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Classical nonlinear-response theory is applied to an ensemble of experiments performed under the 
same external field. If the field is time independent, the formalism simplifies, and we can derive the 
"Kawasaki expression" for the distribution function, as well as the transient correlation-function 
expression for the observable response. Recent computer simulations have shed new light on our 
understanding of the steady-state nonequilibrium distribution function: the fractal nature of the 
distribution causes us to reevaluate the usual mathematical tools used to describe nonequilibrium 
processes. 

I. INTRODUCTION 

The purpose of classical nonlinear-response theory is to 
provide a mathematical framework for the measurement -' 
of nonequilibrium, time-dependent processes.] We imag­
ine performing a large number, or ensemble, of identical 
experiments on a sample, such as a fluid sandwiched be­
tween hot and cold walls. The elements of the'ensemble 
diffei'"from each other only in their initial conditions; oth­
erwise, for time t > 0, each is subjected to the same 
boundary conditions in the form of a time-dependent 
external driving force XU) turned on at t =0. The tran­
sient response of each system is monitored, and the ex­
perimental time-histories for the ensemble are then aver­
aged together to refine the statistical precision of the 
measurement. 

The set of initial conditions for the ensemble of experi­
ments is most conveniently chosen from the equilibrium 
canonical distribution 10' Each member of the ensemble 
is an N-particle system (the sample) represented at t =0 
by a point in phase space, which thenceforth moves along 
a trajectory independently of all others in the ensemble. 
The dimensionality of the classical-mechanical phase 
space, including all coordinates q and momenta p is 2N 
times the number of spatial (Cartesian) dimensions. It is 
reasonable to imagine that a continuous function of time 
t at each point r in phase space, that is, the nonequilibri­
um distribution function I (r, t), might be capable of 
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describing the non equilibrium dynamics of this 
ensemble- "a swarm of blind flies." The "swarm" is a 
peculiar ideal gas: trajectories do not "see" each other at 
all, so there are no conservation equations for "momen­
tum" or "energy" of the ensemble, only conservation of 

. "mass." Each trajectory ("fly")" initially located in a 
volume element dr at phase point r, carries its own 
share of the weight of the ensemble ("swarm"), as mea­
sured at time zero by l(r,O)dr=lo(r)dr, with the to­
tal always summing to unity: f d r I (r, t) = 1. 

This apparently satisfactory physical picture of an en­
semble, whose dynamics is described using mathematics 
appropriate to a regular, continuous distribution I (r, t), 

is confronted by a paradox first noted by Gibbs. 2 That 
is, suppose one performs a relaxation experiment on an 
ensemble whose initial distribution 1(r,0) is perturbed 
from equilibrium. If the members of the ensemble are 
then isolated from the rest of the world and allowed to 
reach equilibrium, the Gibbs mathematical entropy for " 
the ensemble remains a constant during the relaxation 
process, rather than increasing as the ensemble ap­
proaches equilibrium. For example, imagine that each 
member of the ensemble is a perfect crystal, where the 
atoms are initially given momenta randomly selected 
lrom-----a.-lviaxwell-Boltzmann distribution for a tempera­
ture twice that of melting. The question is, will each such 
isolated system melt, and if so, will the physical entropY 
increase as equilibrium is approached? If the answer 
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should reasonably be "yes" to both parts, then why does 
the mathematics predict no change in the entropy? For 
the case of a steady external force that drives the system 
away from equilibrium, with a thermostat that keeps the 
temperature constant, the corresponding paradox is that 
the entropy continues to drop forever, even at the steady 
state. 

On the other hand, in spite of this entropy conundrum, 
a great deal of insight into nonequilibrium processes at 
the atomistic level has been gained from the simulation 

.LJn the computer of the motion of atoms, using the 
method of molecular dynamics (MD).3 In these comput­
er experiments, the observable responses to external driv­
ing forces have been measured and found to be consistent 
with the second law of thermodynamics. That is, trans­
port coefficients (ratio of response to driving forcel mea­
sured by MD are always positive, and nonequilibrium 
processes are always observed in MD simulations to be 
dissipative, just as in the macroscopic real world. 

l 
In this paper, we will confront the doubtful status of 

the mathematics of nonlinear-response theory with the 
physical and mathematical reality of MD simulations of 
nonequilibrium steady states. Using formalism and nota­
tion 1 established for time-dependent response, we will 
derive an expression for the nonlinear response of an en­j 	 semble of nonequilibrium experiments, where the exter­
nal driving force is time independent. Then we will 
derive the "Kawasaki expression,,4 for the nonequilibri­
urn distribution function at the steady state and show 
that, mathematically speaking, this expression is ill 
defined and meaningless: new MD results show that the 
distribution collapses to a fractal object, the so-called 
"strange attractor,"S which cannot be expressed by a reg­
ular function. In spite of the singular (fractal) nature of 
the distribution function, the observable response can be 
expressed in terms of the transient (nonequilibriuml1 
correlation function. In other words, even though the 
formalism is inadequate to de?cribe the distribution, we1 are still justified in taking averages of mechanical proper­

! 
} ties as the steady state is approached and achieved. Be­

fore reviewing the mathematical highlights of classical 
response theory, let us first outline some important physi­
cal concepts.

i In thinking about the mathematical description of the 
1 	 flow of trajectories in phase space, it is useful to imagine 

two kinds of propagators. Associated with the Lagrang­! 
I ian picture, or co-moving frame of reference that molecu­

instability, which means that nearby trajectories in phase 
space quickly (exponentially) diverge with time, typically 
within a few mean collision times. We illustrate in Fig. I 
the contrast between Lyapunov stability and instability 
for a blob of trajectories starting out in a phase-spac 
neighborhood. Lyapunov-stable How can be represented 
by a continuous deformation-a "transformation" or 
gentle "mapping." On the other hand, Lyapunov­
unstable flow (the interesting case in statistical mechan­
ics) makes the blob quickly and grotesquely distort, frag7 
ment, and finally lose all sense of connectivity. Thus UT 

must be a particularly clever detective to untangle the 
complex history of an ensemble of trajectories. The 
"transformation" or "map" is far from gentle, if such 
terms are even appropriate beyond the purely mathemati­
cal sense. 

Keeping in mind the complexity that Lyapunov insta­
UTbility imposes on , we can nevertheless formally de­

scribe the time evolution of the nonequilibrium distribu­
tion function. The steady state is of particular interest, 
since the formalism simplifies. As we show later in the 
paper, the. ~steady-field distribution function collapses 
from the iIi.itial regular, smooth equilibrium distribution 
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FIG. 1. Schematic representation of Lyapunov-stable and 
Lyapunov-unstable flow of a neighborhood of trajectories i r I 

lar dynamicists usually have in mind, is U (t), the usuaJin phase space at times 0, t 12, and t. The top sequence shows, 
phase-space propagator, which moves an initial condition in the Lagrangian picture, a blob of points that distorts in such 
(denoted by n to the phase point n t) along its trajecto- a way as to maintain local neighborhoods under Lyapunov­
ry: [ttl U{t}[. Associated with the Eulerian picture, stable flow. The middle sequence, in the Lagrangian pic-
or space-fixed frame of reference, is UT(t), the ture, shows the fragmentation ofa neighborhood of phase-space

points under Lyapunov-unstable flow, the usual case in statisti­

1 

distribution-function "propagator," which is less intui­ cal mechanics; the action of the phase-space propagator U is to
tive, 	 because it describes the evolution of f: 

T. t drive each trajectory forward in time (the fragmentation depict-
f ([, t) U (t)fo( fl. As we will show later, U acts like ed here occurs even at equilibrium). The final sequence, in the 
a "detective," tracing trajectories backwards in time to Eulerian picture, shows a differential Eulerian box dr centered 
their origins. _~'~.'_' phase-point r (at the far right-hand side), where a series of 

These subtleties in U and U t become truly significant !r J have arrived at time t; the distribution-functio 
in light of the fact that, even at equilibrium, physically "propagator" U+ (like the detective in a mystery story) searche, 
interesting systems (many body, multidimensional, backwards in time to find the whereabouts of the trajectories 
anharmonic-and therefore ergodic) exhibit Lyapunov (like suspects) at the time of the crime (t =0). 
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f 0 onto an object of lower, fractional dimensionality in 
the phase space-onto a fractal strange attractor. In or­
der to visualize this collapse of the smooth initial distri­
bution function, we subject the regular cloud of equilibri­
um points, representing an ensemble of MD experiments, 
to a steady external field, beginning at time zero. Inexor­
ably, the face of the strange attract or emerges out of the 
featureless equilibrium cloud. 

A useful cartoon of this condensation to a lower­
dimensional attractor is provided by subjecting the sim­
ple harmonic oscillator to the dissipative Rayleigh-van 
der Pol external field. The phase space for this cartoon is 
two dimensional: q is the coordinate and p is the momen­
tum. At time zero, the field E is turned on, and the equa­
tions of motion are 

q=p, 

P=-q-E(q2 l)p. 

In contrast to nonequilibrium statistical mechanics,5 the 
Rayleigh-van der Pol equations of motion are intrinsical­
ly time irreversible. Nevertheless, it is instructive to see 
that the equilibrium (Gaussian) distribution for the har­
monic oscillator, seen in Fig. 2 as a two-dimensional 
cloud, collapses under the Rayleigh-van der Pol dynam­
ics onto a one-dimensional attractor, an odd-shaped race­
track. For a box near the attractor [see case (a) of Fig. 3], 
the number of trajectories rises exponentially, at least for 

.~ 

a while. For a box far from the attractor, such as the ori­
gin case (b) of Fig. 3], the number of trajectories as a 
function of time drops qualitatively exponentially. 

This behavior of the distribution function for a nondis­
sipative statistical-mechanical system can be obtained 
from nonlinear-response theory in the form of the 
Kawasaki expression. As in the case of a dissipative sys­
tem (such as Rayleigh-van der PoD, the attractor has 
lower dimensionality than the full space, and occupies 
zero volume. However, a statistical-mechanical system is 
different from dissipative ones characterized by limit cy­
cles or fixed points (such as Rayleigh-van der PoD, in 
that the dimensionality of 'the attractor is noninteger, 
that is, the attractoris fractal like a sponge-full of 
holes. 

The central message of this paper is that, because of 
the fractal nature of the nonequilibrium distribution 
function, the usual mathematical formalism has come to 
a dead end, at least as far as elucidating the properties of 
the distribution any further. However, the ensemble 
averages of the nonequilibrium response are well posed, 
because the trajectories themselves are perfectly well­
defined objects, even though their distribution becomes a 
peculiar fractal object. 

II. REVIEW OF CLASSICAL RESPO:'\SE 

THEORY 


The ensemble average of an observable function B of 
the phase space r at some p,articular time t > 0 can be ex-

t 
t~ 0 2 

\ 


3 5 10 

FIG. 2. Time evolution of 10 000 dissipative Rayleigh-van der Pol oscillators (E= 1). The initial conditions are selected from a 
Gaussian of unit temperature; the mass and force constant of the unperturbed (E= 0) one-dimensional harmonic oscillator are chosen 
to be unity, so that the period of one oscillation is 211'. The abscissa is the coordinate q and the ordinate is the momentum p; a 12 X 12 
square centered at the origin is shown for the six times 0, 1,2,3,5, and 10. 

i' 
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FIG. 3. Number of Rayleigh-van der Pol oscillator trajec­

tories (out of a total of 10 000) that fall within two small, square 
boxes of side length 0.2, one near the attractor (marked a) and 
one near the origin (marked b), as a function of time. (The 
boxes are located in the t = 10 snapshot. reproduced below the ! curves.)

I pressed in the Eulerian (Schrodinger) picture, that is, in1 the space-fixed frame of reference. In the space-fixed 
1 	 frame, we position ourselves at a box dr centered at a 

point r in phase space. (To establish the mathematical 
1 	 equivalence of the Eulerian picture and the Lagrangian, 

to be presented later, it is convenient to imagine that the 
initial conditions r are chosen at random from the equi­
librium distribution!0' with Eulerian boxes dr con­
structed about each point r by erecting perpendicular 
bisecting planes between it and its nearest neighbors.) 
The observable evaluated at r remains constant in time, 
while the distribution function changes as ensemble ele­
ments pass through the differential box dr. We then 
sum over all boxes in phase space to obtain the ensemble 
average, 

(B (t) = f dr B (rJ!(r,t) f dr B (r)UtU)!o(rJ . 

(1) 

NONLINEAR-RESPONSE THEORY FOR TIME-INDEPENDENT ... 

The equation of motion for the distribution-function 
"propagator" U t is obtained from th~ Liouville equation 
(the phase-space continuity equation for the distribution 
function), 

~(a/a!)!( r, t)+ (a/arJ'[j (r, t)t(r,t)] =0 , '(2) 

where the equations of motion for any trajectory inside 
the differential box d r centered at the phase point rare 
denoted by t( r, t). The equations of motion presented in 
the example below are for mass flow under an external, 
time-varying field X(t)-for example, an electric field 
acting on charged particles, giving rise to the electrical 
conductivity. (Similar kinds of equations of motion are 
employed in MD simulations of a variety of hydrodynam­
ic flows of momentum and energy, such as Couette shear 
flow, for example. I) The phase-space point is represented 
by r=(q,p,~), where q are the particle coordinates and p 
are the momenta. In order to maintain the temperature 
at a constant value T in the face of the driving force, we 
intmduce a deterministic feedback mechanism, represent­
ed in the following by the Nose-Hoover thermostat;\7 ~ 
is an additidnal dynamical thermostating variable (a di­
mensionless "friction" coefficient): 

q=plm 
(3a) 

t(r,t)= jp =F(q)+X(t) vf;p (3b) 

(vl9')2-(p 2Imk B T 1), (3c) 

where v is a parameter that fixes the rate of thermostat-~ 
ing, and the sum is over the 9' momentum degrees of free­
dom (kB is Boltzmann's constant). The kinetic energy is 
K(p)=2.p 2 /2m; its ensemble average (as well as its time 
average along each trajectory, over times that are long 
compared to the response time of the thermostat V-I) is 
guaran teed by the thermostat to be (K) = +9' kB T. The 
internal forces are obtained from the potential energy 
q>( q): F = - (aq> laq). By setting both the external force 
and thermostating rate to zero, Hamilton's (Newton's) 
equilibrium equations of motion are recovered. 

We emphasize that the particle equations of motion in 
externally driven systems need not be derivable from a 
Hamiltonian. Moreover, in order to achieve a steady 
state, deterministic thermostating (which also need not be 
derivable from a Hamiltonian) must be included 
somehow, either in boundary regions 5 or homogeneously 
throughout the sample, so as to prevent dissipative heat­
ing of the system. 

Under Nose-Hoover equilibrium dynamics, the long­
time average of an observable is equivalent to a 
canonical-ensemble average.7 This can be shown to be 
true for all nontrivial statistical-mechanical systems, 
since (1) such systems are ergodic and strongly mixing, 
and (2) the flow of trajectories under the equilibrium ther­
mostated equations of motion t o( rJ [Eqs. (3), with X ",,01 
satisfies the Liouville equation [Eq. (2)]. Thus any traje. 
tory will eventually visit every box d r located at r i~ 
phase space, with the probability !o(rJdr given by the 
equilibrium canonical distribution function, 

http:K(p)=2.p2
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the Newtonian region, Ac < 0 in the cold boundary re­
gion, and AH > 0 in the hot region, but the total 

where the internal energy is Ho = K + <1>, Ilks T, and 
the partition function is Z f dr exp( -(JHo +Y"~2). 

With f(r,t)= Ut(t)fo(r), the Liouville equation [Eq. 
(2)] can be rewritten as 

(a/atlUt(t)fo(r)= (a/ar)·[t(r, t)Ur(tlfo(r)] 

= ~iL t(t)Ut(r)fo(n , (4) 

where the distribution-function Liouville operator iL t 
operating on an arbitrary function B is defined by 

iL t(t)B (n=(a/an·[t(r,tlB (n] 

=B (n(a/an·t(r,tl 

+ t(r,tHa/anB (n 
=B(nA+iL(t)B(n. (5) 

The phase-space Liouville operator iL operating on an ar­
bitrary function B is defined by 

iL (t)B (n=t(r,tHa/ar)B (n , (6) 

while the logarithmic expansion rate of phase-space 
volume is 

A=(a/an·t(r,t) , 

We emphasize the fact that the phase-space expansion 
A in Eq. (5) is not an operator (with an attached il, but 
rather a multiplicative factor. For isolated Hamiltonian 
systems, A =0 (the Liouville theorem); for thermostated 
(Nose-Hoover) equilibrium systems, A fluctuates about 
zero; for nonequilibrium thermostated systems, 
A= ~ 2:v~, where the sum is over all momentum de,' ',. 
grees of freedom, with the possibility of independent ther­
mostating variables ~ for boundary and bulk regions. 
The 'rate at which heat flows into the svstem 8 is 
Q=.:;- 2v( K ~), which at the steady state il ks T (A). 
Because we are interested in systems driven toward the 
nonequilibrium steady state, work is done on the system 
by external forces and heat extracted from the system by 
the thermostat. In such a case, A fluctuates about a neg­
ative constant at the steady state. Therefore, from the 
first law of thermodynamics, we are forced to conclude 
that, as a system is approaching the nonequilibrium 
steady state, the occupied phase space must contract 
steadily toward an object of lower dimensionality than 
the equilibrium distribution- the strange attractor. 

When the external driving and thermo stating are done 
in boundary regions separate from the bulk, rather than 
homogeneously throughout the sample, computer simula­
tions strongly suggest9 that, for small systems, the phase­
space dimensionality loss induced by the boundary re­
gions only rarely exceeds the extra dimensions required 
co describe them. Even though the dimensionality loss is 
associated with the thermostating variables ~, the phase­
space contraction cannot be localized in the thermostated 
boundaries. Rather, it is spread throughout the system, 
including the Newtonian bulk region, a point which is 
clarified by the example of heat flow: formally AN =0 in 

A= AH +AN +Ac <O. If the phase-space dimensionality 
were localized, then it would steadily increase in the hot 
boundary region-a clearly nonsensical result. 

From Eq. (4), we see that the equation of motion for 
U t is 

(7) 

where the time derivative brings down iL t on the left­
hand side of the "propagator." The solution to this equa­
tion of motion is therefore the usual (left-hand-sided) 
time exponential, 

Ut(t)= exp [- Iot ds iL t(sl 1 

= i (-1 r f I ds I ... 
n =0 0 

(8) 

When one is thinking of a nonequilibrium molecular­
dynamics trajectory, the ensemble average of an observ­
able B is most naturally expressed in the Lagrangian 
(Heisenberg) picture, that is, in the co-moving frame of 
reference. In the co-moving frame, the observable along 
each trajectory changes with time, while the probability, 
or weight, of each trajectory remains fixed, The 
equivalence of the Eulerian and Lagrangian pictures can 
be verified by expanding U t in Eq. (1), as shown in Eq. 
(8), and integrating by parts. I In the Lagrangian frame, 
( B (t) is obtained by summing over all trajectories, 

(B(t)= I dr fo(nB(r(r)) 

= I dr fo(nU(tlB.(n . 

The phase-space propagator U operates on all oc­
currences of an initial phase point r, moving it along a 
trajectory to the new phase n t) at time t: n tl = u(t)r. 
The particle equations of motion for spatially homogene­
,?us driving are obtained from Eqs. (3) by interpreting 
n r, t) as being a function of the initial phase r and the 
external driving force evaluated at time t, and then apply­
ing the propagator U (t), 

so as to match up the phase n t) with the external force" 
X (t). 1 In this way, we make the propagator operate only 
on the initial phase, so that observables evaluated along a 
trajectory can be expressed as functions of the initial 
phase. 

Thus the equation of motion for the propagator U is 
obtained from the equation of motion of an observable B, 
assuming that B has no intrinsic time dependence 
WB lat =0), 

(d Idt)B(nt))=r( r(t),t )·[a/ant)]B(nt)) . 

With B(r(t))= U(t)B (n, this can be rewritten as 
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(a/atlv(t)B (r)= V(t)r(r,tHa/ar)B(r) 

V U )iL (t)B (r) , 

where the phase-space Liouville operator has already 
been defined in Eq. (6). Hence the equation of motion for 
Vis 

(a/at)v(t) V(t)iL (t) , 

which emphasizes that the time derivative brings down 
ilL on the right-hand side of the propagator. The solution 
to this equation of motion is therefore a "right-hand­
sided time-ordered exponential,,,l 

V (t) exp R I I ds iL (s) 
o 

00 t SI1 ......: 1 ' 
= 2: I ds 1 • •• I dS iL (Sn ) ... iL (s l) •n 

n =0 0 0 

For times greater than that characteristic of the 
Lyapunov instability of trajectories in phase space, name­
ly, A-l::::::;1"collision (typically on the order of the mean 
particle-particle or phonon-phonon collision time), the 

Vtaction of the distribution-function "propagator" is 
quite different from that ·of the phase-space propagator 
V. Even at equilibrium, a blob of trajectories, initially 
clustered within a small, finite volume t.r in phase space, 
maintains its identity for only a small, finite length of 
time (such that e~·It.r is a constant) before Lyapunov in­
stability fragments it irrevocably, as shown in Fig. 1. 
Therefore Vr traces back exponentially diverging trajec­
tories that have reached the fixed Eulerian box at time t 

and gathers up the initial values of their trajectory 
weights. In this way, Vt acts more like a detective than 
the propagator V, in that it traces the footsteps of trajec­
tories backwards in time. 

In the Eulerian picture, using the equation of motion 
for Vr [Eq. (7)], we can rewrite Eq. (1) for the ensemble 
average of an observable, 

(B (I» Jdr Bin kIr,Oi+ J: d, ;,flr,,) : 

={B(O)- fds f drB(r) 
o 

XiL t(s)V+(s)fo(r) , (9) 

III. STEADY-FIELD DISTRIBUTION 
FUNCTION: KAWASAKI EXPRESSIOl'.' 

Now we introduce the simplifying features of the step­
function external field, x(t)=xeu). In this case, for 

Vr 
t > 0, iL t becomes time independent and1 

exp( - ilL +); consequently, for external fields that doI 
I not vary in time, the phase-space Liouville operator and 1 

propagator commute, 

l iLtV+(t)=iLt[l-itL (l/2!)(itL t )2_+.,.] 

[1- itL t + ( I 121 )UtL +)2 + ... ]iL +

j = V+(t)iL + , 

average of an observable: 

{B(t) (B(o)- It ds f dr B(rJV+(s)iL tfo(r) 
o 

=(B(O)+[3X Itds f drB(rJ 
o 

X Vt(s)J(r)fo(r) , 

(10) 

where we have used the properties of the equilibrium 
canonical distribution function to obtain for the general 
time-dependent case l 

iL +(t)fo(rJ=-[3J(r)X(t)fo(rJ; 

here, W= - (J )X is the rate of work done by the system 
on the external world,E which is balanced at the steady 
state by Q, the heat flow into the system. The dissipative 
flux J is related phenomenologically to the driving force 
by the transport coefficient a > 0: {J) = aX, as in linear 
(Navier-Stokesl hydrodynamics, Nonlinear effects are as­
cribed to the transport coefficient itself, naIItely, 
a(X)=ao+ll1igher-order terms in XJ. From the exam'ple 
equations of motion in Eqs. (3), which can be applied 10 to 
the case of a point particle of mass m diffusing through a 
Lorentz forest of infinitely massive scatterers under the 

-'driving force X =mg (gravitational field in the x direc­
tion), the diffusive flux is the scattered particle's x veloci­
ty. J =Px 1m vx' which becomes aX at the steady state: 
a is the coefficient of mobility of the diffusing particle. 
For the example of Couette shear flow, the equations of 
motion are slightly more complicated than Eqs. (3) but 
similar in spirit. I The shear momentum flux is 
J = - Pxy V, which becomes 1] V i; at the steady state: Pxy 
is the shear component of the pressure-volume tensor, V 
is the volume of the N-particle fluid, the external "field" 
is the imposed strain rate (the gradient of the fluid veloci­
ty), namely, X =i; (a/ax)u y , and the shear viscosity is 1] 

(a 1J Vi. 
It is worthwhile to comment upon the physical mean­

ing of (10), In the Eulerian picture, VT gathers in the 
product Jf 0 from a multitude of trajectories. The result 
is then multiplied by the value of the observable in the 
Eulerian box and integrated over all such boxes. From 
Eq. (10), we see that the nonequilibrium distribution 
function can be expressed as 

f(r,£)= f o(rJ+[3X It ds V+(s)J(r)fo(r) 
o 

r)+[3X It ds f(r,s)Vt(s)J(r) 
o 

=fo(rJexp [[3X fOldS V+(s)J(r) 1, (11) 

where the last expression, derived by Yamada and 
Kawasaki over two decades ag04 and referred to ever 
since as the so-called "Kawasaki expression," is the for­
mal solution satisfying the Liouville equation [Eq. (2)J. as 
can be verified by partial differentiation with time. 

The physical interpretation of Eq. (11) is that the equi­
librium Boltzmann factor in f 0 is modified by the energ) 
dissipated in the nonequilibrium process, along the multi­

By virtue of this commutativity for steady fields, we are tude of contributing trajectories. In this form of the 
able to rewrite the expression in Eq. (9) for the ensemble Kawasaki expression for the distribution function, it is 

··.·I·.J 

. " 
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clear that, by analogy with its action upon the distribu­
tion function, the multitrajectory "propagator" U\ in its 
role as detective, searches backwards in time for original 
values of J. 

. l' l' ~ 10It is by now well known from numenca Slmu atlOns-' 
that at a nonequilibrium steady state, the phase-space dis­
tribution function indeed collapses onto a "strange at­
tractor" of lower dimensionality than the full equilibrium 
phase space (for examples, see figures of Pioncare sections 
in Refs. 5 and 10). In light of this collapse, how are we to 
interpret Eq. (Ill? Consider first an Eulerian box at 
r = r" near the strange attractor. (Figure 3 shows a car­
toon example for the dissipative Rayleigh-van der Pol 
oscillator.) For t »A -I, that is for times greater than 
the Lyapunov time, all but an infinitesimal fraction of the 
ensemble of starting states (trajectories) will have col­
lapsed onto the strange attractor. For most of the time 
interval from s =0 to t in the time integral in Eq. (! 1), the 
original values of J for the trajectories in the box at r" 
will have come from points that lie in the vicinity of the 
attractor, while for times s in the range from t - A-I to t 

they will have originated from almost anywhere, thereby 
contributing nothing of relative importance to the in­
tegral. The former (nonzero) contributions to the in­
tegral, however, are characteristic of the steady state, giv­
ing approximately (J) sst aXt. Therefore, at time t, for 
a box r" "near" the attractor (that is, within a "dis­
tance" dr, in the sense that e t.ld r is a constant), the 
probability is qualitatively enhanced exponentially with 
time, that is, by exp( +/3aX1t). [See case (a) of Fig. 3.J 
This early-time exponential growth finally must give way 
to exponential decay, since the attractor (like a sponge) 
occupies zero volume: the inexorable collapse of all tra­
jectories toward the attractor must continue forever. 

What abom those Eulerian boxes clearly not in the vi-, '" 
cinity of the attractor? By symmetry, we can say that 
trajectories which have recently arrived in such a box 
must have come from very near the "strange repellor." 
The repellor can be constructed by taking the l6et of final 
limitmg states that make up the attractor and applying 
the time-reversal transformation to it: coordinates q--q 
and momenta p ...... - p. On the repellor, transport 
coefficients are negative and the second law of thermo­
dynamics is violat~d, as pointed out by Loschmidt in his 
famous paradox.5 (The resolution to this paradox of dis­
sipative macroscopic behavior arising from atomistic 
time-reversible equations of motion, is that long-lived 
states with negative transport coefficients are unobserv­
able in an ensemble of nonequilibrium experiments. Such 
states can arise onIv from initial conditions that begin on 
the repellor. But the probability of choosing such an inie 

tial condition at random is precisely zero, since the repel· 
lor occupies precisely zero volume in phase space.) Con­
sequently, for the boxes that are almost everywhere in 
phase space except the measure-zero attractor and repel­
lor, the probability drops, at least qualitatively, exponen­
tially with time, that is. byexp( -/3aX 2t). [See case (b) of 
Fig. 3, as well as the long-time behavior for case (a).] . 

It should by now be abundantly clear that the Eulenan 
picture, based upon the time evolution of the distribution 
function I, is without any practical utility (beyond formal 

manipulation) for nonequilibrium statistical mechanics. 
It is rendered useless in the approach to the steady state, 
where I becomes singular as itc;ollapses onto the zero­
measure strange attractor. This explains, for example, 
the Gibbs paradox, the peculiar divergence of the none­
quilibrium entropy, 

S(t)=-ke Jdr I(f,t)ln/(r,t) , 

which continues to drop toward minus infinity at the 
steady state.2 

,g Clearly, any functional of I itself, such as 
the above expression for the entropy, is meaningless at 
the steady state. 

We wish to point out that Eq. (Ill should not be misin­
terpreted 11 to mean that I becomes infinite everywhere in 
phase space when the nonequilibrium steady state is 
reached. Even though J approaches (J) ss for all trajec­
tories (except for the set of measure zero that start out on 
the repellor), I becomes singular only on the measure­
zero attractor, in such a way that the total probability is 
nevertheless conserved and equal to unity. We see there­
fore that ad hoc "renormalization" 1 1 of I is both 
unjustified and unnecessary, and that any derivations 
which incorporate this erroneous view of the nature of 
the distribution must be viewed with great skepticism. 

IV. STEADY· FIELD OBSERVABLES: TRANSIENT 
CORRELATION FUNCTION EXPRESSION 

For observables, in contrast to direct properties of the 
distribution function itself, a computationally useful ex­
pression can be obtained from Eq. (10) by transforming 
from the Eulerian to the Lagrangian frame, I 

{B(t)=(B(Q)+/3X Jtds Jdf B(flUT(sJJ(fl/o(fl 
o 

(B(Q)+/3X Jtds Jdr lo(rlJ(flU(slB(rl 
o 

=(B(Q)+/3X Jtds{J("O)B(s). (12) 
o 

This is the so-called transient correlation function expres­
sion for the nonequilibrium response to a steady field, 
first derived by Visscher. 12 It cannot be too strongly em­
phasized, however, that Eq. (12) applies only for time­
independent external fields; time-dependent fields destroy 

U Tthe commutativitv of iL T and that allows 
simplification of Eq. (9). Note that in this derivation of 
Eq. (12), the temperature factor /3 arises naturally from 
Nose-Hoover dynamics, rather than from the artificial 
construct of ensemble theory. 

When we set the observable B equal to the dissipative 
flux J, ,....hose equilibrium average is (J (0) = 0, we ob- , 
tain an expression from Eq. (12) for the field-strength 
dependent (nonlinear) transport coefficient, akin to the 
linear response Kubo formula, J 

a(X)= (J)ss =_1_ J'" dt{J(Q)J(t) . (13) 
X kBT 0 

It should be emphasized that the transient correlation 
function {J (Q JJ (t) is evaluated with the steady field 
turned on (as well as the thermostat); the linear response 
is obtained from the equilibrium correlation function 



39 NONLINEAR-RESPONSE THEORY FOR TIME-INDEPENDENT ... 5421 

(J(O)Jo(t) (here, the subscript 0 refers to the thermos­
tated equilibrium dynamics, that is, with the field turned 
off, but with the thermostat onl. 

Equation (13) can be tested for a simple model of mass 
diffusion under gravitation; the two-particle Lorentz gas 
subject to periodic boundary conditions and thermostated 
at constant kinetic energy. to Since the flux J is the parti­
cle velocity vX ' the coefficient of mobility is a=D IkE T, 
where D is the nonlinear diffusion coefficient. At low 
depsities, this problem can be solved exactly for two hard 
spheres in three dimensions (3D), and for two hard disks 
in 2D, by applying the Boltzmann equation. The agree­
ment between the measured flux divided by the field and 
the time integral of the velocity autocorrelation function 
is good to at least three significant figures for a wide 
range of applied fields. 13 ' 

Equation (13) can also be tested for the more realistic 
case of shear flow in dense fluids. When the external field 
(the strain rate) is weak, the test is made more difficult by 
the small signal-to-noise ratio. This problem can be over­
come by applying the differential trajectory method of 
Ciccotti and co-workers: 14 along an equilibrium, Nose­
Hoover-thermostated trajec£ory, time origins are chosen 
at well separated (nonserially correlated) times, where­
upon new, nonequilibrium, Nose-Hoover-thermostated 
trajectories are generated by turning on the external field. 
The difference between the pair of simultaneous equilibri­
um and nonequilibrium trajectory segments is monitored 
at fixed response times beginning from the time origin, 
and the response is averaged over many such time ori­
gins. In work closely related to the differential-trajectory 
method, Morriss and Evans 15 have tested the differential 
trajectory form of (13) in the nonlinear regime and 
found that computing the differential transient correla­
tion function is a useful procedure for very weak applied 
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3See, for example, contributions in Molecular-Dynamics Simula­
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7W. G. Hoover, Phys. Rev. A 31, 1695 (1985); B. L. Holian, in 
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8E. L. Holian, Phys. Rev. A 34, 4238 (1986). 
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fields. In fact, they have been able to. confirm that the 
shear viscosity Tj at very small shear rates is analytic in E: 
Tj( E) = Tj( 0) Tj2E2 + .. " rather than nonanalytic, as 
Evans had previously conjectured. l6 

These results demonstrate that, at least fOr small, 
steady fields, the transient correlation function is espe­
cially useful in conjunction with differential trajectory 
methods. In summary, we see that, while the ensemble 
theory of Gibbs is of no particular use in nonequilibrium 
molecular dynamics, the Lagrangian picture of response 
theory, based on phase-space trajectories, maintains both 
its validity and utility. 

V. CONCLUSIONS 

We have presented a careful exposition of nonlinear 
response theory as applied to time-independent fields, 
demonstrating that the Kawasaki expression for the 
steady-state distribution function loses any meaning, be­
cause. of the fractal nature of the distribution. We have 
also shown how the transient correlation function, natu­
rally expresseej in the co-moving (Lagrangian) frame, can 
yield useful results for the response, even though the dis­
tribution of trajectories becomes a fractal object. By now 
it should be quite clear, however, that the usual formal­
ism, as represented by the Liouville continuity equation, 
cannot be applied blindly to fractal nonequilibrium distri­
bution functions. 
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