitude in computer capacity 
promise further qualitative changes in the problems we can solve and an even 
more intensive confrontation of simulation with laboratory experiments. 
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I cannot judge the present and future utility and applicability of such 
simulation techniques to nuclear physics, but I feel that our experience in 
imposing constraints on problems in classical many-body dynamics, by using the 
ideas of Gauss, Jaynes, and Nose might stimulate parallel advances in nuclear 
dynamics. Here I describe progress in understanding the connection between 
microscopic reversible mechanics and macroscopic irreversible thermodynamics 
and hydrodynamics as well as state-of-the-art applications to simulating 
shockwaves, fracture, and plastic flow, including nonequilibrium grain growth. 

2. NONEQUILIBRIUM MOLECULAR DYNAMICSl 

In the equilibrium case atomistic motions are governed by Newton's 
differential equations of motion. For particles with masses (m} at locations {q} 
with momenta {p}, "equilibrium molecular dynamics" means the time-history 
(q(t),p(t)} solution of the ordinary differential equations of motion: 

{dq/dt q = p/m j dp/dt=p =mq =F/m =[FA + FBl/m}, 

where I indicate explicitly both atomistic [A] and boundary [B] forces. These 
conservative forces are typically functions F = F(q) of coordinates. The atomistic 
forces FA link each particle with several of its neighbors. The boundary forces FB 
serve to contain atoms within a specified region. 

For simulations designed to measure bulk properties periodic boundaries are 
usual. In this case no container walls are necessary and the dynamics is 
governed solely by the atomistic forces FA. Calculations have gradually 
progressed from the simple pair potentials <1>12 = <I>(q1-q2) to more elaborate angle­
dependent potentials describing covalent bonds2,3, <1>123 =<I>(q1,q2,q3), to embedded­
atom potentials4 describing metal interactions, <l>1(P1(q}), where the density 
function Pl depends upon the locations of the many near neighbors of Particle 1. 
The most recent and more nearly fundamental developmentS is Car and 
Parrinello's, which follows the detailed motions of the ground-state electrons 
which underly the empirical atomistic interactions. This last approach has the 
most to gain from further expected increases in computer speed because typical 
timesteps are a thousand times smaller than those based on few-atom empirical 
potentials. In all of these cases the coupled nonlinear equations of motion are 
easily solved numerically, and can provide a useful route to accurate equilibrium 
"equations of state" which interrelate the macroscopic pressure, temperature, 
energy and volume. Simple mechanical considerations provide the microscopic 
recipes for temperature [See Section 3 and Reference 1] and pressure as functions 
of particle coordinates and momenta. 

Systems can be coupled to external sources of work and heat to simulate 
equilibrium isobaric and isothermal systems. With two or more sources the 
simulation of nonequilibrium systems is possible. Nonequilibrium systems can 
be driven away from equilibrium by using moving thermostatted boundaries or 
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by imposing the corresponding momentum and heat fluxes, P and Q, the 
pressure tensor and the heat flux vector. The nonequilibrium forces required to 
establish these boundary values can include both constraint forces [C] and 
driving forces [D] which serve to exchange heat and work between an otherwise 
Newtonian system and the outside world. These forces typically depend upon 
both coordinates and momenta: Fc Fc(q,p); FD == FD(q,p). In what follows I will 
consider in detail a constraint force which imposes the temperature T on one or 
more degrees of freedom. Local versions of such forces can induce a steady-state 
heat flow. 

In any nonequilibrium case "mechanical" equation of state variables [those 
which do not involve entropy] can still be defined and used, just as at 
equilibrium. With the addition of nonequilibrium forces, numerical solutions 
can still be generated using a numerical antique, Stormer's leapfrog algorithm6,7: 

q(t+dt) - 2q(t) + q(t-dt) == (dt)2[FA(t) + FBW + Fc(t) + FD(t)] /m . 

This algorithm has several advantages beyond simplicity in programming. It is 
particularly stable, as might be expected from its patently time-reversible nature. 
It requires the minimum computer storage, just three locations per coordinate. 
It can easily be generalized to include the driving and constraint forces used in 
nonequilibrium simulations7• The notation (t) on the right hand side of this 
difference equation indicates that the forces are functions of the coordinates and 
momenta of the system at time t. Typically the constraint and driving forces, FC 
and FD, involve momenta, apparently complicating the solution algorithm. But 
such a constrained dynamics can still be solved, with little additional effort, by 
the judicious use of a centered-difference representation of velocity: p(t)/m v(t) 

(q(t+dt) - q(t-dt)]/2dt. The resulting constrained equations of motion can then 
be solved, explicitly, for the new coordinates (q(t+dt») in terms of past and present 
values. 

The of feasible molecular dynamics simulations is still increasing 
rapidly. We have come from Fermi, Pasta, and Ulam's small systems8 of 16 and 
32 atoms in 1945, Alder and Wainwright's 870 atoms9 in 1965, Holian's 4000 in 
198010, and Abraham's 161,604 in 198511 to the million-atom simulations of the 
present12-14. Today it is no longer a hard problem to solve these differential 
equations for the motion of millions of atoms; billions are on the horizon. 
Computer speed, which limits the number of time steps, has increased much 
more slowly. Typically, and throughout the forseeable future, a "long" 
calculation involves millions of time steps and consumes a few weeks or 
months of computer time. To keep costs down, the increase in capacity is being 
obtained mainly by parallel calculations, as illustrated by Tony De Groot's 
SPRINT computer15, a 64-transputer machine matching the performance of a 
CRA Y at the cost of an automobile, and the Chudnovsky brothers' home-built 
parallel supercomputer, the first to compute two billion digits of Jt16. 

With increasing computer power, models for the underlying atomistic forces 
have gradually become more elaborate. The earliest three-dimensional 
calculations used hard-sphere billiard-ball interactions; eventually these gave 
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way to pair potentials with attractive forces, for instance various truncated forms 
of the Lennard-Jones potential; Ij>(r) == 4E[(cr/r)12 - (cr/r)6]. The attractive forces 
made it possible to simulate liquids in addition to gases and solids. Good 
agreement was obtained for the equilibrium and transport properties of the rare 
gases. More recently, collective [many-body] embedded-atom potentials4 have 
been developed to describe metals and their alloys. With increasing computer 
power, the use of angle-dependent potentials characterizing covalently-bonded 
materials like silicon and water has become common. Car and Parinello's 
breakthroughS in simulating electronic motions provides even more realistic 
interactions, though at the expense of a much smaller time step. 

The simulation and interpretation of boundary-driven nonequilibrium 
problems involving heat transfer requires mechanical definitions of stress and 
temperature1,17. Stress is a mechanical momentum flux so that its microscopic 
formulation is straightforward and accepted. Temperature is less universally 
understood and remains a potential source of controversy. 

How is temperature to be defined? One of the two definitions which are 
valid, and equivalent, at equilibrium, T == (dE/aS)V, cannot work at all away from 
equilibrium without a nonequilibrium definition for the entropy S. Gibbs' 
equilibrium definition of entropy, S == -k<lnf>, can diverge in nonequilibrium 
steady states, because these states inhabit (multDfractal phase-space structures, 
"strange attractors", which have zero volume18,19. These attractors have a 
dimensionality which varies with the departure from equilibrium. As an 
example, the information dimension of the phase-space attractor characterizing a 
dense boundary-driven few-body two-dimensional shear flow drops by more 
than 7 as the strain rate is increased 20. Thus entropy offers no simple route to 
nonequilibrium temperatures. A second possibility for defining temperature can 
be based on energy rather than entropy, the kinetic energy of an ideal-gas 
thermometer. Because temperature is of fundamental importance in 
characterizing not only equilibrium, but more importantly nonequilibrium, 
systems and their boundaries, I sketch the details in the next Section. At least for 
classical systems, a useful nonequilibrium temperature can be based on this 
approach, with a firm basis in mechanics, thermodynamics, and kinetic theory21. 

3. MECHANICAL DEFINITION OF TEMPERATURE 

The classical ideal gas links temperature to pressure and thereby links 
macroscopic thermodynamics and hydrodynamics to microscopic mechanics. A 
fundamental and operational approach to equilibrium thermodynamics regards 
the pressure registered by an ideal-gas thermometer in contact with a system as a 
definition of that system's temperature. In an ideal gas the momentum flux 
tensor [pressure tensor] components can be visualized as local sums of velocity 
products. For instance, the instantaneous average, over a box of volume V, of 
the mechanical fluxes of x and y momentum flowing in the direction of the x 
axis are: 
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VPxx == :Emx2 and VPxy == :Emxy VPyx . 

From the standpoint of a mechanical gedanken experiment, Pxx represents the 
time-averaged force per unit area, in the x direction, resulting from elastic 
collisions exerted on massive walls erected perpendicular to the x direction and 
bounding the infinitesimal volume V. Thus the instantaneous ideal-gas 

pressure, Pideal (Pxx + Pyy + Pzz)/3 == :Emv2/3V, is a direct measure of kinetic 
energy or, by definition, temperature. 

For an isolated classical system with a separable Hamiltonian, H({q,p}) <l>({q}) 

+ :E(p2/2m) equilibrium statistical mechanics arrives at this same definition of 

temperature, T == <p~ + P~ + p~>/(3mk). In Gibbs' statistical mechanics this result 
follows from the maximum-probability distribution over phase-space states. The 
same definition can be usefully extended and applied to any classical separable 
system, not just ideal gases, even far from equilibrium. To make the usefulness 
of this broader definition apparent, I use kinetic theory to analyze the interaction 
of an individual system particle [mass M] with an ideal-gas thermometer. I show 
that defining a system temperature in this way is consistent with intuition. 
With this definition thermal evolution behaves correctly, with the system 
absorbing heat from any hotter thermometer and giving off heat to any colder 
one. The ideal-gas thermometer should be visualized as a collection of light 
particles [mass m] with the equilibrium Maxwell-Boltzmann velocity 
distribution characteristic of the temperature T. These light particles measure 
the temperature of a degree of freedom by making frequent impulsive elastic 
collisions. 

To begin with a one-dimensional illustration, consider the impulsive 
[instantaneous] headon collision of a relatively heavy [nonideall system particle, 
having mass M and x velocity component X, with a light ideal-gas-thermometer 
particle, having mass m and x velocity component x. The resulting x velocity 
components which satisfy conservation of momentum and [kinetic] energy are: 

X' = (M-m/M+m)X + 2(m/M+m)x; x' (m-M/M+m)x + 2(M/M+m)X . 

Even in a general three-dimensional collision occuring parallel to the x axis, 
these same relations hold for the three-dimensional particles' x velocity 
components, with the y and z velocity components unchanged. The averaged 
velocity change, «X'-X», averaged over a light-particle Maxwell-Boltzmann 
distribution is proportional to the heavy-particle acceleration. It can be expressed 
as the collision-averaged value of a power series in the mass ratio m/M. The 
various terms in this expansion all lead to simple Gaussian integrals. The first 
nonvanishing term comes from the Taylor's series expansion of two integrals: 

x0< JIX-x I (X'-X)exp(-mx2/2kT)dx/JIX-x Iexp(-mx2/2kT)dx -t -4(m/M)X . 
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The arrow indicates the limit m «M. Thus the ideal-gas thermometer 
furnishes a frictional force proportional to the massive particle's speed. The 
denominator integral is proportional to the collision rate so that the frictional 
acceleration could be written -(m/M)X/1:. 

For equilibrium thermodynamics, where temperature corresponds to kinetic 
energy, the averaged (kinetic) energy change is relevant. The same 
correspondence holds away from equilibrium, as we now show in detail. The 
kinetic energy change depends only upon the massive particle's 
[nonequilibriuml speed relative to the [equilibrium] thermal speed. For a 
collision taking place along the x axis the averaged energy change for the massive 
particle is: 

<1':\>10 "" II x-x I (M/2)(X,z......X2)exp(-mx2/2kT)dx/fl x-x Iexp(-mx2/2kT)dx ~ 

4(m/M)[kT MX2] , 

where again the arrow ~ indicates the limit m «M. An average over all three 
space directions gives the result: 

Thus a classical mechanical ideal-gas thermometer [which we visualize as a 
collection of many light particles with a Maxwell-Boltzmann velocity 
distribution] provides a unique and consistent definition of temperature, even 
for a single particle arbitrarily far from equilibrium. With a thermometric bath 
at temperature T the [averageq] effect of collisions is to heat any cooler particle 
and to cool any hotter particle. For an atom in a classical system the [averaged] 
direction of thermometric heat flow is invariably from hot to cold. The details of 
the fluctuations around the limiting [m/M ~ 0] averages could be analyzed from 
the standpoint of the Fokker-Planck equation. 

It might well be argued that both this kinetic-theory derivation and the limit 
[m/M ~ 0] are superfluous, for the following reason: collisions leading to 
equilibrium must [ultimately] force any atom, whether it is heavy or not, to take 
on a time-averaged kinetic energy 3kT /2; an atom with greater energy must (on 
the average) lose energy in coming to equilibrium, while a less energetic one 
must gain. But the fact that the direction of the energy change, system to bath or 
bath to system, is the same, no matter how far from equilibrium the system atom 
might be, bolsters the adoption of the ideal-gas temperature scale for classical 
nonequilibrium systems. 

For the direction of heat flow to depend only upon the kinetic temperature it 
is essential that the thermometer have the Maxwell-Boltzmann distribution. A 
simple mixture made up of light particles (m=l) with two equally likely 
velocities, {-l,+l}, combined with heavy particles (M=2) with velocities {-1,0,+1} 
with weights {1/4,1/2/,1/4}, leads to a transient cooling off of the light gas and a 
heating up of the heavy one if the two interact statistically. 
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The situation is evidently different in standard quantum mechanics22. Bohr 
emphasized the paradox that measurement is an essentially classical process 
which cannot be assimilated in the SChrodinger equation. The absence of 
feedback in the quantum mechanics seems to preclude the treatment of 
nonequilibrium problems or of measurement, except as approximations. Hence 
we can consider only the classical case. Because quantum mechanics conserves 
mass, momentum, and energy too, a correct quantum calculation could hardly 
lead to different results. 

4. INCLUDING TEMPERATURE IN MOLECULAR DYNAMICS 

Temperature can most elegantly be incorporated in molecular dynamics by 
using a constraint force, FC -sp. This form of the constraint force, linear in the 
momentum p, follows from Gauss' principle of least constraint17,23. The 
"friction coefficient" s(q,p) can then be determined in either of two ways. If 
::auss' principle is used to keep kinetic energy constant, :K =0, the result is a 

differential feedback expression for SGAUSS: 

where <I> is the potential energy. That this choice maintains the kinetic 
temperature follows directly from the equations of motion: 

(d/dt)(3NkT/2) =(d/dt)I:p2/2m = I:(p'F/m) I:(p'sp/m) = 

[(I:p'F) - 2K(p'F/2K)]/m o. 

Nose developed a very clever way to incorporate temperature into dynamics by 
using integral rather than differential feedback24. His goal was to generate Gibbs' 
canonical distribution dynamically. Just as in the differential case, Nose's 
constraint force is linear in momentum. In my own work I have emphasized 
the utility of a particular form of Nose's equations. In this single-variable form 
the so-called "Nose-Hoover" friction coefficient is given by an integral 
expression: 

SNOSE-HOOVER = S[(K'/<K» -l]dt' . 

For an isolated system, this definition is consistent with Gibbs' canonical 
distribution. Small systems, with only a few degrees of freedom, often lack the 
required ergodicity and mixing to achieve the complete canonical distribution, 
occupying instead a small subset of phase-space states. 

Bulgac and Kusnezov25 , Winkler26, and Martyna27 have all showed, very 
recently, and in very different ways, that more elaborate dynamical thermostats, 
involving two or more variables rather than one, can enhance the necessary 
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mixing and lead to a complete canonical distribution, even for systems as simple 
as the one-dimensional harmonic oscillator. 

Perhaps parallel ideas would be useful in nuclear physics? For the (three­
dimensional) Fermi distribution we would have to satisfy the constraints <p2> = 
3/5; <p4> = 3/7; <p6> 3/9, for instance. To implement all of these constraints 
in the equations of motion 

{dp/dt =F- ap - J3p3_Xp5l, 

we would need to find the Lagrange multipliers a, 13, and X satisying the three 
linear equations: 

LF'p = a<p2> + J3<p4> + 'Y<p6> ; 

LF'p3 = a<p4> + J3<p6> + 'Y<p8> ; 

LF'p5 =a<p6> + J3<p8> + y<plO> . 

Perhaps it would be simpler to achieve this goal by imposing a maximum speed 
(the Fermi speed) on the velocity distribution, while simultaneously 
constraining the second moment of the distribution. 

5. SECOND LAW OF THERMODYNAMICS 

Adopting the ideal-gas temperature scale has benefits beyond the possibility 
of far-from-equilibrium simulations. It allows the (irreversible] Second Law of 
Thermodynamics to be deduced directly from [reversible] (Nose-Hoover) 
mechanics28. The demonstration is possible because Nose-Hoover mechanics 
allows an exact calculation of the evolution of the phase-space distribution 
function f(q,p,~). The continuity equation for the flow in phase space relates the 
change in comoving phase-space volume ® and the change in comoving phase­
space probability density f: dlnf/dt + dln®/dt == O. The phase-space volume ® can 
be visualized as an infinitesimal hypersphere centered on a typical phase-space 
trajectory. The long-time deformation of the hypersphere [it becomes a 
hyperellipsoid] can be described in terms of the growth and shrinkage rates of the 
hyperellipsoid's principal axes. The steady-state set of rates fA.} is called the 
"Lyapunov spectrum" of the system in question. 

A steady state can be driven away from equilibrium only through steady heat 
exchange. Thus, for a nonequilibrium steady state the time average of the 

friction coefficient sum, L~ == -LA. dlnf/dt == -dln®/dt, cannot vanish. As a 
consequence the comoving phase-space volume ® must approach either zero or 
infinity, exponentially fast. Straightforward integration of the Nose-Hoover 
equations of motion then shows that the comoving phase-space volume ® can 
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be bounded (in fact, approaching zero volume) only if the density f diverges: 

df/dt=-L[f(aq/aq) + f(ap/ap) + f(at/a~)J = 0 + Lg + 0 => 

0(t)/0(0) f(O)/f(t) == exp[-JLW')df] ...., 0 . 

This exact result leads to the interpretation of the unidirectional evolution of 
nonequilibrium steady states as indicating the collapse of phase-space probability 
onto a strange attractor. Pictures showing typical attractors for few-body systems 
can be found in References 18 and 28. 

The topology of many-body phase-space motion has been analyzed too, by 
borrowing the necessary tools from nonlinear dynamics. It is now well 
established that the combination of stretching motion characteristic of chaotic 
systems (where nearby trajectories separate exponentially fast with time) and the 
bending motion required by a bounded phase space, lead together to beautiful 
fractal structures. The prototype of this motion is called the IISmale horseshoe". 
It is highly interesting that the exponential spreading instability, called 
"Lyapunov instability", has roughly the same form, as characterized by the 
spectrum of orthogonal Lyapunov exponents, for equilibrium and 
nonequilibrium systems, be they fluid or solid. It is interesting, and possibly 
discouraging29 that the instability spectrum for atoms looks about the same as 
the instability for turbulent continuum flows19. Thus the hope that turbulent 
flows could be described by only a few degrees of freedom should be abandoned. 

6. EXAMPLE RESULTS 

6.1 Transport Coefficients 
The first extensive nonequilibrium simulations were devoted to checking 

the hydrodynamic transport coefficients for diffusion, viscous flow, and heat 
conduction30. In a typical simulation particles in one region of space are 
constrained to have a temperature hotter than those in another. The resulting 
heat flow can be used to compute the conductivity in two equivalent ways, in 
terms of the thermodynamic dissipation or in terms of the measured heat flux. 
Consistent calculations of this kind have been carried out for all of the transport 
coefficients. It was observed, and also proved, that the linear response theory 
results could be recovered from the nonlinear simulations by reducing the 
driving forces31. The nonlinear effects turned up in the exploratory simulations 
were most interesting. For instance, it was thus observed that the shear viscosity 
measured in simulations typically decreases with increasing strain rate. This 
decrease in viscosity is reasonable from a physical viewpoint. As planes of fluid 
flow over one another the induced spatial correlations act to reduce interplanar 
drag, lowering viscosity. Although the topological picture is sound, the 
expectation that viscosity drops with increasing strain rate is not generally valid. 
The shear stress measured in strong shockwaves corresponds to an increase 
rather than a decrease in viscosity, as explained below. 
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6.2 Shockwaves 
Shockwaves were one of the first nonequilibrium problems to be 

simulated32• A shockwave is a highly irreversible transition region linking a 
cold low-density initial state to a hotter higher-density final state. In the early 
shockwave simulations cold particles were fed into one end of the shockwave 
region while hot particles were extracted from the opposite end. Because a steady 
shockwave is subsonic relative to the hot material the wave is not entirely free of 
boundary influences. Quantitative results became available about ten years later 
and were based on simulations in which a long periodic parallelepiped was 
compressed longitudinally. The resulting steady shockwave profiles show an 
increase, rather than a decrease, in the shear stress, corresponding to an increase 
in viscosity. This example shows how hard it is to generalize nonlinear 
problems. 

Understanding of nonlinear flow behavior has been advanced by Loose and 
Hess33. In shockwaves the shear stress is greater, rather than less, than the 
Newtonian prediction. From the standpoint of continuum mechanics the 
shockwave geometry is different, with a shear deformation described by 
compression in one direction £xx =-£ and expansion in the other two, £yy =£zz = 

£/2, superposed on an additional overall compression. Simulations of 
shockwaves show the opposite behavior. Strongly compressed fluids, either 
dense or dilute, show shockwidths greater than the linear-transport predictions 
of the Navier-Stokes equations34,35. 

Molecular dynamics simulations have shown that shockwaves can still be 
described quite well with the linear (Navier-Stokes) hydrodynamic theory. The 
measured heat and momentum fluxes at strain rates of terahertz and pressure 
gradients of 1015 bars/meter deviate from linear transport theory by only 30%. 
This work has recently been extended to chemically-reacting flows36• Reference 
36 contains sample frames from an interesting videotape showing the shock­
induced dissocation of a dense diatomic fluid. 

6.3 Indentation and Broken Symmetry 
Simulation is most valuable for problems whose outcome is uncertain. 

Examples, in which macroscopic physics cannot predict the outcome, include 
flows in which symmetry is broken: fracture, fragmentation, and plastic flow. 
Such problems involve real surfaces rather than periodic boundaries, and are at 
last becoming more common. With the current and projected increases in 
computer power it is possible to identify failure modes and to measure the 
kinetics of processes which lie outside macroscopic theory. The dynamics shows 
flow behavior consistent over time scales ranging from the macroscopic to the 
microscopic. 

Indentation is a physical test which incorporates both elastic and plastic 
deformation in an interesting way. In our exploratory two-dimensional 
indentation simulations we found that indentation and fracture are problems in 
which the microscopic chaos of the motion equations has macroscopic 
consequences. Starting out with a workpiece which is a single crystal with perfect 
left-right symmetry, that symmetry is promptly lost. The seed of infinitesimal 
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thermal displacements coupled to the Lyapunov instability of the equations of 
motion provides an overall macroscopic symmetry breaking. 

6.4 Other Applications 
There are hosts of other applications of molecular dynamics which have been 

carried out recently. These are mere suggestions of the possibilities which will 
open up as computer power increases by another six orders of magnitude. The 
collisional properties of Bucky Balls, including the production of diamonds37, 

and the dynamic behavior of two-phase interfaces38 are two examples. Bucky 
Balls, like high temperature superconductivity, turned out to be much more 
easily explained than predicted. These two examples show why simulation will 
never run out of interesting problems39. 

7. GOALS FOR THE FUTURE 

The goals of nonequilibrium molecular dynamics coincide with the goals of 
physics: explanation of known phenomena and prediction of new ones. 35 years 
ago freezing was explained and illustrated by hard-disk and hard-sphere 
simulations. Gradually the problems attacked became more specialized. Brad 
Holian's shockwave movies, the surface reconstruction of crystals [Giulia De 
Lorenzi was responsible for the film], and the flow of a two-dimensional fluid 
around a cylinder [shown by Larry Hannon] were among the early significant 
problems whose solutions I remember seeing at research conferences. They 
reminded me strongly of Bragg's movie of dislocation motion in bubble rafts and 
Alder and Wainwright's early movies of H-Theorem flows and two-phase 
equilibria. For nonlinear problems such visual displays of simulation provide 
the conceptual cause-effect links that inspire and facilitate subsequent theoretical 
analyses. With the simple gas-liquid-solid phase behavior reproduced with 
simple pair potentials much more complex systems, even biological ones, are 
current research areas. 

It is an interesting challenge to explore the extent to which behavior of 
interesting materials like silicon can be reproduced by simulation. Silicon exists 
in an amorphous form as well as in two different crystalline structures, one 
conducting. Among its interesting features are a squirting phenomenon seen in 
indentation40, a transformation from crystalline to amorphous under 
indentation41, and an explosive crystallization caused by the difference in free 
energies of the amorphous and crystalline phases42. The three-dimensional 
indentation simulations currently underway will show whether or not these 
interesting features can be reproduced with existing force models43• 



534c W.G. Hoover I Nonequilibrium molecular uvnurrlleJ 

8. 	 ACKNOWLEDGMENT 

This work is the result of collaborations, correspondence, and conversations 
with many others, primarily Tony De Groot and my wife Carol Hoover. A short 
additional list of people to whom I am in debt for the development of this talk 
includes Mike Allison, Bill Ashurst, Jim Blink, Aurel Bulgac, Julian Clarke, 
Chuck Grant, Siegfried Hess, Brad Holian, Larry Keefe, Mike Klein, Dimitri 
Kusnezov, Christian Mailhiot, Michel Mareschal, Dick More, Shuichi Nose, 
Harald Posch, Phil Rose, Marvin Ross, Ron Scattergood, Irv Stowers, and Fred 
Wooten. 

I would like to thank the National Science Foundation for generous travel 
support. This work was supported by the Academy of Applied Science, through a 
grant from the United States Army Research Office, by the organizers of this 
meeting, and by the Lawrence Livermore National Laboratory, operated by the 
University of California under Department of Energy Contract W-7405-Eng-48. 

9. 	REFERENCES 

1 For general background, consult W. G. HOOVER, Computational Statistical 
Mechanics (Elsevier, Amsterdam, 1991). 

2 F. H. Stillinger and T. A Weber, "Computer Simulation of Local Order in 
Condensed Phases of Silicon", Physical Review B 31, 5262 (1985). 

3 J. Tersoff, "Modeling Solid-State Chemistry--Interatomic Potentials for 
Multicomponent Systems", Physical Review B 39, 5566 (1989). 

4 	 The embedded-atom concept was originated by three Sandia scientists, 
Murray Daw, Mike Baskes, and Steve Foiles. See S. M. Foiles, M. L Baskes, 
and M. S. Daw, "Embedded-Atom-Method Functions for the Face-Centered­
Cubic Metals, Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys", Physical Review B 33, 
7983 (1986). 

5 D. K Remler and P. A Madden, "Molecular Dynamics without Effective 
Potentials via the Car-Parrinello Approach", Molecular Physics 70,921 (1990). 

6 F. Ceschino and J. Kuntzmann, Numerical Solution of Initial Value 
Problems (Prentice-Hall, New Jersey, 1966). 

7 	 B. 1. Holian, A J. De Groot, W. G. Hoover, and C. G. Hoover, "Time­
Reversible Equilibrium and Nonequilibrium Isothermal--Isobaric 
Simulations with Centered-Difference Stoermer Algorithms", Physical 
Review A 41, 4552 (1990). 

8 J. 1. Tuck and M. T. Menzel, "The Superperiod of the Nonlinear Weighted 
String (Fermi-Pasta-Ulam) Problem", Advances in Mathematics 9,399 (1972). 

9 For an early view of the hard-sphere work see B. J. Alder and T. E. 
Wainwright, "Molecular Motions", Scientific American (October, 1959). 

10 	B. 1. Holian, W. G. Hoover, B. Moran, and G. K Straub, "Shockwave 
Structure via Nonequilibrium Molecular Dynamics and Navier-Stokes 
Continuum Mechanics", Physical Review A 22, 2798 (1980). 



w'G. Hoover I Nonequilibrium molecular dynamics 	 535c 

11 	 F. F. Abraham, W. E. Rudge, D. J. Auerbach, and S. W. Koch, "Molecular 
Dynamics Simulations of the Incommensurate Phase of Krypton on Graphite 
Using More than 100,000 Atoms", Physical Review Letters 52,445 (1984). 

12 	 W. G. Hoover, A. J. De Groot, C. G. Hoover, L F. Stowers, T. Kawai, B. 1. 
Holian, T. Boku, S. Ihara, and J. Belak, "Large-Scale Elastic-Plastic Indentation 
Simulations via Nonequilibrium Molecular Dynamics", Physical Review A 
42,5844 (1990). 

13 	w. C. Swope and H. C. Andersen, "Million-Particle Molecular-Dynamics 
Study of Homogeneous Nucleation of Crystals in a Supercooled Atomic 
Liquid", Physical Review B 41,7042 (1990). 

14 	 D. C. Rapoport, "Multi-Million Particle Molecular Dynamics. I and il: Design 
Considerations for Vector and Distributed Processing", Computer Physics 
Communications 62, 198 and 217 (1991). 

15 	 The SPRINT computer is described by A. J. De Groot, S. R. Parker, and E. M. 
Johansson, in SVD and Signal Processing; Algorithms, Applications and 
Architectures, E. F. Deprettere, Editor (North-Holland, Amsterdam, 1988). 

16 	 R. Preston, liThe Mountains of Pi", The New Yorker, page 36, 2 March 1992. 
17 	W. G. Hoover, Molecular Dynamics (Springer-Verlag, Berlin, 1986). 
18 	w. G. Hoover, H. A. Posch, B. 1. Holian, M. J. Gillan, M. Mareschal, and C. 

Massobrio, "Dissipative Irreversibility from Nose's Reversible Mechanics", 
Molecular Simulation 1,79 (1987). 

19 	H. A. Posch, W. G. Hoover, and B. 1. Holian, "Time-Reversible Molecular 
Motion and Macroscopic Irreversibility", Berichte der Bunsen-Gesellschaft 
fuer Physikalische Chemie 94, 250 (1990). ~ 

20 	 Harald A. Posch [University of Vienna] Private Communication (1992). 
21 	 For references and a formal view see P. Mazur and L Oppenheim, "Molecular 

Theory of Brownian Motion", Physica 50, 241 (1970). 
22 	 See, for instance, D. Home and M. A. B. Whitaker, "Ensemble Interpretations 

of Quantum Mechanics. A Modern Perspective", Physics Reports 210,223 
(1992). 

23 w. G. Hoover, A. J. C. Ladd, and B. Moran, "High-Strain-Rate Plastic Flow 
Studied via Nonequilibrium Molecular Dynamics", Physical Review Letters 
48, 1818 (1982). 

24 	 S. Nose, "A Unified Formulation of the Constant-Temperature Molecular 
Dynamics Methods", Journal of Chemical Physics 81,511 (1984); "A 
Molecular Dynamics Method for Simulations in the Canonical Ensemble", 
Molecular Physics 52, 255 (1984); "Constant Temperature Molecular Dynamics 
Methods", Progress of Theoretical Physics Supplement 103, 1 (1991). 

25 D. Kusnezov, A. Bulgac, and W. Bauer, "Canonical Ensembles from Chaos", 
Annals of Physics 204, 155 (1990). 

26 R. G. Winkler, "Extended-Phase-Space Isothermal Molecular Dynamics: 
Canonical Harmonic Oscillator", Physical Review A 45, 2250 (1992). 

27 G. J. Martyna, M. 1. Klein, and M. Tuckerman, "Nose-Hoover Chains: the 
Canonical Ensemble via Continuous Dynamics" (Preprint, 1992). 

28 B. 1. Holian, W. G. Hoover, and H. A. Posch, Physical Review Letters 59, 10 
(1987). 

29 E. H. Lorenz, "Dimension of Weather and Climate Attractors", Nature 353, 



536c W.G. Hoover I Nonequi/ibrium molecular dynamics 

241 (1991). 
30 	For an early review see W. G. Hoover and W. T. Ashurst, Advances in 

Theoretical Chemistry 1, 1 (1975). 
31 	 D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium 

Liquids (Academic, San Diego, 1990). 
32 	R. E. Duff, W. H. Gust, E. B. Royce, A. C. Mitchelt R. N. Keeler, and W. G. 

Hoover, Proceedings of the IUTAM Symposium on Behavior of Dense Media 
under High Dynamic Pressures (Paris, 1967). 

33 	 W. Loose and S. Hess, "Anisotropy in Velocity Space Induced by Transport 
Processes", Physica A 174, 47 (1991). 

34 	B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, "Shockwave 
Structure via Nonequilibrium Molecular Dynamics and Navier-Stokes 
Continuum Mechanics", Physical Review A 22, 2798 (1980). 

35 	E. Salomons and M. Mareschal, "Strong Shock Wave in a Gas by Atomistic 
Simulation: Deviations from Linear Flux-Force Relations", Physical Review 
Letters (Submitted, 1992). 

36 	 D. H. Robertson, D. W. Brenner, and C. T. White, "Split Shock Waves from 
Molecular Dynamics", Physical Review Letters 67,3132 (1991). 

37 	c. S. Yoo, W. J. Nellis, M. L. Sattler, and R. G. Musket, "Diamond-Like 
Metastable Carbon Phases from Shock Compressed C60 Films", Nature 
(Submitted, 1992). 

38 J. Koplik, J. R. Banavar, and J. F. Willemsen, "Molecular Dynamics of Fluid 
Flow at Solid Surfaces", Physics of Fluids A 1, 781 (1989). 

39 T. Appenzeller, "The Man [Richard Feynman, 1959] Who Dared to Think 
Small", Science 254, 1300 (1991). 

40 	D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. :? Cook and B. J. Hockey, 
"Amorphization and Conductivity of Silicon and Germanium Induced by 
Indentations", Physical Review Letters 60, 2156 (1988). 

41 	 G. M. Pharr, W. C. Oliver, and S. Harding, "New Evidence for a Pressure­
Induced Phase Transformation During the Indentation of Silicon", Journal of 
Materials Research 6, 1129(1991). 

42 	M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Po ate, D. C. 
Jacobson, A. G. Cullis, and N. G. Chew, "Melting Temperature and Explosive 
Crystallization of Amorphous Silicon during Pulsed Laser Irradiation", 
Physical Review Letters 52, 2360 (1984). 

43 	The three-dimensional indentation work, carried out with Tony De Groot 
and Carol Hoover, and based on Fred Wooten's structural model for 
amorphous silicon, is illustrated on the cover of the March-April 1992 issue 
of Computers in Physics. It is the continuation of the two-dimensional work 
described in Reference 12. 


	p1
	p2
	p3
	p4
	p5
	p6
	p7
	p8
	p9
	p10
	p11
	p12
	p13
	p14

