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We describe simple, stable, and economical numerical methods for implementing temperature 
and pressure controls in equilibrium and nonequilibrium Nose-Hoover dynamics. These methods 
substantially increase the efficiency of large-scale simulations. 

We are presently carrying out a wide range of atomistic 
computer simulations to elucidate the size dependence, 
rate dependence, and temperature dependence of irrever
sible material behavior in fracture and flow. The simula
tions considered to date have covered a range of sizes up 
to 106 atoms in two dimensions. Using the Lennard-Jones 
spline potential, I million-particle simulations take just 
over 30 s per time step on the 64-transputer multiproces
sor SPRINT (Ref. 2) at Livermore. This machine pro
vides the computational speed of a CRAY at 1/1000 of 
the cost. To minimize the computer-storage requirements 
of these simulations we have developed and used modified 
Stoermer versions of Nose-Hoover isothermal and isobar
ic equilibrium and nonequilibrium molecular dynamics. 3 

The time reversibility of the resulting dynamics is limited 
only by computer rounding. The methods are highly 
stable. 

In all of these simulations the kinetic temperature T is 
maintained by integral feedback, using Nose's time
reversible friction coefficient r It is usual to solve these 
equations with Runge-Kutta, Gear, or predictor-corrector 
methods, but these require from 3 to 10 times the storage 
of the simpler Stoermer-based algorithms. A straightfor
ward approach to implementing Nose's isothermal equa
tions of motion, 

d 2r/dt 2 =[F(r)/m] ,(t}(dr/dt) , 

d,/dt = HK(t) - Kavl/KaJ/r2 , 

involves solving the centered finite difference form for the 

new coordinates r + in terms of the present and previous 
coordinates, ro and r-, and using the current friction 
coefficient '0: 

(r+ - 2ro+ r - )/(dt)2 = Fo/m - 'o(r+ - r - )/(2dt) . 

The new coordinates can then be used to determine a new 
value for the friction coefficient ,+ using a centered kinet
ic energy K 1/2 calculated from the coordinates r + and ro, 

,+ -'0=[(KI/2 - Kav)/Kav](dd/r2. 

Kav ....DNkT/2 is the equipartition, long-time-averaged 
value of the kinetic energy in D dimensions at the specified 
temperature T and 'I" is an arbitrary thermostat relaxation 
time. 

These centered equations are very simple to program 
and are numerically very stable. Useful results for the 
Lennard-Jones potential can be obtained with time steps 
up to 0.02 (ma 2/t:) 1/2. It should be noted that the max
imum time-step size satisfying linear stability analysis 
varies slowly with system size, typically as (InN) -1/2. 

We have verified the stability and accuracy of general 
isobaric-isothermal versions of Nose's mechanics. 3 These 
equations involve both a friction coefficient, and a strain 
rate i, in addition to the (reduced) particle coordinates 
{x} = {rV -lID} which vary from 0 to l. D is the dimen
sionality of the system, usually 2 or 3. A straightforward 
centered-difference scheme can be applied to these iso
baric-isothermal cases, too. The corresponding difference 
equations are expressed in terms of the reduced coordi
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tTh1js, 

(x+ -2xo+x-)!dt 2= (Fo!m)Vo liD 

- ('o+2io)(x + - X -)/2dt, 

io=(V+ - V -)/2DVodt , 

(6+ - 6- )/2dt = Vo!!Po!kT'r 2 
, 

(,+ - )/2dt =!!Ko(2/Q). 

These four equations can be solved in a series of explicit 
steps: (0 compute x + from the first equation; (2) com
pute V + from the second equation; (3) compute 6+ from 
the third equation; (4) compute ,+ from the fourth equa
tion. 

Just as in the simpler isothermal case these constant
pressure constant-temperature equations are exactly time 
reversible, stable, and accurate. We recommend their use 
and expect to report the detailed results of our large-scale 
simulations in due course. 
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