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We propose a model embedded-atom (many-body) potential and test it against an effective, 
density-independent, pairwise-additive potential in a variety of nonequilibrium molecular-dynamics 
simulations of plastic deformation under stress. Even though both kinds of interactions have 
nearly the same equilibrium equation of state, the defect energies (i.e., vacancy formation and sur­
face energies) are quite diJI'erent. As a result, we observe significant qualitative differences in flow 
behavior between systems characterized by purely pairwise interactions versus higher-order many­
body forces. 

INTRODUCTION 

Only in the case of noble gases can the interactions be­
tween atoms be described realistically by density­
independent, pairwise-additive forces. The repulsive and 
attractive forces arise from spherical electron clouds that 
stick close to the nuclei. In metals, however, the elec­
trons are not all localized about the nuclei, and, in fact, 
the valence electrons are often shared among many ions 
in the manner of a nearly free-electron gas. This means 
that the energy depends upon the local electron density, 
resulting in forces between ions that are many body in 
character, rather than simply pairwise additive. 

The interactions between ions in metals can then be 
represented approximately by a convenient functional 
form-the so-called embedded-atom potential. I In this 
approximation, the total potential energy <t> of N ions in 
arbitrary volume V (overall density p= Nm IV, atomic 
mass m) can be computed at about twice the expense of 
simple pair potentials-even under highly nonequilibri­
urn circumstances such as shock-wave fronts, where lo­
cally, the ion density is not at all slowly varying: 

(1)
<t> = 	 ;~l [~ j~/P( rl} ) + ;](Pi) .1· 

Here cp is a density-independent, pairwise-additive contri­
bution depending only on the distance rij between parti­
cles and;] is the embedding energy, a function of the lo­
cal embedding density Pi at atom i, given by a pairwise 
sum over all neighboring particles, weighted by a spheri­
cal localization function w: 

If the embedding function is linear in the local embed­
ding density, then obviously its contribution will be sim­
ply pairwise additive, but if ;J is not linear in Pi then 

many-body contributions result. 
One significant consequence of the nonlinearity of the 

embedding function is that the energy E vac required to 
form a vacancy in a solid can be made to be much smaller 
than the bulk cohesive energy Ecoh per particle (the two 
are essentially equal for pair-potential materials). More­
over, the shear elastic moduli C l2 and C44 , for petfect 
crystals, are identical in the (density-independent) pair­
potential approximation, but are not equal for the 
embedded-atom model; the difference C 12 - C44 , known 
as the Cauchy pressure, is in fact noticeably positive for 
most (cubic) metals. I Finally, the binding energy of an 
atom at a free surface in the embedded-atom model 
(which we will henceforth abbreviate as EAM) can be 
significantly higher than for a pair potential material; 
thus the energy of formation of a free surface for the 
EAM can be significantly lower than for a pair-potential 
material. 

In this paper, we will exploit the differences between 
pairwise versus many-body forces in nonequilibrium 
flows, using the method of molecular dynamics (MD), 
where the atomic trajectories are solved in the classical' 
approximation (Kewton's or Hamilton's equations of 
motion) on the computer.2 In particular, we report here 
on low- and high-velocity impacts of spheres on walls of 
similar thickness, as well as homogeneous, but anisotrop­
ic expansion of the kind expected in planar spallation ex­
periments. In work reported earlier, the same EAM ma­
terial has been studied under the conditions of hypervelo­

Pi= 	L w(riJ ) . (2) city impacts' and nanometer indentation;4 here, we will 
Jeri discuss differences in plastic flow, under a variety of cir­
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~}lmstances, between the EAM and an effective, density­
-;f~"ependent pair potential, whose equilibrium equation 

, of state-characterized by the normal density 
po=Nm IVo, cohesive energy E coh ' and bulk modulus 
Bo-is the same as for the EAM, but whose vacancy­
formation energy E vae is nearly three times larger than 
the EAM value. 

In the following section, we describe the EAM we have 
used. In the sections after that, we report the MD results 
of low- and high-velocity impacts, respectively, and then 
discuss homogeneous expansion experiments using MD, 
followed by conclusions. 

MODEL EMBEDDED-ATOM POTENTIAL 

Our proposed EAM is constructed from simple analyt­
ical functions for the pair-potential contribution cp, the 
localization function w, and the embedding function ':l. 
One motivation for employing analytical functions is 
that, at this stage of their development, massively parallel 
computers, which are extremely useful for large-scale 
MD simulations, can have communication or memory 
limitations that make large tables of interactions unfeasi­
ble. Since the principal bottleneck in MD simulations is 
the calculation of forces on atoms due to their local envi­
ronment, computation time is minimized when cp and W 

are made as short-ranged as possible. To this end, we 
employ a cubic spline at the point of maximum attractive 
force in qJ, which makes cp go smoothly to zero for sepa­
rations r > rmax; likewise, w is smoothly truncated at rmax' 

Within the nearest-neighbor approximation, we can 
rather easily specify the normal density Po at zero pres­
sure and temperature (or equivalently, the equilibrium 
nearest-neighbor separation ro), the cohesive energy E coh ' 

and the bulk modulus Bo. First, we insist that the 
minimum well depth XE of the pair potential occur at ro, 
where X is the fractional pair-potential contribution to 

the total cohesion. Second, we require that, at normal 
density, the embedding function exhibit a minimum that 
contributes the remaining fraction I - X to the cohesive 
energy; thus, in the nearest-neighbor approximation, 

Ecoh ±d(d + I)E , (3) 

where d is the dimensionality of the system, Le., 1, 2, or 
3, and the factor d (d + 1 ) is the number of nearest neigh· 
bors in the d-dimensional close-packed solid. If X= 1, 
one obtains only the pair-potential part, without any 
many-body embedding. We choose the value of X to be 
approximately equal to the ratio of vacancy energy to 
cohesive energy, EvaclEcoh' which for metals is typically 
between 0.2 and OA. Finally, the bulk modulus can be 
adjusted by varying the choice of pair potential (as is pos­
sible with a flexible form such as the Morse potential); in 
this work, we have chosen a short-range Lennard-Jones 
potential. 

Our version of the Lennard-Jones spline (LJ-spl) poten­
tial cp is given by the usual LJ 6-12 form for separations 
r < rspl: 

CPLJ(r) 4XE Or ]12 Or ]61 ' (4) 
[ 

where ° is the point at which the LJ 6-12 potential 
crosses zero and the minimum is at ro=21/60. Between 
r spl and r max' cp is a cubic spline in r 2: 

qJspl(r)= a2(r~ax _r2)2+a3(r~ax r2)3, (5) 

with a2 and a 3 chosen such that at r = rspl, qJ = qJsp] , 
I I d /I /I 0 (th . fl t' . t fqJ qJsp(' an qJ =qJspl= . e m ec IOn pom 0 max­

imum attractive force). For r> rmax' both cp and qJ' are 
zero. The resulting expressions for rmax' az, and a3 are 

1 

r 2 =r 2 J" 5-5 [ 1--I [9--24·L ]1 !2 }1 (6a) 
max spl l 25 r m'

splr 

5 22 
_ r spl - r max I 

a2 - 3 2 2· cp , (6b) 
8r spl ( r max r spl ) 

(6c) 

For the LJ-spl potential (in units of ° and el, 
r spl=1.244455, rrnax 1.711238, a2=0.5424494X, and 
a3 =0.093505 27X. (This LJ-spl potential differs from 
the Holian-Evans potentialS only in that the spline here is 
in r2 rather than r. As a result, no square root or division 
by r is required in the MD force calculation.) In Fig. I, 
we show the LJ-spl potential. 

For the embedding (many-body part of our EAM, the 
local weighting function w is given by 

21 rmax-r2]2 
(7)w(r)= d (d + 1)e 2 2 

r max -rO 

where e is the base of the natural logarithms. The 
weighting of neighbors looks qualitatively like a Gauss­
ian; beyond rmax it is zero (see Fig. 2). At the normal 
bulk density (r = r 0) the local embedding density, as 
given by the nearest-neighbor approximation, is Pi lie. 

spline2 
spline1o 

\ 
LJ 6-12 

1.81.0 1.4 

ria 

FIG. 1. LJ-spline 1) pair potential 'P vs separation r; a is ..( 
the crossing point, the minimum occurs at ro =21

!6a ~ l. 12a, 
and the well depth is E. The cubic spline in r2 begins at ~ l. 24a 
and ends at ~ 1.71a. (On this scale, a cubic spline in r, labeled 
"spline 1," is hardly distinguishable from the spline in r\ la­
beled "spline 2," lying just slightly above.) 
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FIG. 2. Local weighting function w for our 2D EAM poten­
tial vs separation r. The local embedding density Pi for atom i is 
given by the sum of w over all neighbors of i. 

Finally, we have chosen the embedding energy function 
':J to be a nonlinear function of the form 

(8) 

(see Fig. 3). Clearly, at normal density, where the local 
~ 

• att embedding density is Pi lie, ':J contributes a fraction 
I-X to the total cohesive energy (in the nearest-neighbor 
approximation). 

If the LJ-spl pair-potential fractional contribution to 
the cohesive energy is X=t, then in three dimensions 
(3D) this EAM many-body potential, given by Eqs. 
(4)-(8), is a reasonably good potential for copper or nick­
el (see Table I). In fact, the equation of state for our 
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TABLE I. Comparison of properties of our 3D EAM with 
Cu and Ni;9 a=(9BoVo/2NEcoh [see Eq. (lOll. The 

to EAM is indicated NN. 

a 
Evac C 12 -C44 

'---' 
Bo 

EAM 4, II 0,33 0.27 
EAM (NN) 3.84 0.36 0.19 
Cu 3.65 0.37 0.30 
Ni 3.53 0.36 0.12 

EAM material, over a range of densities near Po and for 
temperatures not too high, can be approximated by that 
of an effective, density-independent pair potential, for 
which Po, E coh ' and Bo are chosen to reproduce the EAM 
values. For example, we can construct a short-range 
(spline) pair potential in exactly the same manner as 
shown above in Eq. (6) for the LJ-spl potential, substitut­
ing instead the more flexible Morse form 

'PMorse(r)=£texp[-a(r/ro-ll] 1]2 £, (9) 

where the steepness of the repulsive wall is given in the 
nearest-neighbor approximation by 

d2Bo Vo Jill 
(10)a 

2NEcoh 

(The LJ-spl potential can be reasonably well approximat­
ed by the spline Morse potential, with a=6,) In 2D, we 
find that a =>:4. 5 gives a good fit to the cold curve (<I> 
versus pat T=O) for our EAM system, as shown in Fig. 
4. We also find that the EAM shock Hugoniot can be 

>­
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FIG. 4. Two-dimensional cold curve (T = 0 K) of internal 
energy (per atom, in units of E) as a function of density 
p=Nm /V (units of m /0- 2

, m is the atomic mass) for the LJ-spl 
(X=l), EAM fl, and Morse (a=4.5) potentials, The nor­

Pi mal density (at P = T = 0) for all three potentials is 
po=V4/3m/r6=0.916m . The cohesive energy for all 

FIG, 3, Embedding energy function :J for our f) 2D three materials is 3£. The nearest-neighbor approximation to 
EAM potential vs local density Pi' The minimum occurs at the bulk modulus for the EAM potential is given by 
pi=e- I • Bo Vo /NE=22.1, compared to 54 for the LJ-spl. 
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predicted from the Morse potential parameters, at least 
for shocks that are not too strong.6 On the other hand, 
the Morse vacancy formation energy is 3£, while 
the EAM value is much lower, namely, about 1.2£. The 
ease of vacancy formation may well be an important fac­
tor in the noticeably lower melting temperature of the 2D 
EAM solid, which is kTm /£=0.2, compared with 0.35 
for the Morse potential and 0.4 for the LJ-spl potential. 
As we will show in the following sections, these defect en­
ergy differences-for free surfaces, dislocations, and 
vacancies-dramatically affect the flow characteristics of 
the many-body versus pairwise systems. 

LOW-VELOCITY IMPACTS 

First, we studied the impact of a 2D sphere (i.e., disk) 
hitting a wall (both ball and wall are made of the same 
kind of atoms) at a velocity low enough to cause 
significant deformation, but not high enough to penetrate 
the wall. The ratio of sphere diameter to wall thickness 
was about 2.4, and the relative velocity at impact was 
up , about one-fifth the longitudinal speed of 
sound (co is ~ 5VE/m for both the EAM and Morse po­
tential, as compared to ~9VE/m for the LJ-spl poten­
tial). 

The ball docs not rebound elastically, but rather, cold 
welds to the wall. In Fig. 5, we show the final state of a 
sphere of 1200 pair-potential atoms. (Both ball and wall 
were initially perfect lattices at a temperature 
kT Ie = O. 05.) Considerable plastic flow has occurred; 
note the distortion in the shape of the ball and the rough­
ness of the back of the wall. Several dislocations have 
been created in the wake of the shock waves and subse­
quent rarefactions following impact. However, the EAM 
system in Fig. 6 shows some dramatic differences in its 

FIG. 5. Low-velocity impact of a 2D 1200-atom ball (open 
circles) onto a wall 40% as thick (solid circles) for the Morse 
(a=4.5) pair potential, at a velocity one-fifth that of sound, 
after a time of 25to (to is the fundamental unit of time, given by 
aVmIE). 

FIG. 6. The same as Fig. 5, but for the EAM many-body po­
tentiaL Note the enhanced number of vacancies compared with 
the pair-potential material in Fig. 5. 

response to the impact: (i) the ball shows less distortion 
and the wall has a smoother back surface; (ii) incipient 
cracks have formed in the wall near the edges of the im-~­
pact crater; and (iii) in addition to several dislocations, 
four distinct (di)vacancies have been created in the EAM 
case, in marked contrast to their absence in the pair­
potential system. (We have noted the propensity of the 
EAM system to generate vacancies in a variety of non­
equilibrium situations, far in excess of the equilibrium 
population. Presumably, most of these vacancies anneal 
out on long diffusional time scales.) A computer­
generated movie enhances one's impression that 
significantly more plastic flow occurs in a material 
characterized by many-body interactions, compared with 
a purely pair-potential material. 

HYPERVELOCITY IMPACTS 

In earlier work, we reported on MD calculations ofhy­
pervelocity impacts,3 in which the velocity of an impact­
ing ball is large enough to penetrate a thinner wall (thick­
ness 40% of the diameter of the ball) and create an ex­
panding bubble of debris behind the plate. We con­
sidered a ball of 700 LJ-spl atoms hitting a wall of 8000 
(LJ-spl) atoms in 3D, and observed that, in contrast to 
laboratory (macroscopic) experiments, such small MD 
systems in 3D result in debris clouds that are densest at 
their centers, rather than being hollow. We then tested 
our speCUlation that an order of magnitude more parti­
cles would be needed to see the appropriate continuum 
behavior by performing 2D calculations of 500, 1500, and 
5000 ball atoms (N atoms in 2D correspond to N 3/2 

atoms in 3D at the same density-thus 5000 atoms in 2D 
scale to one-third of a million atoms in 3D). The results 
confirmed our speculation, perhaps even more dramati­
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FIG. 7. Hypervelocity impact and penetration of 2D 5000­
atom ball onto a wall40% as thick for the Morse (a=4.5) pair 
potential, at a velocity twice that of sound, after a time of 30to. 

cally than we had anticipated. Namely, we found that on 
the order of 1000 ball atoms were necessary to exhibit 
continuumlike behavior in 2D, corresponding to roughly 
30000 atoms in 3D. (This kind of convergence to the 
continuum limit was also subsequently seen in the inden­
tor MD ca1culations.4 

) In this paper, we report on an ad­
ditional comparison between our EAM (many-body) ma­
terial and the Morse pair-potential system for the same 
hypervelocity impacts. 

In Fig. 7, we see the debris cloud generated by a hyper­
velocity impact at velocity up 12VElm of 5000 ball 

t 


FIG. 8. The same as Fig. 7, but for the EAM many-body po­
tential. Note the difference in shape and clustering compared to 
the pair-potential material in Fig. 7. Both debris bubbles are 
hollow and correspond to about 30000 atoms in 3D. 

atoms on 9000 wall atoms, after a time of 30to (to is the 
fundamental unit of time, given by (TV m IE). The ma­
terial is characterized by the Morse pair potential. Note 
that the cloud is hollow, but quite spherical in shape. By 
contrast, in Fig. 8 for the many-body EAM material, the 
nose of the debris cloud is more pointed in the direction 
of the impact, the backsplash is more pronounced, and 
the skin of the debris bubble is more well-defined. Also, 
the EAM material clusters more easily than its Morse 
counterpart. At intermediate velocities between the low­
velocity impact of the previous section and the high­
velocity impact shown here, the EAM material shows 
signs of ductile hole growth before fragmenting. 6 

HOMOGENEOUS EXPANSION 

In previous work on fragmentation of fluids,7 we intro­
duced a method for simulating the adiabatic (constant en­
ergy), homogeneous, isotropic expansion of a fluid by 
molecular dynamics. Here, we specialize that approach 
to the case of anisotropic expansion, which would be ap­
propriate for the case of planar spall following the shock 
. impact of a thin flier plate upon a thicker target plate. 
After the shock waves emanating from the impact sur­
face hit the opposite free surfaces, rarefaction (tension) 
waves propagate back toward the center and meet at the 
spall plane. The tension waves add up, and if they are of 
sufficient magnitude (Le., the stress exceeds the spall 
strength of the material), then the target plate breaks off 
a piece approximately the size of the incident flier plate. 
The original shock wave is very sharp, while the rarefac­
tion waves spread out and decay in magnitude as they 
travel. Nevertheless, both the drop in strain rate 
when the shock passes and the rise when the rarefaction 
fan goes by are relatively rapid compared to the slow de­
cay in strain rate afterwards. Therefore, it is reasonable 
to approximate the process of spallation that follows 
some longer time later as adiabatic (constant energy). 
Thus, the kinetic energy of expansion in a large region 
around the spall plane is the dominant feature to be con­
sidered. We can simulate this feature by considering a 
periodically repeated volume whose length in the x direc­
tion grows at a constant rate, namely, i (t)=2u (byx p 
convention, the boundary velocity up is taken to be posi­
tive in compression). Also, at t =0, a homogeneous ve­
locity gradient is superimposed on the equilibrium 
thermal velocities of particles, in the form x= i:. xxx, 
where i:.xx(O) = -2up ILx(O) is the initial strain rate. 
Afterwards, Newton's equations of motion are followed, 
with crossings of the periodic volume in the x direction 
(at +Lx 12 and -Lx 12) accompanied by changes of 
+2up and -2up ' respectively. Except for the occasional 
imbalances of particle crossings at the periodic boun­
daries, the total energy is constant in time. The strain 
rate as a function of time is then 

(11) 

In order to achieve an annealed granular crystal in 2D, 
we used two schemes. In the first, we melted a perfect 

1 
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triangular lattice (where particles were located initially at 
lattice sites with random velocities chosen from a 
Maxwellian distribution whose temperature was ten times 
the melting temperature), and equilibrated the resulting 
fluid using the time-reversible Nose-Hoover (NH) ther­
mostat.8 Then, we quenched the system to a temperature 
well below the freezing point, again using the NH ther­
mostat, with a thermostat response time that was compa­
rable to the Einstein vibrational period ~O. 75to. After 
several vibrational periods, the fine-grained, almost amor­
phous material obtained from the melt annealed into the 
granular sample shown in Fig. 9(a) (2D LJ-spl). Notice 
the well-defined grain boundaries, which have been pretty 
well stabilized. In the second method of annealing, we 
have placed the atoms on unstable lattice sites, namely, 
on a square lattice at the appropriate density. Now, rath­
er than melting, the system almost instantaneously trans­
forms itself into a very fine-grained triangular polycrys­
tal, which then anneals in a similar fashion to the initially 
fluid system. In either case, the sample is then subjected 
to the plane-strain boundary and initial conditions de­
scribed above for modeling spallation. While the initial 
conditions, including specific grain boundaries, disloca­
tions, vacancies, and interstitials, are dependent in detail 
on the thermal fluctuations, the qualitative nature of the 
subsequent fracture we observe is not affected strongly by 
them, as various sample calculations have shown. 

In Fig. 9(b), we show the resulting cracks in a polycrys­
talline 2D LJ-spl system that have opened up after 
several vibrational periods, for a strain rate of 
E (O)t o=0.025. Thus the strain rate chosen here, while xx 

comparable to those in strong shock waves, is neverthe­
less small enough that the expansion velocity of a pair of 
neighboring atoms is a tiny fraction of the sound speed 
co. As can be seen from Fig 9(b), the cracks begin almost 
simultaneously to open up, primarily along (vertical) 
grain boundaries. A computer-generated movie of this 
process shows that, even though the grain size in these 
calculations is extremely small, dislocations are emitted 
from some of the crack tips, helping to heal them up. 
Clearly, with only 4000 atoms, it is not possible to say 
anything definitive about the possibility of intragranular 
fracture. We have done calculations on larger systems 
that are made possible by massively parallel computers 
and we defer discussion of this topic to a planned forth­
coming paper.6 

We can, however, say that there are some notable 
differences when these homogeneous expansion calcula­
tions are done for EAM materials, as shown in Fig. 9(c). 
Recalling the smoother surfaces observed in the low­
velocity impact, the EAM cracks are much smoother 
(more spherical), as might be expected in a more ductile 
material. The EAM material is much more plastic than 
its pair-potential counterpart, resulting in a 50% larger 
strain before fracture. This difference in plasticity is ex­
aggerated in 2D compared to 3D. The formation energy 
of a dislocation in 2D is like that of a single vacancy, 
while in 3D, it is more like a line of vacancies. More 
work needs to be done for larger systems before we can 
give a reliable estimate of the spall strengths of the two 
materials. 6 
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FIG. 9. Fracture in multigranular 2D crystals: (al 4000 

atoms, interacting by the short-range LJ -spl potential, after 
melting and quenching to about t the melting temperature; the 
annealing process has taken about 20 mean vibrational periods. 
(b) A snapshot of the LJ-spl system taken after about six periods 
following the onset of a homogeneous expansion (plane strain) 
in the horizontal direction (the rate of expansion times the fun­
damental period is about 2%); fracture has begun primarily in 
the vertical direction along grain boundaries. (c) A snapshot of 
the EAM system under similar initial conditions and the same 
boundary conditions as in (b); note the more spherical shapes of 
the cracks. 
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CO?\CU;SIONS 

We have sho\,n that the influence of many-body forces, 
as opposed to simple pairwise-additive forces, can 

~ enhance plastic flow. We have studied this effect by com­
paring a pairwise to a many-body interaction, both of 
which give very similar equations of state-at least near 
normal density. At low-velocity impacts, the EAM 
(many-body) potential gives the expected enhancement in 
the number of vacancies formed, as well as the appear­
ance of smoother surfaces, than the Morse (pairwise) po­
tential. At high velocities, the skin depth of the debris 
bubble (produced by penetration of the projectile) is more 
pronounced for the EAM than the Morse material. The 
damage under tensile loading can be simplified by assum­
ing homogeneous adiabatic expansion; then, the two ma­
terials also show differences in the cracks that form. In 
the case of the Morse potential, the cracks are sharp and 
brittle looking, while the EAM cracks look more like 
ductile holes. In future studies, we will examine the size 

*Author to whom correspondence should be addresed at T-12, 
MS-B268, Los Alamos National Laboratory, Los Alamos, 
NM 87545. 

+Present address; 	 Department of Chemical Engineering, Uni­
versity of Delaware, Newark, DE 19716. 

1M. S. Daw and M. 1. Baskes, Phys. Rev. B 29, 6443 (1984); S. 
M. Foiles, M. 1. Baskes, and M. S. Daw, ibid. 33, 7983 (1986); 

'-'j 
see also, R. A. Johnson, ibid. 37,3924 (1988). 

2See, for example, W. G. Hoover, lWolecular Dynamics 
(Springer-Verlag, Berlin, 1986); see also selections from 
Molecular Dynamics Simulation 0/Statistical-Mechanical Sys­
tems, Proceedings of the International School of Physics "En­
rico Fermi," Summer School Course 97, edited by G. 
Ciccottti and W. G. Hoover (North-Holland, Amsterdam, 
1986). 

3ll. L. Holian, in Microscopic Simulation a/Complex Flows, VoL 

dependence of these qualitative observations of plastic 
response, in 3D as well as 2D. 

ACKNOWLDGMENTS 

This work was supported by both ISRD (Institutional­
ly Supported Research and Development) funds and by 
the armor/antiarmor program at Los Alamos; as such, 
we owe a significant debt of gratitude to Ed Cort for his 
continuous encouragement and helpful suggestions. At 
Livermore, Irv Stowers deserves particular mention for 
his support of the Hoover work on the indentor problem. 
We also gratefully acknowledge helpful discussions with 
Tony Rollett, Fred Kocks, Paul Follansbee, Phil Howe, 
Paul Taylor, Brian Dodson, David Srolovitz, and Dennis 
Grady. This work was performed under the auspices of 
the University of California for the U.S. Department of 
Energy at Los Alamos, under Contract No. W-7405­
Eng-36, and at Livermore, under Contract No. W -7405­
Eng-48. 

236 of NATO Advanced Study Institute, Series B: Physics, 
edited by M. Mareschal (Plenum, London, 1991); Phys. Rev. 
A 36, 3943 (1987); for a discussion of continuum calculations 
of hypervelocity impacts, see also K. S. Holian and ll. L. 
Holian, Int. J. Impact Eng. 8, 115 (1989). 

4W. G. Hoover, A. J. De Groot, C. G. Hoover, 1. F. Stowers, T. 
Kawai, B. L. Holian, T. Baku, S. Ihara, and J. Belak, Phys. 
Rev. A 42, 5844 (1990). 

5B. L. Holian and D. J. Evans, J. Chem. Phys. 78, 5147 (1983). 
6ll. L. Holian, A. F. Voter, N. J. Wagner, R. J. Ravelo, S. P. 

Chen, J. E. Hammerberg, and T. D. Dontje (unpublished). 
7B. L. Holian and D. E. Grady, Phys. Rev. Lett. 60, 1355 (1988). 
8ll. L. Holian, A. J. De Groot, W. G. Hoover, and C. G. 

Hoover, Phys. Rev. A 41, 4552 (1990). 
9See experimental references in S. M. Foiles, M. 1. Baskes, and 

M. S. Daw, Phys. Rev. B 33, 7983 (1986). 


	p1
	p2
	p3
	p4
	p5
	p6
	p7

