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Abstract: 

In this pair of papers I trace the development 
of Molecular Dynamics from its beginnings at Los 
Alamos to the present day. I emphasize the impact of 
recent developments on the problem of 
understanding irreversibility, as summarized in the 
Second Law of Thermodynamics. 

.I.. Introduction, 

Throughout Boltzmann's life-long atomistic 
study of irreversibility, he emphasized the one-body 
distribution function f1, averaged over many particles, 
with the underlying dynamics taken to be a series of 
two-body collisions. His derivation of the H Theorem, 
linking dynamics and thermodynamics, remains the 
major accomplishment in understanding the Second 
Law of Thermodynamics. Today his analytic one­
body approach has largely been superceded by 
using fast computers to simulate many-body 
"Molecular Dynamics". 

Fermi originated Molecular Dynamics at Los 
Alamos in 1953. His few-body one-dimensional 
chains launched a generation of numerical studies of 
Lyapunov-unstable ordinary differential equations. 
By 1972 computers could simulate 1000-body gases, 
liquids, or solids, and a new nonequilibrium 
mechanics was developing to facilitate this work. In 
1984, Nose made a major contribution. He showed 
how to introduce macroscopic variables, such as 
temperature, pressure, and heat flux, directly into 
time-reversible microscopiC equations of motion. 

When Nose's mechanics is applied to 
nonequilibrium systems zero-volume "strange 
attractors" form in the many-body phase space. The 
attractors provide a new explanation for the classical 
problem of irreversibility that fascinated Boltzmann. 
Here I trace the evolution of molecular dynamics from 
Fermi's work at Los Alamos to Nose's recent work, 
and I speculate on the applicability of the new 
nonequilibrium ideas to quantum systems. 
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n. Boltzmann. the H Theorem. and Molecular 
Dynamics 

It is fast computers that make molecular 
dynamics possible. The resulting dynamical 
simulations link the time-reversible fundamental 
viewpoint of microscopic mechanics to Boltzmann's 
microscopic, but approximate, kinetic theory, as well 
as to the phenomenological and time-irreversible 
macroscopic viewpoints of thermodynamics and 
hydrodynamiCS. These computer links among 
fundamentals, theory, and phenomenology change 
not just our point of view, but also our knowledge and 
our way of thinking about phYSics. In this review I 
describe these changes, beginning with Fermi's 
seminal calculations at Los Alamos, and ending on , 
the presentday research frontier. 

Both the underlying conceptual basis and the 
mathematical methods of molecular dynamics 
predate Boltzmann. Even today, the mechanical 
equations of Newton, Hamilton, and Gauss are 
solved with ancient algorithms based on Taylor's 
expansion. But before computers an algorithmic 
attack on molecular dynamics was premature. 
Maxwell and Boltzmann built kinetic theory from 
classical mechanics by averaging over space and 
time[1,2] in order to avoid a head-on attack on the 
many-body problem. 

The most significant technical difference 
between today's computer calculations and 
Boltzmann's hand calculations is raw speed. This 
difference in speed is responsible for differences in 
attitude and in goals. Boltzmann didn't think 
seriously about calculating all the trajectories in a 
many-body system. It was impossibly complicated. 
As an alternative, Boltzmann introduced distribution 
functions in order to average over calculations too 
time-consuming to contemplate. 
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The situation is very different today. Historic 
textbook complaints bemoaning our inability to solve 
the equations of motion are obsolete. Right now the 
computers are about twelve orders of magnitude 
faster than humans. And parallel processing 
promises to increase the ratio much more. Now 
computers make it simpler to solve the original 
trajectory problem than to work out the average 
distribution functions. The trajectories are generated 
in discrete steps. The complicated molecular 
trajectories are divided up into simpler "timestep" 
sections, each of which can be worked out 
analytically. Linking these timesteps together 
generates an accurate trajectory. The accuracy is 
reduced as the timestep is increased. To illustrate, 
Figure 1 displays an approximate harmonic­
oscillator trajectory[3]. The exact trajectory is an 
ellipse. The approximation used in the Figure is 
typical for numerical work It is the fourth-order 
Runge-Kutta algorithm. With the normal timestep 
choice, one-sixtieth of the oscillator period, the error 
in the Runge-Kutta approximation is much too small 
to see. In the Figure I use six steps per period rather 
than sixty, thereby increasing the energy error by a 
factor of one hundred thousand and making it 
possible to see two different errors associated with 
the numerical method. First, the amplitude gradually 
decreases. Second, the phase is shifted. Both 
errors are negligibly small for reasonable timestep 
choices. 

The approximate oscillator trajectory shown in 
the Figure captures the style of the approximate 
trajectories used in molecular dynamics studies. By 
the term "molecular dynamics" we simply mean such 
a numerical solution of the classical equations of 

Figure 1. Harmonlc-osclilator trajectory via 
the classic fourth-order Runge-Kutta methOd, 
using six steps per period to illustrate the 
approximate nature of the calculation. The 
exact trajectory is a periodic ellipse. 

q 

motion, usually for many bodies. Given the forces, 
the only approximation is the use of a finite time step. 
Normally the effect of that approximation is 
demonstrably negligible relative to statistical errors. 
The many-body molecular dynamics trajectories can 
then replace, if they cover phase space well enough, 
the idealized continuous one-body distributions 
introduced and studied by Maxwell and Boltzmann. 
This reversal, from one-body distributions to many­
body trajectories, occurred only because the time 
integration required by ordinary differential eQ' 'ns 
is simpler than the combined space-and-time 
integrations required to solve partial differential 
equations. 

The origins of kinetic theory were European. 
In 1905 Mrs. Hearst persuaded Boltzmann to leave 
the pleasant sophistication of Vienna for a summer in 
California. His account of that summer is delightful 
reading [4]. He lectured at Berkeley on irreversible 
processes, his favorite research topic. He visited 
LIvermore. Monterey. and the new Lick telescope at 
Mount Hamilton. While surviving the stress of 
California's rough roads, local prohibition, and 
western cuisine. Boltzmann clearly saw the future, 
especially in the potential of Mrs, Hearst's University 
of California. 

A generation later, the United States set the 
pace in computation. and did so for another 
generation. using World War II's scientific immigrants 
to develop and implement differential equations on 
the world's most powerful computers. While the war 
was on, these were handcranked machines. But the 
bombs that ended the war demanded ever more 
complex calculations. By 1952 the Los Alamos 
"MANIAC" computer was about a million times faster 
than humans[5]. That amazing speed has now 
increased by another factor of a million. And the 
once-rural institution at which Boltzmann lecturp.,.l 
the University of California, now controls more 
CRAYS and more scientific computing power thelll 
any other institution in the world, 
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~olecular Dynamics Begins at Los 
jl.a.lDos and Liyermore. 

Continually-growing computer power fosters 
ever more complex physics problems. And there is 
no limit to this growth. The most-interesting physics is 
nonlinear and ~chaotic". In a chaotic problem small 
changes in initial conditions lead to big differences in 
the solutions[S-8]. Turbulence is such a problem. 
These problems are infinitely harder to solve by hand 
than are linear ones. But nonlinearity is no inherent 
problem for computers. With efficient algorithms 
computers can provide us with a highly-accurate 
approximate solution. 

At Los Alamos, computers were vital to 
predicting and understanding short-time highly­
nonequilibrium bomb experiments. Patriotism 
attracted many of the world's most talented and 
stimulating scientists to this work. They speculated 
on the applicability of growing computer power to 
other areas in mathematical phySiCS. Computation 
moved from hand calculators to punched cards in 
1943, under Feynman's supervision. The war ended 
and nearly ten years passed before Los Alamos' 
stored-program MANIAC computer was ready. 

Fermi moved to Chicago after the war. He 
remarked that he would have stayed at Los Alamos 
had it been a University. But Fermi still returned in 
the summers, to work with Metropolis, Teller, Ulam, 
and other pioneers. Fermi had invented one useful 
many-body technique, the Monte-Carlo method, long 
before his Los Alamos days. The dynamic many­
body problem, hard even for three bodies, remained 
a natural challenge in mechanics. After the war, as a 
summer commuter from Chicago, he introduced a 
primitive molecular dynamics at Los Alamos. 

Fermi wanted to link molecular dynamics and 
thermodynamics, by watching the Second Law of 
Thermodynamics in action. To do this he simulated 
the motion of many-body chains of the type displayed 
in Figure 2. His idea was to watch many-body 
systems approach equilibrium [9], and to compare 
the results to the predictions following Boltzmann's 
one-body H-theorem route. Though short computer 
runs worked fine, one day an overlong computation 
seemed to reverse and back away from equilibrium. 

Figure 3. TraJectory time exposures for 
three-dimensional hard spheres In the 
solld(left) and fluld(rlght) phases, from 
Reference [11]. Pictures such as these 
showed that purely-repulsive forces are 
sufficient to cause freezing. 
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There was no error, The backup was real. For 
studying the approach to equilibrium, Fermi's choice 
of system was unfortunate. He did not realize that 
one-dimensional chains do not equilibrate nearly as 
easily as do two- and three-dimensional systems. 
The failure of the chains to equilibrate surprised • 
Fermi and helped awaken widespread interest in 
deterministic chaos in the next two decades. 

Teller wanted a laboratory to compete with 
Los Alamos. The new rival, the Lawrence Radiation 
Laboratory, at Livermore, took shape while Los 
Alamos' MANIAC computer was being developed. At 
Livermore, Alder and Wainwright soon tested 
Boltzmann's one-body H-Theorem analysiS of the 
approach to equilibrium[10j. They studied the motion 
of 100 three-dimensional hard spheres. These 
many-body hard-sphere studies confirmed 
Boltzmann's equilibration analysis. Alder and 
Wainwright's further studies were conclusive in 
showing that the freezing transition, and the 
existence of the solid phase, depends only on 
repulsive forces. The time-exposure trajectories 
shown in Figure 3 document this early wOrk[11]. 
Also significant was the quantitative agreement of the 
molecular dynamics calculations with Wood and 
Parker's Monte-Carlo simulations of the same 
systems. The two numerical techniques were found 
to agree not just in the thermodynamic limit, but even 
for systems of just a few particles[12]. 

Figure 2. 16-spring anharmonic ()scillator chain studied by Fermi, Pasta, Ulam, Tuck, 
and Menzel at Los Alamos. The typical starting condition was the lowest-frequency 
"mode" shown in the Figure, with quadratic or cubic forces added to the Hooke's-Law 
linear forces. . 
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These early demonstrations that 
thermodynamic phase equilibria, as well as the 
approach to equilibrium. could be modelled with just 
a few interacting particles, established the utility of 
molecular dynamics in linking microscopic and 
macroscopic behavior. At last Maxwell and 
Boltzmann's conceptual basis linking fundamental 
microscopic approaches, molecular dynamics, 
kinetic theory and statistical mechanics. to 
phenomenological macroscopic approaches. 
thermodynamics and hydrodynamics, was secure. 
There was no longer any real doubt that microscopic 
many-body dynamics could reproduce macroscopic 
behavior. It was simply a question of figuring out 
how to do it as quickly, easily. and efficiently as 
possible. 

1111. Applications to Real Solids and LIquids 
at Brookhayen. Argonne. and Orsay. 

Across the country from Alder and 
Wainwright's California calculations with idealized 
hard spheres, Vineyard. at Brookhaven on Long 
Island, simulated the behavior of real irradiated 
copper crystals. Vineyard demonstrated the 
applicability of the many-body molecular-dynamics 
techniques to real atomic-scale problems involving 
the interaction of high-energy radiation with matter. 
His results appeared first on the cover of the Joumal 
of Applied Physics, reproduced here as Figure 4. 
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Figure 4. Cover of the August 1959 Journal 
of Applied Physics. The boundary particles 
obey Irreversible viscoelastic equations of 
motion. 
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The conception, execution, and deSCription Of 
these early calculations were models of simplici+ 
and clarity. Vineyard characterized nonequii il 
energy storage following high-energy irradiation.~ He 
studied radiation damage by scattering energetic 
particles from crystals, following the individual 
colliSions, with the viscoelastic boundaries draining 
off heat to reduce the effect of small system size. He 
established the importance of "focussing COlliSions' 
which transmit energy, coherently and through long' 
distances[13]. 

Long before these early days of molecular 
dynamics, equilibrium gases and solids were fairly 
well understood. Gases could be treated as nearly­
independent particles, while solids could be treated 
as nearly-independent phonons. Liquids were more 
mysterious. In principle, the known many-body 
equilibrium distribution function could be integrated 
over N-2 particle coordinates, to find the tWO-body 
distribution function needed to understand pressure 
and energy. But this averaging was too involved for 
practical calculations. A generation of physicists 
developed complicated distribution-function theOries 
to discuss Iiquids[14J. but little actually emerged 
before computer simulation. With fast computers this 
generation's theory became obsolete. After a period 
of testing, the old approaches, integral equations, 
cell models, and virial series, could be retired, 
replaced by perturbation theory. 

In the early days of molecular dynamics, 
"solving" another many-body problem had mear •• 
making another computer simulation. But by 1970, 
perturbation theory[15] made possible quantitative 
predictions of many-body thermodynamic properties 
in terms of reference computer data. The basic two­
body "reference-system" properties were taken from 
computer experiments. A crude example is shown 
on the next page, in Figure 5, where the Lennard­
Jones-pair-potential and argon phase diagrams are 
displayed together. The Lennard-Jones potential is 
not a specially faithful representation of argon, but is 
certainly a reasonable reference-system basis for 
perturbation calculations. And the perturbation 
theory worked well for "simple liquids", meaning 
monatomic fluids like argon. 

With reference-system properties for hard 
spheres established at Los Alamos and at Livermore, 
the idea of describing liquids, using the more­
realistic continuous-potential case, was acted on by 
Rahman. Rahman, working alone at the Argonne 
Laboratory near Chicago, took on an outstanding 
hard-but-tractable problem in equilibrium statistical 
mechanics, the modelling of an equilibrium 
monatomic liquid. Rahman[16] was the first to study 
a realistic liquid with molecular dynamics and to 
compare the results with experimental data. The 
structures that he found with 864 atoms were in 
agreement with laboratory experiments and inspi" ~ 
further molecular-dynamics studies of equilibriun 
liquids. 
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Figure 5. Three-phase temperature-density 
phase diagrams for the Lennard-Jones pair 
potential, from molecular dynamics and 
Monte-Carlo slmulatlons(solld), and for 
Argon, from experlment(dashed). 

Rahman also measured the equilibrium time­
correlation functions needed to generate the linear 
transport coe'fficients. Soon after, Verlet, Levesque, 
and Kurkjjarvi, in France, took up molecular 
dynamics and carried out definitive studies of both 
thermodynamic and transport properties of the 
prototypical Lennard-Jones Uquid[17]. Since then, 
with spreading computer power and interest, 
molecular dynamics has become a truly international 
enterprise[18]. 

To illustrate this idea, but without any attempt at 
completeness, I mention as examples Evans in 
Australia, Posch in Austria, Bellemans in Belgium, 
Klein in Canada, Singer in England, Hansen in 
France, Hess in Germany, Berendsen in Holland, 
Rapaport in Israel, lacucci in Italy, Nose in Japan, 
Barojas in Mexico, Dremin in Russia, and Toxvaerd 
in Sweden. 

Most liquids are polyatomic, not monatomic 
and "simple", and the classical treatment of 
polyatomic molecules has remained a subject of 
theoretical speculation. Many successful numerical 
simulations have appeared[18, 19]. The viscosity for 
butane, for instance, has been investigated by two 
completely independent methods[20] and both 
simulated results lie within about 25% of the 
experimental viscosity. The simulation of large 
biological molecules followed naturally[21], as did 
also solid-phase applications in materials 
sCience[22], but with remaining major uncertainties 
with respect to the forces and the effect of quantum 
mechanics on the dynamics. The main motivation for 
undertaking large-molecule studies is the rapidly­
improving resolution of experimental techniques. 
See Figure 6 for a r~cent detailed scanning­
tunneling-microscope snapshot of DNA[23]. 

Figure 6. DNA, as seen using a scanning tunneling microscope, as described In 
Reference [23). 
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Figure 7. Eight shaded fluid-wail particles Interact 
with tWelve Newtonian Particles following tlme­
reversible thermostatted equations of motion. 

V. Molecular Dynamics Ear From Equilibrium. 

Equilibrium Newtonian molecular dynamics was 
expected to give accurate transport coefficients-­
diffusion. viscosity. and thermal conductivity--through 
Green and Kubo's fluctuation theory. but the agreement 
with experiment turned out to be poor. The early many­
body simulations of liquid transport properties contained 
errors. The calculated triple-pOint viscosity of liquid 
argon. assuming a pairwise-additive Lennard-Jones 
potential for the interatomic forces. was considerably too 
high. The thermal conductivity was worse. different from 
experiment by a factor of two. much too much to explain 
on the basis of force-law uncertainty. Thus, resolving 
disagreements between the equilibrium fluctuation 
theory[17] and experiment was one of the main 
motivations for the early nonequilibrium simulations[24j. 
Ashurst and Hoover set out to measure liquid transport 
properties by direct nonequilibrium methods. They 
simulated laboratory flows with what they called 
"Nonequilibrium Molecular Dynamics'. Independent 
related work, but on a smaller scale. was then being 
carried in England by Gosling, McDonald. and 
Singer[25]. and by Lees and Edwards[26]. 

Transport properties are mainly of interest not for 
Checking fluctuation theory, but for use in hydrodynamic 
simulations of nonequilibrium flows. Of course sufficiently 
simple flows can be used to find the transport coefficients 
themselves. Nonlinear simulations of driven systems. in 
nonequilibrium steady states were studied at length by 
Ashurst in his Ph. D. thesis work at Livermore[24]. He 
developed time-reversible momentum and heat reservoirs 
which could be used to drive shear flows and heat flows 
while maintaining steady boundary temperatures. The 
boundaries he used. after trying out many less­
satisfactory alternatives, are shown in Figure 7. 

Ashurst had no vested interest in the use of the 
traditional classic time-irreversible Langevin and FOkke 
Planck stochastic equations. Instead, his instincts led r 
toward time-reversible methods. The time-reverSai­
invaria~ce of his nonequilibrium equations of motion is 
essential to the understanding of irreversibility diScussed 
in Section VI. His boundary-driven work led to the 
steady-state generalization of homogeneous-deformation 
dynamics developed independently by Lees and 
Edwards[26]. Ashurst devoted serious attention to 
boundary conditions, exploring a variety of rigid and 
perio~ic boundaries, both fixed and in motion. This Work 
led directly to shear and bulk deformation methods used 
to study viscosity and plastiCity, identical to those 
formalized independently by Andersen[27] and Parrinello 
and Rahman[28] to describe the equilibrium constant­
pressure and constant-stress ensembles. 

~o offset thermal fluctuations, molecular dynamics 
was typlcall~ applied to highly-nonequilibrium problems. 
These were Indeed very far from equilibrium, although not 
so far away as conditions in a strong shockwave. In the 
dynamical shockwave simulations temperature changed 
by thousands of degrees, and pressure by half a million 
atmosopheres. in a shockwidth of a few atomic diameters 
The nonequilibrlum simulations showed, in qualitative . 
agreement with experiment. a smail but definite decrease 
in Viscosity with strain rate. The change of conductivity 
with increasing temperature gradient could be either an 
increase or a decrease, depending on the temperature. 

With non-Newtonian boundary conditions 
incorporating mass, momentum, and energy reservOirs a 
variety of new simulation types became possible. ' 
Nonequilibrium simulations could include moving perio, 
boundaries. Volume and shape changes could be 
imposed homogeneously or through displacements 
induced by fields or localized at physical boundaries. 
These possibilities are illustrated in Figure 8. 

Figure 8. Four types of boundary conditions for 
simulating fluid or SOlid deformation. The motions are 
driven by (I) external fluid-wail partiCles, (II) 
homogeneous periodic deformation, (111) 
Inhomogeneous external fields, and (1111) moving 
corrugated boundaries. 
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Figure 9. Fragmentation simulation showing over 
14,000 two-dimensional Lennard-Jones atoms in 
free. expansion from a hot compressed state. 

The first calculations confirmed that the 
various approaches gave consistent results[24]. At 
Los Alamos, strong shockwaves[29j were simulated 
by contracting boundaries. The results were not 
very different from the linear-transport Navier-Stokes 
predictions, despite gradients much larger than 
those typically used in non equilibrium simulations. 
Thus the nonlinear behavior of the transport 
coefficients in shockwaves is very different from that 
found in the gentler homogeneous deformations. 
Despite the very large gradients shockwave 
transport coefficients are close to the zero-gradient 
linear-transport values. This insensitivity to 
nonlinearity is still largely unexplained. though some 
fundamental low-density kinetic-theory studies have 
been carried out[30]. Years later the reversed case, 
expansion. was used to study fragmentation[31 ,32] 
and fracture[33]. as shown in Figures 9 and 10. 

Figure 10. Fracture simulation showing an 
arrested crack In a crystal with a tapered 
boundary under tension. The imposed tensile 
stress caused the crack to proceed past the 
stopping point, Indicated by arrows, predicted by 
static fracture mechanics. 
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Eckart Meiburg, in Goottingen. was the first to 
carry out large-scale hydrodynamic simulations with 
molecular dynamics[34]. Besides the shockwave work. 
earlier less-extensive smaller-scale studies[35,36] had 
likewise suggested that molecular dynamiCS and 
hydrodynamics match closely. Computers were 
becoming powerful enough to consider again averaging 
to measure distribution functions. A typical averaged flow 
field taken from Meiburg's work is shown in Figure 11. In 
that Figure Meiburg's arrows represent stream lines of the 
fluid flow. Like Vineyard's. Meiburg's work is a model of 
clarity. He studied the motion of tens of thousands of hard 
spheres flowing past an obstruction and observed an 
average flow field looking very much like the initiation of a 
von-Karman vortex street. 

Figure 11. Hard-sphere simulation of flow past a 
splitter plate. Arrows represent stream lines. The 
beginnings of a "vortex street" can be seen. 

More recently, Mareschal, Kestemont, Mansour, 
and Puhl[37] have studied Rayleigh·Benard instability, in 
which a fluid heated from below, in a gravitational field, 
develops cylindrical convection currents. A typical 
averaged flow field distribution in shown in Figure 12. 
They made a careful comparison of molecuiar-dynamicS 
results with hydrodynamic solutions of the Navier-Stokes 
equations. The Rayleigh·Benard model is of special 
historic interest through its link to the computational study 
of chaos introduced in Lorenz'[38] classic paper on 
atmospheric turbulence which appeared in 1963. 

Figure 12. Averaged fluid flow velOCity vectors In a 
two-dimensional simulation of compressible Rayleigh­
Benard heat flow In a vertical gravitational field. The 
two vortices found with molecular dynamics match 
the predictions of continuum mechaniCS, as described 
In Reference (37) • 
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VI. 	 Irreyerslbillty and Instability 
from Tlme-Reyerslble Two-Body Mechanics 

Both Newton's and Schrredinger's equations 
of motion are "time-reversible". This means that any 
movie illustrating a Newton or Schrredinger solution 
can be run either backward or forward through the 
movie projector. Both versions satisfy the same 
equations of motion. In the reversed direction, the 
Newtonian velocities would change sign, as would 
the corresponding imaginary component of 
Schrcedinger's wave function, but the time-reversed 
classical trajectory. or quantum probability density. is 
as good a solution of the equations of motion as the 
forward one. 

The conflict between these fundamental time­
reversible descriptions of motion and the even-more­
fundamental irreversible behavior of the "real" world 
has attracted continuing interest since Boltzmann's 
time. Boltzmann focussed attention on the time 
evolution of the averaged one-body probability 
density, f1 (q,p,t). 

The gas-phase Boltzmann equation for the 
time-development of fl' as well as the linearized 

, Krook-Boltzmann approximation, and the Fokker­
r Planck plasma equation, all evolved from analytic 

attempts to express and understand patently­
irreversible many-body phenomena in terms of the 
one-body distribution function. These simplifications 
are less necessary today. We can follow the details 
of phase-space deformation, as given by the the time 
history of the N-body distribution function, tN, for 32­
body systems. Today we can generate accurate 
trajectories for a million particles. And particle 
mechanics has itself been modified to treat the 
problems addressed by Boltzmann, Fokker, and 
Planck. A 1984 modification of Hamiltonian 
mechaniCS, discovered by Shuichi Nose and 
described in Paper II. is the key to these modern n 
trajectory investigations of irreversible behavior. 

Boltzmann studied the one-particle distribution 
function in dilute nonequilibrium gases. His time­
irreversible Boltzmann equation 

df1/dt = (()fl/dt)colllalona , 

provided a plausible description averaged over a 
large number ot particles. By ignoring fluctuations 
and correlations, Boltzmann estimated the time-
dependence of the one-body-phase-space 
probability density. His most famous result, derived 
from the Boltzmann equation, was the H Theorem. 
That theorem shows that isolated systems 
irreversibly approach equilibrium. Thus, Boltzmann's 
equation already lacked the time-reversibility of 
Newtonian mechanics and provided an approximate 
entropy function which could not decrease with time. 

p 

~----------------q 

Figure 13. Schematic time-development of a 
phase-space hypersphere Into a short-time 
hyperellipsold, and a longer-time Smale 
horseshoe. 

The fundamental mechanism underlying the 
approach to equilibrium is now known to be 
"Lyapunov instability"[39-43]. This instability, and its 
many-body generalization to the "Lyapunov 
spectrum", describes the exponential spreading 
apart of initially-neighboring many-body-phase­
space trajectories, as well as the exponential growth, 
or decay, of many-dimensional phase-space 
hypervolumes. See Figure 13. The trajectory 
spreading has to be simultaneously accompanied by 
an orthogonal compression because any 
Hamiltonian flow, when averaged over all directions 
in the phase space, is incompreSSible. The 
orthogonal rates of growth and decay of phase­
space separation are given by "Smale Pairs" of 
Lyapunov exponents. equal in magnitude but 
oppOSite in sign. The idea of measuring distance 
between points in phase space might seem bizarre, 
because coordinates, momenta, and friction 
coefficients all have different physical units. But 
because the growth and decay rates are exponential, 
the muliplicative choice of scales of the axes are 
irrelevant. Exactly the same exponents would result 
for any other choice of generalized coordinates and 
momenta. 

In phase space, the spreading instability 
progresses from small scales, with hyperspheres 
elongating into hyperellipsoids. to large scales, at 
which the deforming hyperellipsoids must bend to 
follow the macroscopic phase-space motion. On the 
infinitesimal microscale the Lyapunov instability can 
be seen as sensitive dependence on initial 
conditions, as revealed by a linear stability analysis 
of the equations of motion. 
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Figure 14. Bouncing of a mass point on an Infinitely-massive elastic ball of unit 
radius. The maximum height of the bouncing point Is 1.25. Plotting the same 
trajectory on a semllogarlthmlc scale (at right) shows the characteristic Lyapunov 
instability responsible for macroscopic irreversibility. 

4.------,.....-------, 1.-------.--------. 
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t Figure 15. Typical Lyapunov-exponent spectra for two- and three-dimensional fluids and 
solids. The phase-space stretching rates (positive Lyapunov exponents) and compression 
rates (negative Lyapunov exponents) are shown as symmetric Smale pairs. This equilibrium 
symmetry Is broken In the nonequllibrlum states discussed In Section VI and In Paper II. 
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Figure 14 shows a simple example, the 
Newtonian Lyapunov-unstable bouncing of two balls 
in a constant vertical gravitational field. The lower of 
the balls is held fixed. For clarity, the upper, moving 
ball is shown as a mass point. In cartesian 
laboratory coordinates the bounces become more 
widely separated with each bounce. In 
semilogarithmic coordinates the exponential 
instability of the motion is clearly apparent. 

Ball bouncing on a unit sphere 
Xc= 0.00001 i Yo =1.25; m=1 j g =1 

1.0 

Y 

0.2 	 0.4 0.6 0.8 1.0 1.2 1.4 

x 

In many-body phase space the generalized 
exponential Lyapunov instability is described by the 
Lyapunov spectrum[41-43J. Figure 15 shows 
typical many-body spectra for both two- and three­
dimensional fluids and solids. The Smale-pair 
symmetry of these equilibrium spectra follows from 
the equivalence of forward and backward solutions 
of the equations of motion. In nonequilibrium steady 
states, this symmetry is broken, and the sum of the 
Lyapunov exponents is negative. 
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