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We investigate both dynamic and time-averaged chaos in a series of problems ranging from a sim­
ple pendulum to many-body chains and strings of particles in a gravitational field. Chain and spring 
systems typically display time-averaged Lyapunov spectra resembling those of one- and two­
dimensional statistical-mechanical systems, but with details depending strongly on the nature of the 
links and the choice of canonical coordinates. 

I. INTRODUCTION 

The chaotic phase-space mixing caused by Lyapunov 
instability is the key to understanding thermodynamic ir­
reversibility in mechanical systems. I The "static," mean­
ing time-averaged, spectrum of Lyapunov exponents [A l 
describes and defines the chaotic phase-space evolution of 
exponentially unstable dynamical systems, as follows: the 
largest exponent Al describes the time-averaged rate at 
which nearby phase-space trajectories separate; adding 
on further exponents A2' ;'3' ;'4" .. gives sums describing 
the expansion or contraction rates of corresponding two-, 

-, three-, four-, ... dimensional phase-space objects. Thus 
the individual exponents, ordered from largest to smallest 
AI> A2 > A3 > "', represent the static time-averaged 
values of dynamic local orthogonal deformation rates in 
the neighborhood of ::' phase-space trajectory. The dy­
namic deformation is most naturally followed and de­
scribed in a comoving, and corotating, coordinate system 
centered on such a trajectory. Several numerical 
methods for generating and averaging the dynamic values 
in order to obtain the static exponents have been 
developed and applied.26

• 

Static Lyapunov spectra have recently been obtained 
for a variety of equilibrium and nonequilibrium systems 
of interest in statistical mechanics. Fluids and solids in 
one, two, and three space dimensions have been investi­
gated.7

-
9

• The time-averaged results found so far have 
few distinctive features. The qualitative shapes of the 
spectra can be roughly described by power laws reminis­
cent of Debye's crystal-frequency distributions and vary­
ing with system dimensionality, thermodynamic phase, 
and boundary conditions, including temperature, but fail­
ing to show any of the rich diversity characterizing 
solid-state frequency spectra. 

Because these static time-averaged properties reveal lit­
tle of the complex details which distinguish one dynami­
cal system from another, it seemed to us worthwhile to 
examine the dynamically varying local structure of the 
Lyapunov spectra. Our previous investigation lO of time 
dependence treated the classic Lorenz model, 11 which in­

troduced chaos to a wide audience a generation ago. 
Here we extend our time-dependent studies to a class of 
systems bridging the gap between mechanics and many­
body statistical mechanics: pendulums, chains, and 
strings. These models are well suited to analysis. 

In the following sections we analyze the dynamic 
phase-space structure associated with Lyapunov-unstable 
pendulum systems. Our calculations establish that this 
structure varies from one canonical coordinate system to 
another and typically exhibits an interesting time­
symmetry property closely related to Liouville's theorem. 
In Sec. II we describe the calculations establishing these 
results. Section III is a summary and a record of our 
conclusions. 

II. MANY-BODY SIMULATIONS AND RESULTS 

One might suspect that an isolated single-pendulum 
system would have no interesting dynamical properties. 
If the pendulum is rigid, this is true. An isolated rigid 
single pendulum is an integrable system, with a periodic 
one-dimensional orbit making up its one-dimensional 
constant-energy phase-space trajectory. But the problem 
becomes interesting as soon as another degree of freedom 
is added. Adding one more degree of freedom expands 
the accessible constant-energy phase-space region to 
three dimensions and makes chaotic motion at least pos­
sible. The additional degree of freedom can come from 
relaxing the rigidity constraint, from adding another 
mass, from making the pendulum spherical and adding a 
constraint, or from external driving. Any of these four 
sources can lead to chaos. Making the pendulum linkage 
flexible rather than rigid is the simplest. 

We find that the motion of a single flexible pendulum 
can be chaotic, for some energies. Consider the simplest 
possible example: a single Hooke's-law pendulum, with a 
spring energy ¢ given by 

¢=(KI2)(r-1)2, 

with the force constant K=4, and with initial conditions 
providing just enough energy to reach the unstable verti­
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'calconfiguration with zero stored spring energy ¢i and 
'spring length equal to the rest length 1. 

We applied Benettin's method to this chaotic flexible­
pendulum problem so as to determine all four time­
averaged Lyapunov exponents and to characterize as well 
their dynamic probability densities. The calculation 
proceeds by following the motion of four orthonormal 
basis vectors in the phase space !D 1,Dz,D3,D4J and 
measuring their tendency to grow or shrink, as is de­
scribed in Refs. 2-4. These comoving local rates of 
growth, when time-averaged, give the static Lyapunov 
spectrum. The result of this numerical calculation estab­
lishes that the time-averaged Lyapunov spectrum is 

{A I (0.128,0.000, -0.000, -0. 128) , 

with statistical uncertainties in the four exponents of 
±0.002. We checked these results by carrying out paral­
lel calculations in Cartesian and polar coordinates. In­
dependent calculations were carried out at Keio Universi­
ty and at the University of Vienna. 

Consider next the dynamical Lyapunov spectrum for 
this same system. For this simple flexible-pendulum case 
probability densities, obtained by binning the time­
varying instantaneous values of the Lyapunov growth 
and decay rates, are shown in Fig. 1. In view of the sym­
metry of these densities, with P(AI)=P(-A4 ) and 
P(}\.2)=P( A3)' only those for Al and A2 are shown in 
Fig. 1. Note that the dynamic exponent densities depend 
upon the choice of coordinates. Results for both Carte­
sian and polar coordinates are shown in the figure. 
Throughout this paper we use the same notation A for 
both the time-varying growth rates and the correspond-

FIG. 1. Probability densities for the instantaneous Lyapunov 
exponents (dynamic exponential expansion rates) found for the 
chaotic flexible single pendulum with the force constant /( set 
equal to 4 and just sufficient energy to reach the fully extended 
vertical configuration. Only PCAj)=P( - A4) and P(A2 J 

= P( A3) are shown, at the left and right, respectively, because 
the symmetry of the distributions applies to the instantaneous 
values just as well as to the time-averaged values shown here. 
Results are shown for both Cartesian (top) and polar (bottom) 
representations of the system. 

ing time averages, trusting that the distinction between 
the two is clear by context. The widths of the dynamic 
distributions are up to ten times the static (time-averaged) 
value of the largest Lyapunov exponent AI' The rms fluc­
tuations about the mean values given above are 
<Al >fms= O'4\ms=0. 71 and <A2 >rms= <A3>rms=0. 75 for 
Cartesian coordinates and (AI> rms = <1.4>rms =0.96 and 
<1.2 <A3 >fms = 1.26 for polar coordinates. 

It is remarkable that the dynamic fluctuations depend 
strongly upon the coordinate system chosen for the calcu­
lation while the static mean values cannot.2-

6 Funda­
mentally, this striking feature of our results reflects the 
time-varying direction of separation of two nearby trajec­
tories. For two definite trajectories the direction continu­
ally fluctuates, reflecting the changing sensitivity of the 
trajectories' separation to the various canonical coordi­
nates and momenta. On the other hand, for times long 
enough to determine the static values, the logarithmic 
time-averaged growth rates have roughly equal (because 
of the logarithm) projections on all the phase-space axes. 
In the longtime limit the rates are independent of the 
choice of coordinates but the fluctuations are not. 

The symmetry implicit in the two time-averaged densi­
ties shown in Fig. 1, with P(AI 1.4) and 
P(AZ)=P( -A3)' is real, and follows from Liouville's 
theorem. It develops dynamically in an interesting way. 
After an initial asymmetric transient, which depends on 
the initial choices of the D vectors and typically lasts a 
few thousand time steps, the four orthonormal four­
dimensional 8 vectors converge to a stable arrangement 
in which pairs of instantaneous Lyapunov exponents, not_ 
just their time averages, have identical absolute values, 
with iA11 = IA41 and IA21 i}'3i. This feature occurs here 
with either coordinate system, and generally, for many­
body as well as few-body systems. We believe that the 
time required for this property corresponds roughly to 
the time required for finite-precision integration to lose 
memory of the initial conditions. The time required for 
this memory loss greatly exceeds the oscillation time and 
the Lyapunov time; both these times are of order 10, 
which is 1000 typical time steps. 

Even a single flexible pendulum has interesting chaotic 
properties, illustrating the dependence of dynamic 
Lyapunov experiments, but not their static averages, on 
coordinate system, and exhibiting as well this nice dy­
namic symmetry property. 

When we described the dependence of fluctuations on 
the coordinate choice to a colleague, he asserted that 
"Cartesian coordinates are the natural choice." But even 
the Cartesian situation is not simple. Consider, for in­
stance, a more general Hamiltonian for the flexible 
Hookean pendulum, including a scale factor s, so that 
new canonical Cartesian coordinates Q= qs and momenta 
P =P / s can be defined without changing either the value 
of the Hamiltonian or the underlying dynamics, 

A numerical investigation, for the same energy and tra­
jectory described above and illustrated in Fig. 1, reveals 
that the fluctuations in the Lyapunov spectrum increase 
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away from the value of s (roughly s =2) at which they are 
minimized while the mean values of the exponents are 
unchanged. This simple example suggests that if there is 
a "natural choice" of coordinates, it is that Cartesian 

- frame which minimizes the fluctuations. Likewise, sim­
ply switching from the cgs to the mks system of units for 
length and momentum modifies the direction, and hence 
the fluctuations, for the dynamic Lyapunov-exponent 
vectors. 

The sensitivity to coordinate system can be analyzed 
analytically for the one-dimensional harmonic oscillator, 
an integrable system for which both the time-averaged 
Lyapunov exponents vanish. For the oscillator Hamil­
tonian with scale parameter s, 

H(s) [(Ps 

diligent application of the analytic Lagrange-multiplier 
methods developed in Refs. 3 and 4 leads to the simple 
result 

Thus unless s is chosen equal to the "natural" value 1 for 
which p2 and Q2 have equal time averages, even the 
Cartesian-frame harmonic-oscillator Lyapunov exponents 
have frame-dependent nonzero fluctuations. 

The alternative to introducing chaos with a flexible 
pendulum link is to add more degrees of freedom, keep­
ing the links rigid, either by adding links, by increasing 
the number of spatial dimensions, or by driving the pen­
dulum with an external force. The topology of chaos in 
the rigid double pendulum has already been nicely 
characterized,12 the three-dimensional spherical pendu­
lum, with an additional constraint, has been studied both 
experimentally and computationally,13 and the dynamics 
of a driven pendulum is by now well known. 14 An ideal­
ized double pendulum is shown in Fig. 2, where we arbi­
trarily choose the two lengths equal to unity. In our 
classroom-demonstrator version the lower pendulum was 
made slightly shorter than the upper pendulum (which is 
shaped like an inverted UJ in order to make all pairs of 
the angles a and (3, shown in the figure, accessible. With 
rigid links between the masses the two degrees of freedom 

g~ 
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FIG. 2. Alternative generalized-coordinate systems used in 
- describing the double-pendulum system with the Lagrangians 

L A and L B defined in the text. Exploratory calculations were 
carried out in both these frames, as well as with standard polar 
coordinates, in order to eliminate programming errors. 

can be chosen in many ways. The two simplest choices 
are illustrated in the figure. 

The textbook coordinate system used by Landau and 
Lifshitz l5 is reproduced in Fig. 2(a). This choice is the 
one most easily generalized to the many-pendulum case. 
For convenience, and to avoid the clutter of extraneous 
symbols, we simply state here that the masses m I and 
m2' lengths II and i 2, and gravitational field strength g 
are all chosen equal to unity. The more general case is a 
simple extension of the prototypical cases studied here. 
Thus the double-pendulum Lagrangian becomes 

LB=2cosa+cos(a+{3)+ da ]2+1. Ida + ]2
dt 2 dt dt 

+ da da d{3]
dt dt + dt cos({3). 

Richter and Scholz l2 used the alternative coordinate sys­
tem shown in Fig. l(b), with the Lagrangian 

2 
da 1 Ida '2 

LB 2cosa+cos(a+{3)+ dt I+2 -dt+ dt 
I 

+ da da + ci{3 ({3)
dt dt dt cos . 

The two choices just given, plus ordinary polar coordi­
nates, were helpful in providing equivalent numerical 
checks for our exploratory calculations of the time­
averaged Lyapunov spectra. 

More complex double-pendulum systems result if the 
rigid constraints just discussed are replaced by Hooke's­
law springs. As has been emphasized repeatedly,16 the 
phase-space probability density for such a system differs 
from the constrained probability density even in the limit 
that the springs are infinitely stiff. The short-time dy­
namics as well as the static and dynamic values of the 
Lyapunov exponents are also qualitatively different. Us­
ing Hookean springs rather than constraints, the four­
dimensional phase space becomes eight dimensional and 
a typical chaotic trajectory has three exponents with pos­
itive time-averaged values, three with negative values and 
two with zero. 

Over a wide range of energy (relative to the accessible 
gravitational energy) the rigid double-pendulum motion 
is now known to be chaotic. 12 Just as in the Hooke's-law 
case mentioned above, the rigid-pendulum spectrum also 
becomes instantaneously symmetric after a transient 
period of a few thousand time steps. In the four­
dimensional phase space an infinitesimal comoving and 
corotating hyper sphere distorts into a hyperellipsoid with 
one diverging axis [with time average varying as 
exp()'1 t) At)], two neutral axes, varying as 
exp{ A2t )= exp( A3t )== 1, and one converging axis [varying 
as exp( A4t )== exp( - At)]. It is true that the dynamics 
could be followed in a three-dimensional projection of 
phase space, by taking energy conservation into account, 
but in the projected space Liouville's theorem is no 
longer satisfied instantaneously so that the analysis re­
quired to compute the Lyapunov exponents becomes 
more complicated. 

http:known.14
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The mathematics of the many-body problem can be 
simplified, and the need for solving a large system of 
linear equations can be entirely avoided, by adopting 
Hooke's-law springs to link the masses rather than apply­
ing rigid Lagrangian constraints. The two simplest types 
of such spring systems link together similar masses 
m I =m 2 •• =mn =m, or, alternatively, very light 
masses mJ m 2 '" =mn J=m, which support a 
heavier mass AI» m. In the first case, which corre­
sponds to a heavy chain in a gravitational field, the time 
average of the vertical component of tension in the chain 
increases linearly with the mass supported so that the 
vertical load on the uppermost springs averages IV times 
that supported by the bottom spring. The second case, 
which corresponds to a massless string supporting a 
heavy weight, can be modeled by allowing only the last of 
the n masses to interact with the gravitational field. In 
this way the average vertical load on each spring is the 
same. 

Again, for convenience and simplicity, in what follows 
we set the masses, rest lengths of the springs, and the 
strength of the gravitational field all equal to unity. Just 
as before, the stiff springs obey Hooke's law 

<p (KI2)(r-l)2. 

The natural spring frequency varies as the square root of 
the force constant K. We were able to treat K values as 
high as 10 000 000 by reducing the fourth-order Runge­
Kutta timestep from 0.01 to 0.0001. With that method 
none of the problems described here presented numerical 
difficulties in conserving the energy or in satisfying the 
constraints. 

In Fig. 3 we display dynamic double-pendulum 
probability-density histograms for two Hookean-spring 
cases K=4 and 64. The mean values over these histo­
grams, indicated in the figure, correspond to the time­
averaged Lyapunov exponents. Again the instantaneous 
spectra become exactly symmetric, after a short time, so 
that we show only the distribution for the four largest ex­
ponents. Notice particularly that the fluctuations about 

FIG. 3. Cartesian-coordinate probability densities for the 
flexible double-pendulum instantaneous Lyapunov exponents 
(dynamic exponential expansion rates) AI," .,A4 (left to right) 
with Hooke's-law spring constants K equal to 4 (top) and 64 
(bottom). The distributions for the remaining exponents 
A5,' .. , A8 are mirror images of those shown in the figure. The 
abscissa values vary from - 5 to +5 for K = 4 and from - 25 to 
+25 for K= 64. 

the mean are about five times larger for the larger force 
constant K. This shows that the vibrational motion of the 
springs themselves, with a frequency of order (Kim )1/2, 

mixes with the slower Lyapunov instability frequency. 
Because the high-frequency fluctuations are relatively ~ 
regular, accurate values for the means, the static 
Lyapunov spectrum, can still be obtained. 

The fluctuations in the instantaneous dynamical values 
of the rigid-pendulum Lyapunov exponents are relatively 
smaller than their flexible-pendulum counterparts. Con­
sider again the rigid lecture-demonstration double pendu­
lum, initially motionless and stretched out horizontally. 
In this case the time-averaged static Lyapunov exponents 
have magnitUdes 0.30, 0.00, 0.00, and -0.30 (again with 
units such that lengths, masses, and gravitational fields 
are all set equal to unity). The dynamic root-mean­
squared fluctuations about these static mean values are 
0.84 for Al and )'4' and 0.79 for A2 and A3, using the 
Landau-Lifshitz coordinate system. 

Because the mathematics is simpler, we confined our 
many-mass simulations to flexible pendulums. We inves­
tigated a series of strings with 2, 4, 8, and 16 masses, all 
interacting with nearest-neighbor force constants K=4 or 
64, and with only the last of the masses interacting with a 
gravitational field, of unit strength. We found the time­
averaged spectra listed in Table I and plotted in such a 
way as to emphasize the rapid convergence toward the 
static spectrum for a continuous string, in Fig. 4. The 
static distributions show again that the fluctuating 
growth rates include mixing from the harmonic degrees 
of freedom in the springs, with the high-frequency-spring 
fluctuations nearly an order of magnitude higher than the~' 
low-frequency ones. 

0.1 

HOOKEAN STRINGS {t..} 
WITH 1(: 4 or 64 

LINE: N =16 
CIRCLE: N =8 
CROSS: N =4 

liN 

FIG. 4. Distribution of Lyapunov exponents for strings with 
N=2, 4,8, and 16 masses using Cartesian coordinates. The ini­
tial configuration is motionless and horizontal. Only the last 
mass in the chain interacts with the gravitational field. The N~'. 

largest values of the Lyapunov exponents rAl J > Az 
> tV3> ... > AN are plotted as a function of the dimensionless 
ratio [ / N; thus the abscissa values vary from 1/N to 1. 
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TABLE I. Lyapunov spectra (2N of the 4N exponents) for strings of N units masses connected by 
Hookean springs with force constants all equal to K=4 or 64. Only the last mass interacts with a verti­
cal gravitational field and the initial condition was fully extended and horizontal. The mean-squared 
values were calculated using Cartesian coordinates. The time averages are for the last 400 000 
timesteps of 600 000 step runs with a fourth-order Runge-Kutta dt =0. 005. The uncertainties in the ex-

do not exceed ±0.01. 

K=4 
[ 0.08 0.04 0.Q2 0.00 
[ 1.10 0.75 0.80 0.80 
("-14 
("-2]4 

0.23 
0.68 

0.16 
0.63 

0.11 
0.59 

0.07 
0.64 

0.05 
0.69 

0.03 
0.64 

0.01 
0.65 

0.00 
0.73 

p,jg 0.29 0.21 0.16 0.15 0.12 0.10 0.08 0.07 
0.05 0.05 0.03 0.03 0.02 0.01 0.00 0.00 

[,,-2]S 0.56 0.39 0.35 0.32 0.33 0.35 0.34 0.40 
0.37 0.40 0.39 0.42 0.40 0.43 0.47 0.49 

p,j l6 0.35 0.29 0.25 0.22 0.19 0.18 0.16 0.14 
0.13 0.12 0.11 0.10 0.09 0.08 0.08 0.07 
0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03 
0.02 0.02 0.01 0.01 om 0.00 0.00 0.00 

116 0.60 0.41 0.34 0.26 0.24 0.22 0.23 0.22 
0.21 0.20 0.20 0.20 0.21 0.21 0.21 0.22 
0.23 0.24 0.24 0.26 0.25 0.22 0.24 0.25 
0.26 0.27 0.25 0.23 0.28 0.22 0.26 0.20 

K=64 
["-b
[,,-lh 

0.51 
21 

0.13 
58 

0.05 
88 

0.00 
180 

["-14 
[1,2]4 

0.55 
13 

0.40 
19 

0.27 
28 

0.16 
43 

0.10 
64 

0.05 
90 

0.03 
92 

0.00 
144 

-­ ["-Is 0.62 0.51 0.43 0.35 0.30 0.25 0.20 0.16 
0.13 0.09 0.07 0.05 0.04 0.03 0.01 0.00 

[,,-218 8 8 10 11 13 16 19 24 
31 37 45 52 61 63 83 92 

[ "-116 0.69 0.63 0.58 0.53 0.48 0.45 0.40 0.38 
0.34 0.30 0.28 0.25 0.22 0.20 0.18 0.16 
0.14 0.12 0.11 0.10 0.09 0.08 0.06 0.06 
0.05 0.04 0.Q3 0.02 0.02 0.01 0.00 0.00 

16 5 5 5 5 5 6 6 6 
7 8 8 9 10 11 12 13 

16 16 18 21 22 24 28 30 
32 38 38 39 43 42 50 49 

III. CONCLUSIONS 

Distributions of dynamic Lyapunov spectra of the type 
simulated here should prove helpful in distinguishing 
among classes of dynamical systems and in identifying 
the particular coordinate systems best suited to their 
study. In an oversimplified and unrealistic view of 
phase-space dynamics, dynamic Lyapunov exponents 
would be constants of the motion, equal to the static 
values. In reality the dynamic contributions to the static 
exponents vary, but are at least reproducible smoothly 
varying point functions in phase space, depending on the 
recent past history of the trajectory. But the numerical 

_ 	 values of these dynamic point functions, as well as the 
orientations of the corresponding Lyapunov 6 vectors, 
depend on the chosen phase space. Simple examples, 
such as the single chaotic flexible pendulum and the in­

tegrable one-dimensional oscillator, show that the coordi­
nate system used to describe these point functions affects 
their fluctuation over a long orbit. This means that the 
local time-varying contributions to the Lyapunov ex­
ponents do not provide an unambiguous chaos mecha­
nism or a means of locating bifurcation sites in phase 
space. Such appealing ideas can at best be approxima­
tions. 

Here we also find a wide dynamic variation of the ex­
ponent contributions with time which depends on the 
strength of the underlying harmonic vibrational frequen­
cies. The coordinate-independent time-averaged spectra 
found here resemble those already known from one- and 
two-dimensional many-body studies. To a very rough ap­
proximation they are power laws, but the deviations are 
significant. 

Our calculations of instantaneous Lyapunov spectra il­
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lustrated another interesting general property in all of the 
coordinate systems we investigated. It is generally the 
case that, after a transient period of several "Lyapunov 
times" - that is, several times 1//...1- the initial choice of 
8 vectors becomes irrelevant and the instantaneous spec­
trum of dynamic exponents (expansion rates) becomes 
symmetric. This is an equilibrium constant-energy prop­
erty and is a recognized consequence of the general time 
symmetry which underlies Liouville's theorem. The cor­
responding symmetry is nevertheless dynamically unsta­
ble and hence necessarily absent in systems exhibiting dis­
sipation (even when the equations of motion are time re­
versible), for which the time-averaged summed values of 
the negative Lyapunov exponents always exceed those of 
the averaged summed positive exponents in absolute 
value. See, for instance, Ref. 10. 

The probability densities of the instantaneous expan­
sion rates, the "dynamic Lyapunov exponents" appear to 
us to contain more information, in a readily computable 
form, than does the currently popular multi fractal repre­
sentation. But because the dynamic exponent densities 
depend upon coordinate system, their use requires judg­
ment in selecting the "most natural" frame. 
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