
Trends in Chemical Physics. 1 (1991) 

• 

Molecular dynamics and irreversibility, from 
Boltzmann to nose 

William G. Hoover 
Department of Applied Science. University of California at Davis and Department of Physics. Lawrence 
Livermore National Laboratory. Livermore. California 94550 USA 

ABSTRACT 

Throughout Boltzmann's life-long 
atomistic study of irreversibility, he emphasized 
the one-body distribution function fl{q,p,t), an 
average over many particles, with the 
underlying many-body dynamics taken to be a 
series of two-body collisions. His derivation of 
the H Theorem, linking dynamics and 
thermodynamics, remains the major 
accomplishment in understanding the Second 
Law of Thermodynamics. Today Boltzmann's 
analytic one-body approach has largely been 
superceded by using fast computers to simulate 

.. many-body "Molecular Dynamics." 

Fermi originated Molecular Dynamics at 
Los Alamos in 1953. His few-body one­
dimensional chains launched a generation of 
numerical studies of Lyapunov-unstable 
ordinary differential equations. By 1972 
computers could simulate 1000-body gases, 
liquids, or solids, and a new nonequilibrium 
mechaI.ics was developing to facilitate this 
work. In 1984, Nose made a major contribution. 
He showed how to introduce macroscopic 
variables, such as temperature, the pressure 
tensor, and the heat flux, directly into time-

reversible microscopic equations of motion. 

When Nose's mechanics is applied to 
nonequilibrium systems zero-volume "strange 
attractors" form in the many-body phase space. 
The at tractors provide a new explanation for the 
dassical problem of irreversibility that fascinated 
Boltzmann. Here I trace the evolution of 
molecular dynamics from Fermi's work at Los 
Alamos to Nose's recent work, and I speculate 
on the applicability of the new non equilibrium 
ideas to quantum systems. 

I. 	 BOLTZMANN, THE H THEOREM AND 
MOLECULAR DYNAMICS 

Fast computers make molecular dynamics 
possible. Tne resulting dynamical simulations 
link the time-reversible fundamental viewpoint 
of microscopic mechanics to Boltzmann's 
microscopic, but approximate, kinetic theory, as 
well as to the phenomenological and time­
irreversible macroscopic viewpoints of 
thermodynamics and hydrodynamics. These. 
computer links among fundamenta' 'l1echamcs, 
statistical theory, and macroscopic 
phenomenology change not just our point of 
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view, but also our knowledge and our way of 
thinking about physics. In this review I describe 
these changes, beginning with Fermi's seminal 
calculations at Los Alamos, and ending on the 
present day research frontier. 

Both the underlying conceptual basis and 
the mathematical methods of molecular 
dynamics predate Boltzmann. Even today, the 
mechanical equations of Newton, Hamilton, 
and Gauss are solved with ancient algorithms 
based on Taylor's expansions. But before 
computers an algorithmic attack on molecular 
dynamics was premature. Maxwell and 
Boltzmann built kinetic theory from classical 
mechanics by averaging over space and time 
[Boltzmann 1961, Brush 1972] in order to avoid a 
head-on attack on the many-body problem. 

The most significant technical difference 
between today's computer calculations and 
Boltzmann's hand calculations is raw speed. 
This difference in speed is responsible for 
differences in attitude and in goals. Boltzmann 
didn't think seriously about calculating all the 
trajectories in a many-body system. It was 
impossibly complicated. As an alternative, 
Boltzmann introduced distribution functions in 
order to average over calculations too time­
consuming to contemplate. 

The situation is very different today 
[Hoover,1991]. Historic textbook complaints 
bemoaning our inability to solve the equations 
of motion are obsolete. Right now computers 
are about twelve orders of magnitude faster than 
humans. And parallel processing promises to 
increase the ratio much more. Now computers 
make it simpler to solve the original trajectory 
problem than to work out the average 
distribution functions. The trajectories are 
generated in discrete steps. The complicated 
molecular trajectories are divided up into 
simpler "time step" sections, each of which can 
be worked out analytically. Linking these time 
steps together generates an accurate trajectory. 
To illustrate, Figure 1 displays an approximate 
harmonic-oscillator trajectory [Venneri 1987]. 
The exact trajectory is an ellipse. The 
approximation used in the Figure is typical for 
numerical work. It is the fourth-order Runge-
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Figure 1. Harmonic-oscillator trajectory via the 
~assic fourth-or?er R~ge-Kutta method, using 
SIX steps per penod to illustrate the approximate 
nature of the calculation. The exact trajectory is 
a periodic ellipse. 

Kutta algorithm. With the normal time step 
choice, one-sixtieth of the oscillator period, the 
error in the Runge-Kutta approximation is 
much too small to see. In the Figure I have used 
six steps per period rather than sixty, thereby 
increasing the energy error by a factor of one 
hundred thousand and making it possible to see 
two different errors associated with the 
numerical method. First, the amplitude 
gradually decreases. Second, the phase is shifted. 
Both errors are negligibly small for reasonable 
time step choices. 

The approximate oscillator trajectory 
shown in the Figure captures the style of the 
approximate trajectories used in molecular 
dynamics studies. By the term "molecular 
dynamics" we simply mean such a numerical 
solution of the classical equations of motion, 
usually for many bodies. Given the forces, the 
only approximation is the use of a finite time 
step. Normally the effect of that approximation 
is demonstrably negligible relative to statistical 
errors. The many-body molecular dynamics 
trajectories can then replace, if they cover phase 
space well enough, the idealized continuous 
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one-body distnbutions introduced and studied 
by Maxwell and Boltzmann. This reversal, from 
one-body distributions to many-body 
trajectories, occurred only because ordinary 
differential equations are more easily solved 
numerically than are partial differential 
equations. 

The origins of kinetic theory were 
European. In 1905 Mrs. Hearst persuaded 
f!-oltzmann to leave the pleasant sophistication 
of Vienna fOr a summer in California. His 
account of that summer is delightful reading 
[Boltzmann 1m]. He lectured at Berkeley on 
irreversible processes, his favorite research topic. 
He visited LiverJItQre, Monterey, and the new 
lick telescope at Mount Hamilton. While 
surviving the stress of California's rough roads, 
local prohibition" and western cuisine, 
Boltzmann dearly saw the future, especially in 
the potential of Mrs. Hearst's University of 
California. 

A generation later, the United States set the 
pace in computation, and did so for another 
generation, using World War U's scientific 
immigrants to develop and implement 
differential equations on the world's most 
powerful computers~ While the war was on, 
these were handcranked machines. But the 
bombs that ended the war demanded ever more 
complex calculations. By 1952 the Los Alamos 
"MANIAC" computer was about a million 
times faster than humans [Anderson 1986]. That 
amazing speed has now increased by another 
factor of a million. And the once-rural 
institution at which Boltzmann lectured, the 
University of California, now controls more 
CRAYS and more- scientific computing power 
than any other institution in the world. 

II. 	 MOLECULAR DYNAMICS BEGINS AT 

LOS ALAMOS AND LIVERMORE 


Continually-growing computer power 
fosters ever more complex physics problems. 
And there is no limit to this growth. The most­
interesting physics is nonlinear and "chaotic." 
In a chaotic problem small chances in initial 
conditions lead to big differences in the 
solutions [&i-Lin 1984, Gleick 1987, Schuster 

1984]. Turbulence is such a problem. These 
problems are infinitely harder to solve by hand 
than are linear ones. But nonlinearity is no 
problem for computers. They give us a highly­
accurate approximate solution. 

At Los Alamos, computers were vital to 
predicting and understanding short-time highly­
nonequilibrium bomb experiments. Patriotism 
attracted many of the world's most talented and 
stimulating scientists to this work. They 
speculated on the applicability of growing 
computer power to other areas in mathematical 
physics. Computation moved from hand 
calculators to punched cards in 1943, under 
Feynman's supervision. The war ended and 
nearly ten years passed before Los Alamos' 
stored-program MANIAC computer was ready. 

Fermi moved to Chicago after the war. He 
remarked that he would have stayed at Los 
Alamos had it been a University. But Fermi still 
returned in the summers, to work with 
Metropolis, Teller, Ulam, and other pioneers. 
Fermi had invented one useful many-body 
technique,' the Monte-Carlo method, long before 
his Los Alamos days. The dynamic many-body 
problem, hard even for three bodies, remained a 
natural challenge in mechanics. After the war, 
as a summer commuter from Chicago, he 
introduced a primitive molecular dynamics at 
Los Alamos. 

Fermi wanted to link molecular dynamics 
and thermodynamics, by watching the Second 
Law of Thermodynamics in action. To do this 
he simulated the motion of many-body chains 
of the type displayed in Figure 2. His idea was to 
watch many-body systems approach equilibrium 
[Tuck 1972], and to compare the results to the 
predictions following Boltzmann's one-body H­
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Figure 2. 16-spring anharmonic oscillator chain 
studied by Fermi, Pasta, Ulam, Tuck, and 
Menzel at Los Ala"l1os. The typical starting 
condition was the lowest-frequency "mode" 
shown in the Figure, with quadratic or cubic 
forces added to the Hooke's-Law linear forces. 
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theorem route. Though short computer runs 
worked fine, one day an overlong computation 
seemed to reverse and back away from 
equilibrium. There was no error. The backup 
was real. For studying the approach to 
equilibrium, Fermi's choice of system was 
unfortunate. He did not realize that one­
dimensional chains do not equilibrate nearly as 
easily as do two- and three-dimensional systems. 
The failure of the chains to equilibrate surprised 
Fermi and helped awaken widespread interest 
in deterministic chaos in the next two decades. 

Teller wanted a laboratory to compete with 
Los Alamos. The new rival,.the Lawrence 
Radiation Laboratory, at Livermore, took shape 
while Los Alamos' MANIAC computer was . 
being developed. At Livermore, Alder and 
Wainwright soon tested Boltzmann'S one-body 
H-Theorem analysis of the approach to 
equilibrium [Alder 1958]. They studied the 
motion of 100 three-dimensional hard spheres. 
These many-body hard-sphere studies confirmed 
Boltzmann's equilibration analysis. Alder and 
Wainwright's further studies were conclusive 
in showing that the freezing transition, and the 
existence of the solid phase, depends only on 
repulsive forces. The time-exposure trajectories 
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shown in Figure 3 document this early work 
[Alder 19591. Also significant was the 
quantitative agreement of the molecular 
dynamics calculations with Wood and Parker's 

• Monte-Carlo simulahons of the same systems. 
The two numerical techniques were found to 
agree not just in the thermodynamic limit, but 
even for systems of only a few particles [Hoover 
1967]. 

These early demonstrations that 
thermodynamic phase equilibria, as well as the 
approach to equilibrium, could be modelled 
with just a few interacting particles, established 
the utility of molecular dynamicS in linking 
microscopic and macroscopic behavior. At last 
Maxwell and Boltzmann's conceptual basis 
linking fundamental microscopic approaches, 
molecular dynamicS, kinetic theory and 
!'tatistical mechanics, to phenomenological 
macroscopic approaches, thermodynamics and 
hydrodynamics, was secure. There was no 
longer any real doubt that microscopic many­
body dynamics could reproduce macroscopic 
behavior. It was simply a question of figuring 
out how to do it as qUickly, easily, and efficiently 
as possible. 

Figure 3. Trajectory time exposures for three-dimensional hard sphpTes in the solid (left) and 
fluid (right) phases, from [Alder 1959]. Pictures such as these showed that purely-repulsj1lc forces 
are sufficient to cause freezing. 
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m. 	 APPUCAnONS TO REAL SQUDS AND 
LIQUIDS AT BROOKHAVEN, ARGONNE, 
AND ORSAY 

Across the country from Alder and 
Wainwright's California calculations with 
idealized hard spheres, Vineyard, at 
Brookhaven on Long Island, simulated the 
behavior of real irradiated copper crystals. 
Vineyard demonstrated the applicability of the 
many-body molecular-dynamics techniques to 
real atomic-scale problems involving the 
interaction of high-energy radiation with 
matter. His results appeared first on the cover of 
the Journal of Applied Physics, reproduced on 
the next page as Figure 4. 
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Figure 4. Cover of the August 1959 Journal of 
Applied Physics. The boundary particles obey 
irreversible viscoelastic equations of motion. 

The conception, execution, and description 
of these early calculations were models of 
simplicity and clarity. Vineyard characterized 
nonequilibrium energy storage following high­
energy irradiation. He studied radiation damage 
by scattering energetic particles from crystals, 
following the individual collisions, with the 
with the viscoelastic boundaries draining off 

heat to reduce the effect of small system size. 
He established the importance of "focusing 
collisions," which transmit energy, COherently 
and through long distances [Vineyard 1972]. 

Long before these early days of molecular 
dynamics, equilibrium gases and solids were 
fairly well understood. Gases could be treated as 
nearly-independent particles, while solids could 
be treated as nearly-independent phonons. 
Liquids were more mysterious. In principle, the 
known many-body equilibrium distribution 
function could be integrated over N-2 particle 
coordinates, to find the two-body distribution 
function needed to understand pressure and 
energy. But this averaging was too involved for 
practical calculations. A generation of physicists 
developed ~omplicated distribution-function 
theories to discuss liquids [Hirschfelder 1954], 
but little actually emerged before computer . 
simulation. With fast computers this 
generation's body of theory became obsolete. 
After a period of testing, the old approaches, 
integral equations, cell models, and virial series, 
could be retired, replaced by perturbation theory. 

In the early days of molecular dynamics, 
"solving" another many-body problem had 
meant making another computer simulation . 
But by 1970, perturbation theory [Andersen 1971, 
Barker 1967, Mansoori 1969, Rasaiah 1970] made 
possible quantitative predictions of many-body 
thermodynamic properties in terms of reference 
computer data. The basic two-body "reference­
system" properties were taken from computer 
experiments. A crude example is shown in 
Figure 5, where the Lennard-Jones-pair­
potential and argon phase diagrams are 
displayed together. The Lennard-Jones potential 
is not a specially faithful representation of 
argon, but is certainly a reasonable reference­
system basis for perturbation calculations. And 
the perturbation theory worked well for "simple 
liquids," meaning monatomic fl~ds like argon. 

With reference-system properties for hard 
spheres established at Los Alamos and at 
Livermore, the idea of describing liquids, using 
the more-realistic continuous-potential case, 
was acted on by Rahman. Rahman, working 
alone at the Argonne Laboratory near Chicago, 
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Figure 5. Three-phase temperature-density 
phase diagrams for the Lennard-Jones pair 
potential, from molecular dynamics and Monte­
Carlo simulations (solid), and for Argon, from 
experiment (dashed). 

took on an outstanding hard-but-tractable 
problem in equilibrium statistical mechanics, 
the modelling of an equilibrium monatomic 
liquid. Rahman [Rahman 1964] was the first to 
study a realistic liquid with molecular dynamics 
and to compare the results with experimental 
data. The structures that he found with 864 
atoms were in agreement with laboratory 
experiments and inspired further molecular­
dynamics studies of equilibrium liquids. 

Rahman also measured the equilibrium 
time-correlation functions needed to generate 
the linear transport coefficients. Soon after, 
Verlet, Levesque, and Kiirkijarvi, in France, 
took up molecular dynamiCS and carried out 
definitive studies of both thermodynamic and 
transport properties of the prototypical Lennard­
Jones liquid [Levesque 1973]. Since then, with 
spreading computer power and interest, 
molecular dynamics has become a truly 
international enterprise [Ciccotti 1986]. To 
illustrate this idea, but without any attempt at 
completeness, I mention as examples Morriss in 
Australia, Posch in Austria, Bellemans in 
Belgium, Klein in Canada, Singer in England, 
Hansen in France, Hess in Germany, Berendsen 
in Holland, Rapaport in Israel, Iarocci in Italy, 
Hiwatari in Japan, Blaisten-Barojas in Mexico, 
Dremin in Russia, and Toxvaerd in Sweden. 

Most liquids are poly atomic, not 

monatomic and "simple," and the classical 

treatment of polyatomic molecules has 


remained a subject of theoretical speculation. 
Many successful numerical simulations .... ave 
appeared [Frenkel 1986]. The visoosity for 

• butane, for instance, has been investigated by 
two completely independent methods [Edberg 
1987ab, Ferrario 1985, Mareschal1987a] and both 
simulated results lie within about 25% of the 
experimental viscosity. The simulation of large 
biolOgical molecules followed naturally 
[Berendsen 1985], as did also solid-phase 
applications in materials science [Ribarsky 1988], 
but with remaining major uncertainties with 
respect to the forces and the effect of quantum 
mechanics on the dynamics. The main 
motivation for undertaking large-molecular 
studies is the rapidly-improving resolution of 
experimental techniques. See Figure 6 for a 
recent detailed scanning-tunneling-microscope 
snapshot of DNA [Beebe 1989]. 

Figure 6. DNA, as seen using a scanning 
tunneling microscope, as described in [Beebe 
1989]. This image of DNA, covering a square 
region, 340 Aon a side, and showing a vertical 
variation of 90 A, was kindly furnished by Dr. 
Wighert Siekhaus of the Lawrence Livermore 
National Laboratory. 

IV. 	 MOLECULAR DYNAMICS FAR 
FROM EOUILIBRIUM 

Equilibrium Newtonian molecular 
dynamics was expected to give accurate transport 
coefficients--diffusion, viscosity, and thermal 
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conductivity-.through Green and Kubo's 
fluctuation theory, but the agreement with 
experiment turned out to be poor. The early 
many-body simulations of liquid transport 
properties contained errors. The calculated 
triple-point viscosity of liquid argon, assuming a 
pairwise-additive Lennard-Jones potential for 
the interatomic forces, was considerably too 
high. The thermal conductivity was worse, 
different frome;l(periment by a factor of two, 
much too much to explain on the basis of force­
law uncertainty. Thus, resolving disagreements 
between the equilibrium fluctuation theory 
[Levesque 1973] and experiment was one of the 
main motivations for the early nonequilibrium 
simulations [Ashurst 1973, 1974, Hoover 1975]. ' 
Ashurst set out to measure liquid transport 
properties by a direct nonequilibrium method, 
simulating laboratory flows with what he called 
"Nonequilibrium Molecular Dynamics." 
Independent related work, but on a smaller 
scale, was then being carried in England by 
Gosling, McDonald, and Singer [Gosling 1973], 
and by Lees and Edwards [Lees 1972]. 

Transport properties are mainly of interest 
not for checking fluctuation theory, but for use 
in hydrodynamic simulations of non­
equilibrium flows. Of course sufficiently simple 
flows can be used to find the transport 
coefficients themselves. Nonlinear simulations 
of driven systems in nonequilibrium steady 
states were studied at length by Ashurst in his 
Ph.D. thesis work at Livermore [Ashurst 1974). 
He developed time-reversible momentum and 
heat reservoirs which could be used to drive 
shear flows and heat flows while maintaining 
steady boundary temperatures. The boundaries 
he adopted, after trying out many less­
satisfactory alternatives, are shown in Figure 7. 

Ashurst had no vested interest in the use of 
the traditional classic time-irreversible Langevin 
and Fokker-Planck stochastic equations. Instead, 
his instincts led toward time-reversible 
methods. The time-reversal-in variance of his 
nonequilibrium equations of motion is essential 
to the understanding of irreversibility discussed 
in Section VI. His boundary-driven work led to 
the steady-state generalization of homogeneous­
deformation dynamics developed 

o 


0 


I • ~ 
\ ;/,_ .... 

Figure 7. Boundary conditions for simple shear 
or heat flow. The two sets of four shaded "Fluid­
wall" particles, at the two sides of the Figure, are 
enclosed by pairs of vertical reflecting walls. 
These fluid-wall particles interact across these 
walls with the twelve Newtonian Particles 
shown in the central region. The fluid-wall 
particles obey time-reversible thermostatted 
equations of motion. 

independently by Lees anJ Edwards [Lees 1972]. 
Ashurst devoted serious attention to boundary 
conditions, exploring a variety of rigid and 
periodic boundaries, both fixed and in motion. 

This work led directly to shear and bulk 
deformation methods used to study viscosity 
and plasticity, identical to those formalized 
independently by Andersen [Andersen 1980] and 
by Parrinello and Rahman [Parrinello 1981] t'i 
describe the equilibrium constant-pressure and 
constant-stress ensembles. 

To offset thermal fluctuations, molecular 
dynamics was typically applied to highly· 
nonequilibrium problems. These were indeed 
very far from equilibrium, although not so far 
away as are the conditions in a strong 
shockwave. In the dynamical shockwave 
simulations temperature changed by thousands 
of degrees, and pressures by half a million 
atmospheres, in a shock width of a few atomic 
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diameters. The nonequilibrium simulations 
showed, in qualitative agreement with 
experiment, a small but definite decrease in 
viscosity with strain rate. The change of 
conductivity with increasing temperature 
gradient could be either an increase or a 
decrease, depending on the temperature. 

With non-Newtonian boundary conditions 
a variety of new simulation types became 
possible. Nonequilibrium simulations could 
include moving periodic boundaries. Volume 
and shape changes could be imposed 
homogeneousl y or through displacements 
induced by fields or localized at physical 
boundaries. These possibilities are illustrated in 
Figure 8. The first calculations confirmed that 
the various approaches gave consistent results 
[Ashurst 1973, 1974, Hoover 1975]. At Los 
Alamos, strong shockwaves [Holian 1980, 1988b] 
were simulated by contracting boundaries. The 
results were not very different from the linear­
transport Navier-Stokes predictions, despite 
gradients much larger than those typically used 
in noneql.;lilibrium simulations. Thus the 
nonlinear behavior oJ the transport coefficients 
in shockwaves is very different from that found 
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Figure 8. Four types of boundary conditions for 
simulating fluid or solid deformation. The 
motions are driven by (i) external fluid-wall 
particles, (ii) homogeneous periodic 
deformation, (iii) inhomogeneous external 
fields, and (iv) moving corrugated boundaries. 

in the gentler homogeneous deformations. 
Despite the very large gradients shockwave 
transport coefficients are close to the zero­
gradient linear-transport values. This 

• insensitivity to nonlinearity is still largely 
unexplained, though some fundamental low­
density kinetic-theory studies have been carried 
out (Loose 19881. Years later the reversed case, 
expansion, was used to study fragmentation 
[Blink 1985, Holian 1988a1 and fracture [Ashurst 
1976, Moran 1983], as shown in Figures 9 and 10. 

.... 1000 ..... 

Figure 9. Fragmentation simulation showing 
over 14,000 two-dimensional Lennard-Jones 
atoms in free expansion from a hot compressed 
state. 

Figure 10. Fracture sim ula tion showing an 
,,:rrested crack in a crystal with a tapered 
boundary under tension. The imposed tensile 
stress caused the crack to proceed past the 
stopping point, indicated by arrows, predicted by 
static fracture mechanics. 
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Eckart Meiburg, in Gottingen, was the first 
to carry out large-scale hydrodynamic 
simulations with molecular dynamics [Meiburg 
1986] Besides the shockwave work, earlier less­
extensive smaller-scale studies [Alder 1967, 
Hoover 19811 had likewise suggested that 
molecular dynamics and hydrodynamics match 
closely. Computers were becoming powerful 
enough to consider again averaging to measure 
distributio:l functions. A typical averaged flow 
field taken from Meiburg's Master's-thesis work 
is shown in Figure 11. In that Figure each of 

Figure 11. Hard-sphere simulation of flow past a 
splitter plate. Each arrow represents the 
averaged velocity of about 50 hard spheres. The 
beginnings of a "vortex street" can be seen. 

Meiburg's arrows stands for the velocity 
averaged over about fifty separate atoms. like 
Vineyard's, his work is a model of darity. He 
studiea the motion of tens of thousands of hard 
spheres flowing past an obstruction and 
observed a spatially-average flow field looking 
very much like the initiation of a von-Karman 
vortex street. 

More recently, Mareschal, Kestemont, 
Mansour, and Puhl [Mareschal 1987b, 1988] have 
studied Rayleigh-Benard instability, in which a 
fluid heated from below, in a gravitational field, 
develops cylindrical convection currents. A 
typical averaged flow field distribution is shown 
in Figure 12. They made a careful comparison of 
molecular-dynamics results with hydrodynamic 
solutions of the Navier-Stokes equations. The 
Rayleigh-Benard model is of special historic 
interest through its link to the computational 
study of chaos introduced in Lorenz' [Lorenz 
1963] classic paper on atmospheric turbulence 
which appeared in 1963. 

l~~~~;~~~~~~~~~~~~~~~;~~~~~~~~~~~~~~~~~~ 

t'!;/""..,-- ...... "" .. '''''''\~'''I/''' .... ",...- ... ---''''\\tt 

11";''''- ......... "' .. ~\'lllffj;'I ............. _ ...... ,,\'\1 

r 1 I ! I " ,.. .... ....... '" \ .. \ \ l I I I I j j I I I ~ ........... "" .. \ , \ t t 

fo{ l r tIl I , •• '" '" , '" \ \ \ • \ I , I • I I , , , ~ .j '" , ........ \. \ , t t t "I r 1 t , I I ~ • , • ~ \ \ I \ I , I I I • I I I I , I •• ~ • ~ , " 1: , 1 t j 
t f t ! If' • t , I • ~ I I I I I I I III l I • • <> • • • t f t , , , 1

I1,' t I I' • , I I I I I Iii I I I j I I I I I • , • - w'" I.", t t 
, 1 , \ ! .. • • • I • , I I • I I j I i I I oj. 1, \ \ , ~ "- ~ • " ~ # I , 1 t tl~ "\,......... ~ , , ~ • II ; I iii i j 1 I. , \ .. " .. .. ... - - .. ; , , t , 


~ "", ...... - ............. "'I/IIII\· ... ' ........ --"-""'It 

~ t , , , , ...... - - - ....... ".. ... ; II II • ! I .. \ ... '" '" '" ... '" .. - .... '"" , "" I , f
II I 

~t , \ ........... - - - -.,.. ..................... , # \ .... , '" ............ - - - - -" , , I f
f • 

~~::::::::::::::::::: :::::::::::::::::!:
:~ _ _ 	 - ___ _.. ~ • w ____ =._______ ... ., 

Figure 12. Time- and space-averaged fluid flow 
velocity vectors in a two-dimensional 
simulation of compressible Rayleigh-Benard 
heat flow in a vertical gravitational field. The 
two vortices found with molecular dynamics 
match the predictions of continuum mechanics, 
as described in [MareschaI1987b, 1988]. 

V. 	 IRREVERSIBILITY AND INSTABILITY 

FROM TIME-REVERSIBLE TWO­

BODY MECHANICS 


Both Newton's and Schrodinger's 
equations of motion are "time-reversible." This 
means that any movie illustrating a Newton or 
Schrodinger solution can be run either backward 
or forward through the movie projector. Both 
versions satisfy the same equations of motion. 
In the reversed direction, the Newtonian 
velocities would change sign, as would the 
corresponding imaginary component of 
Schrodinger's wave function, but the time­
reversed classical trajectory, or quantum 
probability denSity, is as good a solution of the 
equations of motion as the forward one. 

The conflict between these fundamental 

time-reversible descriptions of motion and the 

even-more-fundamental irreversible behaVIor 

?f the "re~l" world has attracted continuing 

mterest smce Boltzmann's time. Boltzmann 

focussed attention on the time evolution of th~ 


averaged one-body probability density, h(q, P, 0. 


. The gas-phase Boltzmann equation for the 
hme-development of h, as well as the linearized 
Krook-Boltzmann approximation, and the 
Fokker-Planck plasma equation, all evolved 
from analytic attempts to express and 
understand patently-irreversible many-body 
phenomena in terms of the one-body ­
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distribution function. These simplifications are 
less necessary today. We can follow the details 
of phase-space deformation, as given by the time 
history of the N-body distribution function fN, 
for 32-body systems. Today we can generate 
accurate trajectories for a million particles. And 
particle mechanics has itself been modified to 
treat the problems addressed by Boltzmann, 
Fokker, and Planck. A 1984 modification of 
Hamiltonian mechanics, discovered by Nose 
Shuichi and described in Section VI, is the key to 
these modem trajectory investigations of 
irreversible behavior. ,,' 

Boltzm.mn studied the one-particle 
distribution function in dilute nonequilibrium 
gases. His time-irreversible Boltzmann 
equation 

dfl / d t (af1 / at)collision." 

provided a plausible description averaged over a 
large number of particles. By ignoring 
fluctuations and correlations, Boltzmann 
estimated the time-dependence of the one-body­
phase-space probability density. His most 
famous result, derived from the Boltzmann 
equation, was the H Theorem. That theorem 
shows that isolated systems irreversibly 
approach equilibriuri\. Thus, Boltzmann's 
equation already lacked the time-reversibility of 
Newtonian mechanics and provided an 
approximate entropy function which could not 
decrease with time. 

The fundamental mechanism underlying 
the approach to equilibrium is now known to be 
"Lyapunov instability" [Benettin 1976, Hoover 
1985b, 1987a, Posch 1988, 1989, Shimada 1979]. 
This instability, and its many-body 
generalization, the "Lyapunov spectrum," 
describes the exponential spreading apart of 
initially-neighboring many-body-phase-space 
trajectories, as well as the exponential growth, or 
decay, or many-dimensional phase-space 
hypervolumes. See Figure 13. The trajectory 
spreading has to be simultaneously 
accompanied by an orthogonal compression 
because any Hamiltonian flow, when averaged 
over all directions in the phase space, is 
incompressible. The orthogonal rates of growth 
and decay of phase-space separation are given by 

p 

}----------- q 

Figure 13. Schematic time-development of a 
phase-space hypersphere into a short-time 
hyperellipsoid, and a longer-time Smale 
horseshoe. 

"Smale Pairs" of Lyapunov exponents, equal in 
magnitude but opposite in sign. The idea of 
measuring distance between points in phase 
space might seem bizarre, because coordinates, 
momenta, and friction coefficients all have 
different physical units. But because the growth 
and decay rates are exponential, the 
multiplicative choice of scales of the axes are 
irrelevant. Exactly the same time-averaged 
exponents would result for any other choice of 
generalized coordinates and momenta. 

In phase space, the spreading instability 
progresses from small scales, with hyperspheres 
elongating into hyperellipsoids, to large scales, at 
which the deforming hyperellipsoids must bend 
to follow the macroscopic phase-space motion. 
On the infinitesimal microscale the Lyapunov 
instability can be seen as sensitive dependence 
on initial conditions, as revealed by a linear 
stability analysis of the equations of motion. 

Figure 14 shows a simple example [HoOvel 
1986, 1991], the Newtonian Lyapunov-unstable 
bouncing of two balls in a constant vertical 
gravitational field. The lower of the balls is held 
fixed. For clarity, the upper, moving ball is 
shown as a mass point. In cartesian laboratory 
coordinates the bounces become more widely 

http:Boltzm.mn
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Figure 14. Bouncing of a mass point on an infinitely-massive elastic ball of unit radius. The 
maximum height of the bouncing point is 1.25. Plotting the same trajectory on a 
semilogarithmic scale ("I.t right) shows the characteristic Lyapunov instability responsible for 
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Ball bouncing on a unit sphere 
xo= 0.00001; yo= 1.25; m = 1; g = 1 

macroscopic irreversibility. 

separated with each bounce. In semilogarithmic 
coordinates the exponential instability of the 
motion is clearly apparent. 

In many-body phase space the generalized 
exponential Lyapunov instability is described by 
the Lyapunov spectrum [Hoover 1987b, Posch 
1988, 1989]. Figure 15 shows typical many-body 

4 r-=-::-:--.---"'-=-:--:-:----, 

·4L-----~-------- 1L--------~ 

Degrees of freedom Degrees of freedom 

Figure 15. Typical Lyapunov-exponent spectra 
for two- and three-dimensional fluids and 
solids. The phase-space stretching rates (positive 
Lyapunov exponents) and compression rates 
(negative Lyapunov exponents) are shown as 
symmetric Smale pairs. This equilibrium 
symmetry is broken in the nonequilibrium 
states discussed in Section VI. 

spectra for both two- and three-dimensional 
fluids and solids. The Smale-pair symmetry of 
these equilibrium spectra follows from the 
equivalence of forward and backward solutions 
of the equations of motion. In nonequilibrium 
steady states, this symmetry is broken, and the 
sum of the Lyapunov exponents is negative. 

VI. 	 IRREVERSIBILITY FROM TIME­
REVERSIBLE MANY-BODY MECHANICS: 
NOSE'S MODIFICATION OF 
HAMILTONIAN MECHANICS 

Molecular dynamiCS replaced a generation 
of cumbersome, inadequate, approximate one­
body and two-body theories with simple, 
accurate many-body computer experiments. But 
appropriate analyses of these experiments 
required new ideas suited to computation. This 
had to wait for a new generation of scientists 
brought up to use the computer as a tool, for 
which new techniques could be specially 
designed. 

An advance was made by setting aside the 
irreversible stochastic approximations well­
suited to slower hand calculations, but not so 
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wel1-suited. to understanding deterministic 
trajectory development far from equilibrium. 
The classical Langevin and Fokker-Planck 
equations had previously been used to impose .. 
temperature, but these approaches are time­
irreversible. The simplest derivation of the 
Fokker-Planck equation [Salmon 1980], for 
instance, assumes an acceleration proportional 
to the momentum gradient of a local entropy: 

b(dp/dt> oc Vp{ln[f(p)/fequilibrium(p)]} . 

Reversing the sign of the time leaves the left 
side unchanged while changing the sign of the 
right side, revealing the time-irreversible 
approximate character of the Fokker-Planck 
equation. 

Nose, from Japan, but working in Canada 
with Mike Klein, made a conceptual 
breakthrough. Nose [Nose 1984ab, 1986] 
discovered a reversible deterministic form of 
Hamiltonian mechanics which reproduces the 
llermal canonical distribution. His 
temperature-dependent reversible equations 
describe something like a microwave oven, but 
capable of cooling reversibly as well as heating. 
The Hamiltoruan basis of his work is important 
for two different reasons. First, the equations of 
motion, either at or away from equilibrium, are 
time-reversible, making possible an exact 
analysis of thermodynamically-irreversible 
processes. Second, the Hamiltonian basis 
suggests extensions of Nose classical ideas to 
quantum dynamics and quantum statistical 
mechanics. Despite these two advantages, his 
original derivation was unnecessarily complex. 
But the result is simple, a set of many-body 
equations of motion, containing the equilibrium 
temperature T and at least one friction 
roefficient ~: 

dp/dt = F(q) - ~p , 

where the friction coefficient ~, rather than being 
constant, is itself determined by a temperature­
dependent time-reversible integral feedback 
equation: 

d~/dt =E«p2/mkT) -111t2 , 

with an arbitrary relaxation time t. Thus the 

friction coefficient ~ increases in those parts of 
phase space with above-average temperature 
and decreases in those parts where the 
,temperature is below average. 

Nose's derivation of his equilibrium 
equations of motion was relatively complicated. 
A simpler way to derive these same equations of 
motion is to ask the question Brad Holian posed: 
'What friction coefficient ~ generates the 
canonical distribution?" [Hoover 1985a]. A 
whole series of "Nose-Hoover" equations of 
motion, based on the various velocity moments 
<p2n> can similarly be derived [Hoover 1986, 
Kusnezov 1990]. 

At equilibrium, or in the nonequilibrium 
linear-response regime, Nose's ideas simply 
reproduce Newtonian mechanics, with time­
averaged macroscopic deviations of order 1/N 
for N-parode systems [Evans 1985]. But Nose's 
ideas can also be used to drive many-body 
systems away from equilibrium, with external 
forces, into thermos tatted nonequilibrium 
steady states maintained by one or more Nose 
thermostats (Holian 1986]. Then concepts and 
methods borrowed from nonlinear dynamics 
can be used to determine and describe the 
structure of the resulting phase-space 
distributions. Once Nose announced his 
discovery, Ashurst'S work was recognized as a 
special case of Nose more-flexible feedback 
recipe. 

At equilibrium Nose discovered a new way 
to generate the equilibrium phase-space 
distribution IN. In the more complex cases away 
from equilibrium, something more interesting 
happens. In any such case heat is exchanged. It 
can then be proved that any such 
nonequilibrium steady state always produces a 
fractal phase-space dimensionality, with an 
occupied phase-space dimension reduced below 
the equilibrium dimensionality [Holian 1987, 
1989, Hoover 1987bcd]. The amazing result that 
these distributions never become continuo1:ls, 
no matter how fine the scale of observation, is, 
for the many-body problem, as exciting and 
surprising a development as was the discovery 
of chaos in mechanics. And tlUlt discovery, 
which dates back to Poincare, is viewed by many 
as revolutionary for physics toaay (Bai-Lin 1984, 
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Ford 1988, Gleick 1987, Hoover 1991, Schust(>r 
1984]. 

What are these ubiquitous fractal objects 
that characterize nonequilibrium systems? 
Fractal objects have been used in films to 
represent mountains, clouds, and water 
{Mandelbrot 1982]. A recent computer-generated 
magazine cover using fractals as a tool, is shown 
in Figure 16. A simpler fractal object i:S the 

Figure 16. Computer-generated snake on a 
computer-generated fractal background. 

Sierpinski sponge, shown in Figure 17. In any. 
fractal the number of pairs of points varies in a 
regular way with distance. If one defines a 
dimensionality for such an object, by asking for 
the number of pairs of points lying within a 
radiusr, that dimensionality is typically not an 
integer. For the sponge of Figure 17 the number 
of pairs of points within a small distance r of 
each other varies as r2.727• Thus the sponge is 
said to have fractal dimensionality of 2.727. The 
object behaves like a fractional-dimensional 

Figure 17. Sierpinski sponge generated from a 
cube by repeatedly removing 7/27 of the 
remaining mass. The mass remaining after N 
such removals is (20/27)N. As N diverges the 
resulting object becomes a zero-volume fractal 
object with a fractal dimensionality of 2727. 

"fractal" object. That these strange objects 
describe phase-space flows was probably 
unknown to Boltzmann. They are beautifully 
illustrated and described in Gieick's book on 
Chaos [Gleick 1987]. 

Developing and demonstrating these ideas 
required high-speed computer graphics. Even 
so, phase-space fractals are hard to display in the 
many-body case. About the simplest steady-state 
phase-space fractal distribution describes the 
one-body Galton-Board example [Hoover 1988, 
Moran 1987] shown in Figure 18. In this 
example a single mass point falls through a 
periodic array of scatters. The accelerating 
"gravitational" field is downward, and the 
motion is made isokinetic, with the particle 
falling at constant speed, by applying Gauss' 
Principle of Least Constraint [Hoover 1986,1988, 
Moran 1987]. The resulting phase space is only 
three-dimensional. In the Figure a phase-space 
cross section representing 10,000 successive 
collisions is shown. The distribution of 
distances between pairs of points in the cross 
section is consistent with a fractal 
dimensionality of about 1.5. 

Figure 19 shows two separate ensembles, 
each with 2500 separate Galton Boards 
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a 

Figure 1.8. Galton Board trajectory Poincare 
sf;!ction showing the history of successive 
collisions for a single mass point moving 
through the board. The Board geometry and a 
unit ceu are shown to the right. Each point in 
the phase-space section on the left indicates a 
colli$i~>n. The abscissa angle a measures the 
10c~«'Ql\ of the collision relative to the field 
dir~n. 0 and n: correspond respectively to 
colll$lons at the right and left sides of a scatterer. 
The onUn,ate measures the (sine of the) angle ~, 
relative to the normal, of the mavlng particle's 
velocity ~ter each collision. Glancing collisions 
correspond to angles of 1t/2 or -x/2. A head-on 
collisi()n corresponds to ~ =O. The "hole" . 
correspoI\ds to an exceptional and interesting 
isolated. set of quasiperiodic Kolmogoroff­
Arnold·Moser collisions which are not 
connected to the main chaotic phase space. 

i 

l 
/ .,.,. ./ ' 

Figure 19. Two Galton-Board-ensemble 
Poincare sections showing the time­
development of two ensembles, each with 2500 
mass points moving independently through 
Galton Boards of the same type, and with the 
same field as shown in Figure 18. The 
development of the ensembles after 1, 2, 3, 5, 
and to collisions is shown. 

developi~a in time. Initially the ensemble 
mem~s are distributed uniformly over two 
qua~ants of the square phase-space cross 
section. The successive images show the 
ensemble members after 1,2,3,5, and 10 

collisions. Note that the ensembles' cross 
sections are approaching the single-trajectory 
Poincare section shown in Figure 18. Similar 
calculations have been carried out for a low­
density shear-flow analog of the Galton Board, 
using both molecular dynamics [Ladd 1985, 
Morriss 1989] and the Boltzma~ Equation 
[Morris 1985, 1986, 1988]. 

Nose's idea, generalized to nonequilibrium 
systems, made possible the marvelous marriage 
of three parties, mechanics, nonlinear dynamiCS, 
and irreversible thermodynamics [Holian 1987, 
1989, Hoover 1987cd]. The new mechanics, with 
Nose's computational thermostats built in, 
showed that nonequilibrium phase-space 
distributions are typically fractal, just like the 
one-body Galton Board problem illustrated 
above. The necessary geometric concepts are not 
so new. The basic idea of phase-space mixing 
was known to Poincare and the mathematics of 
strange sets had been around for about fifty years 
when Nose pointed the way toward a new 
synthesis. 

With Nose-Hoover dynamics the phase­
space deformation of nonlinear dynamiCS, the 
heat reservoirs of nonequilibrium molecular 
dynamics, and the inexorable entropy increase of 
irreversible thermodynamics could all be linked 
together. The logical connections among these 
three concepts involve the three steps indicated 
in Figure 20. 

1. Conservation of comoving probability in 
mechanical phase-space flows, relating the time­
rate-of-change of the many-body distribution 
function to the corresponding time-rate-of 
change of phase volume. 

2. Steady time-development of phase­
volume from nonlinear dynamics, relating the 
sum of the Lyapunov exponents to the sum of 
Nose-Hoover friction coefficients through 
reversible equations of motion. 

3. linking the diminishing phase-space 
volume with thermodynamics through the heat 
reservoirs implicit in the Nose-Hoover 
equations of motion. This last step establishes 
that the impossibility of phase-space growth, in 
the steady state, is equivalent to the macroscopic 
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Figure 20. Three steps linking mechanics, 
dynamics, and irreversible thermodynamics. 

Second Law of Thermodynamics. 

To begin, with Step 1, any mechanical flow 
in phase space satisfies a "continuity equation," 
with conservation of the total number of 
systems studied. To illustrate, consider the 
continuity equation of fluid mechanics, 

ap/at + V.(pu) = 0 , 

where p is the mass density and u is the stream 
velocity. The typical textbook derivation of the 
continuity equation proceeds by setting the 
change in mass in a fixed "Eulerian" volume 
element dxdydz equal to the flow through the 
boundaries. This flow is proportional to the 
mass flux pu. The only additional assumptions 
required to derive the continuity equation are (i) 
the differentiability of the flow velocity and 
density and (ii) the lack of sources or sinks. 
From the continuity equation the comoving 
density derivative (that is, the "Lagrangian" 
derivative following the motion) can be 
computed: 

dp/dt == ap/at + u(V.p) = - p(V.u) , 

Dividing by the density gives a more elegant 
logarithmic form: 

dlnp/dt = - (V.u) . 

the orthogonal strain rates, is also the 
logarithmic rate of volume change: 

(V·u) == dlnV/dt . 

Thus the continuity equation for fluid flow takes 
the form: 

dlnp/dt = - dinV/dt . 

or 

dlnp/dt + dlnV/dt = 0 . 

Exactly the same idea can be applied to the 
flow of the many-body probability density in the 
many-body phase space. In that case the mass 
density function p is replaced by the N-body 
probability density fN and the voluITle V is 
replaced by the 6N-dimensional phase-space 
hypervolume <8>. Then the corresponding 
"continuity" equation for the flow of phase­
space probability can be written 

dlnfN/dt + dln®/dt = 0 , 

where ®fN is the total number of systems in the 
phase-space hypervolume <8>. 

In the second step, step 2 above, the 
Lyapunov exponents used in analyzing many­
dimensional flows [Posch 1989] are introduced in 
order to describe the time-averaged expansion 
and contraction of the phase-space volume <8>. 
The exponents give the time-averaged rates of 
stretching and shrinking of the principal axes of 
a deforming hyperellipsoid in the phase space. 
In nonlinear chaotic systems the stretching and 
shrinking occur exponentially fast in time, 
varying as exp[At]. See again Figure 15. 111e sum 
of these exponents {AJ gives the rate at which 
phase-space volume changes: 

dln®/dt = LA. -. 

The Nose's equations of motion satisfy 
identically the relation: 

dlnfN/dt =Ll; . 

Combining these results with (1) above relates 
The divergence of the velocity, V·u, the sum of Nose's friction coefficients to the Lyapunov 
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exponents: 

L~ =dlnfN/dt = - dln®/dt = - U (2) 

The Nose-Hoover equations of motion also • 
show directly that the time-averaged friction 
coefficients <{~}> and the corresponding 
instantaneous temperatures <{p2/mk}> are 
uncorrelated: 

ThUl?, the lefthand side, the summed rates of 
heat extraction of the Nose thermostats divided 
by the corresponding temperatures, {<p2/mk>t 
is exactly equal to the sum of the Nose-Hoover 
friction coefficients. The last step 3, then links 
dynamics to the Second Law of 
Thermodynamics through the friction 
coefficients {~} in the equations of motion: 

- dlnfN/dt = - L~ = - (dS/dt)/k, (3) 

where the sum is over all such friction 
coefficients. The observation that the steady 
logarithmic rate of volume change, dln®/dt, 
cannot be positive, and must vanish at 
equilibrium, leads to the conclusion 

0> dln®/dt 

away from equilibrium. This continuous 
decrease of phase-space volume in the 
f.onequilibrium steady state establishes that 
Gibbs' equilibrium N-body entropy definition, 
S == -k<lnfN>, cannot be used in such 
nonequilibrium steady states because the 
corresponding nonequilibrium entropy S would 
approach minus infinity. 

The steadily-decreasing phase-space 
hypervolume implies the full chain of relations 

(dS/dt)/k =L~ == + dlnfN/dt 

== dln®/dt - LA. > 0 

The resulting condusion-

THE TOTAL ENTROPY MUST INCREASE 

-is made possible only through the simple 

structure of the Nose-Hoover equations of 
motion. This total entropy includes that of the 
heat reservoirs in which any Nose system is 
embedded. The Gibbs' entropy diverges for any 
nonequilibrium steady state. To see this, notice 
particularly that the many-body probability 
density fN(qN, pN,~, t) diverges [Holian'1987, 
1989J. The Second Law of Thermodynamics, 
from the standpoint of Nose mechanics, 
becomes equivalent to the observafion that a 
steady-state distribution function must occupy a 
Lyapunov-unstable subspace with reduced 
dimensionality, a zero-volume "strange 
attractor." For such nonequilibrium systems, 
the Second Law of Thermodynamics is not 
simply a high-probability statement, but instead 
a probability-one statement. This follows from 
the fact that the nonequilibrium distributions 
are zero-volume fractal objects [Hoover 1991J. 

To see this consequence of the fractal 
many-body distributions in more detail, 
consider time reversibility and Loschmidt's 
Paradox. Because the many-body equations of 
motion are time-reversal-invariant it is 
certainly true that the phase space must also 
contain a reversed "repellor" region, just like 
the attractor but with reversed velocities, in 
which the Second Law is violated. Despite the 
undoubted existence of the repellor the Second 
Law cannot be violated by observable motions. 
This is because the reversed "repellor" solution 
repels rather than attracts nearby trajectories, 
and thereby acts as a phase-space source rather 
than a sink. It is an unstable phase-space object. 
Hence the reversed repellor trajectories, which 
would theoretically violate the Second Law of 
Thermodynamics, can never be observed using 
Nose's mechanics. 

Thus Nose-Hoover mechanics sheds new 
light on, and extends, Boltzmann's treatment of 
irreversible processes. In this extension, the 
relevant distributions are many-body rather 
than one-body distributions. The underlying 
dynamics is the exact many-body dynnmks 
rather than Boltzmann's approximate one-body 
dynamics. With Nose's mechanics the 
statements that (1) entropy production is 
positive, that (2) heat flows from hot to cold, and 
that (3) transport coefficients are positive, all 
correspond to rigorous consequences of the 

j 
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equivalent geometric observation that phase­
space hypervolumes cannot grow in 
nonequilibrium steady states. 

Of course, this new treatment of 
nonequilibrium boundaries is not the only 
possible treatment. But it is important to 
recognize that hydrodynamic flows can be 
generated and maintained by a variety of 
equally-valid boundary conditions. Those 
features that are common to a variety of 
boundaries will be shared by Nose's choice. His 
is simply the most useful because it simplifies 
the corresponding theoretical analysis. 

VII. SPECULATION: 
QUANTUM IRREVERSIBILITY USING 
"GAUSSIAN" TIME-REVERSIBLE 
SCHRODINGER MECHANICS 
[Hoover 1988] 

Gauss formulated mechanics on the basis 
of a single principle, his "Principle of Least 
Constraint." Gauss' Principle states that any 
dynamical constraint should be implemented by 
using the least possible force: 

:E(F2/2m) minimum, or :E(FcoFc/m) =0 

The sum runs over all degrees of freedom in the 
constrained system. 

It is interesting that this Principle, when 
used to implement isothermal conditions, by 
constraining the kinetic energy, produces exactly 
the same motion equations 

dp/ dt = F - ~p , 

as does isothermal Nose-Hoover mechanics, but 
with a defmite value for Nose's relaxation time 
'C, zero. 

The current interest in chaos has led to 
extensive speculation on "quantum ch<:os," that 
is the quantum behavior of systems with 
classically-chaotic Hamiltonians [Casati 1988, 
Ford 1988]. The Schrodinger equation is not 
well suited to these studi,:,s so that a variety of 
efforts have been made to extend it to apply to 

nonequilibrium open systems [Caldeira 1983, 
Dekker 1977, Hasse 1978]. 

First, the Schrodinger Equation is linear, so 
that steady solutions can only oscillate in time. 
Second, it describes only thermally-isolated 
systems, while the simplest interpretations of 
irreversibility in classical systems involve open 
systems in which work is converted to heat 
through the operation of Nose thermostats. 

We can take Gauss' least-constraint idea 
[Pars 1979] over into quantum mechanics by 
restricting the solution of a constrained 
SchrOdinger Equation, which incorporates the 
least possible change in the quantum equation 
of motion 

where the {li} are Lagrange multipliers chosen 
to satisfy the constraints {Cil. 

To illustrate, consider the quantum 
version of the simple problem introduced in 
Figure 18, a mass point moving through a 
Galton Board under the influence of an ext.:rnal 
field [Hoover 1988, Moran 1987]. Then the 
Gaussian constraints {Ci} correspond to fixing 
the total mass, momentum, and energy in the 
Board. The Gaussian Lagrange Multipliers {ld 
perform work and extract heat. The steady-state 
nonequilibrium Schrodinger equation then 
describes a steady flow of probability current 
with fixed mass and energy. The generalized 
forces expressed by the Lagrange multipliers 
provide momentum at exactly the rate required 
to offset the scattering by the Board. The more­
general fluctuating constraint technique 
introduced by Nose could alternatively be used, 
controlling generalized Lagrange parameters 
with integral feedback and allowing the mass, 
momentum, and energy to fluctuate about 
prescribed mean values. Here we consider 
explicitly the special case in which these flow 
quantities are fixed. 

It is convenient to solve the Galton Board 
problem on a hexagonal finite-difference grid. 
To use such a grid approach, the spatial 
derivatives are replaced by finite differences. 
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Then the Gaussian equations of motion become 
a set of coupled nonlinear first-order ordinary 
differential equations. These equations can be 
solved. using the same Runge-Kutta method 
that applies for classical problems. Sample 
-solutions, on a 41 x 41 grid, both transient and 
time-averaged, are shown in Figures 21-23. The 

Mass 

Figure 21. Mass distribution in a steady-state 
solution of the quantum Galton Board using the 
nonequilibrium form of Schrodinger's Equation 
described in Section vn. The 41 x 41 grid is 
centered on a scatterer which excludes 613 of the 
1681 sites from occupancy. The time-dependent 
Gaussian modification of Schrodinger's 
equation is then solved for the 1068 
nonvanishing values of the real and imaginary 
wave-function. In the flow illustrated here, the 
average flow velocity is about half the thermal 
velocity, which is in turn about ten times less 
than the maximum thermal velocity allowed by 
the finite-difference grid. The quantum­
momentum wavelength corresponding to this 
solution is about 40% of the cell width. The left 
view is a snapshot of the mass distribution. The 
right view is a time average over two wave­
traversal times. 

solutions of such problems lead to distributions 
approaching the fractal distributions found 
classically. Somewhat paradoxically, from the 
standpoint of the Correspondence Principle, 
they also revt!al the absence. of the quantum 
analog of Lyapunov instability which underlies 
the Second Law of Thermodynamics and the 
classical irreversibility that Boltzmann found to 
be so fascinating. 

VIII. SUMMARY 

The averaging introduced by Maxwell and 
Boltzmann disappeared for a while, with fast 

Momentum 

Figure 22. Momentum distribution in the 
steady-state solution of the quantum Galton 
Board, as shown in Figure 21, using the 
nonequilibrium Schrodinger equation described 
in Section VII. The left view is a snapshot of the 
momentum distribution. The right view is a 
time average. The current flow is primarily 
negative so that the plotted values lie below the 
zero associated with the 613-site elastic scatterer. 

Energy 

Figure 23. Energy distribution in a steady-state 
solution of the quantum Galton Board, as 
shown in Figure 21, using the nonequilibrium 
Schrodinger equations described in Section VII. 
The left view is a snapshot of the energy 
distribution. The right view is a tiine average. 
Note the similarity of this time average to the 
mass average shown inFigure 21. 

computers, but eventually reappeared with a 
vengeance when both trajectories, described by 
ordinary differential equations, and 
distributions, described by partial differential 
equations, could be found for the same 
problems. The intercomparison of these two 
approaches, using ideas based in computation 
rather than in hand calculation, has led to 
exciting advances in physics. 

The distribution-function analysis of 
Boltzmann could be tested by the trajectory 
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calculations of Fermi, Alder and Wainwright, 
Vineyard, Rahman, and Verlet, and, for the first 
time, validated in cases where the force law was 
known. The molecular dynamics calculations 
superceded the interest in approximate one-body 
and two-body distribution functions and 
stimulated the advancement of two-body 
perturbation theory as a way of "understanding" 
many-body systems. At the same time the 
realism introduced by Vineyard broadened the 
audience and has helped make molecular 
dynamics a useful tool for understanding far­
from-equilibrium processes in such diverse 
fields as catalysis, drug design, fluid dynamics, 
and materials science. 

Nonequilibrium calculations have 
demonstrated both the power and the limits of 
linear transport theory and showed that the 

boundary conditions are crucial in simulating 
and describing far-from-equilibrium systems. 
Finally, Nose's novel approach made it possible 
to,link deterministic microscopic mechanics 
with phase-space distributions and irreversible 
thermodynamics, in a way which Boltzmann 
would have enjoyed. 

Where is atomistic computer simulation 
headed today? A major trend is toward parallel 
processing, to avoid the speed and capacity 
limits of a single processor. This approach 
promises rapid orders-of-magnitude increases in 
speed and capacity. Another direction in which 
improving capacity may lead is toward 
simulating far-from-equilibrium quantum 
systems. The new techniques may well simplify 
the treatment of quantum systems which, 
claSSically, show chaos. It is for this reason that 

Figure 24. Boltzmann, Gauss, Hamilton, Lyapunov, Newton, and Schrodinger. 
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I append Erwin Schrooinger to the list of 
precomputer architeCi& of molecular dynamics 
shown in Figure 24, Boltzmann, Gauss, 
Hamilton, Lyapunov, and Newton. 
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