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A Lagrange-multiplier method for finding the complete spectrum of Lyapunov exponents, 
which describe the spreading and mixing of many-body phase-space trajectories, is developed 
and applied here to simple two- and three-dimensional equilibrium fluids with short-range 
repulsive forces. The numerical values of the Lyapunov exponents converge well, in computer 
simulations of 103 to 105 time steps, and are insensitive both to the initial conditions and to the 
numerical accuracy of the trajectory integration. 

I. INTRODUCTION 

The microscopic dynamics of systems described by the 
second law of thermodynamics includes both the Lyapunov 
spreading of phase-space trajectories and, simultaneously, 
the condensation of these trajectories onto "strange attrac
tors" with a dimensionality less than that of the full phase 
space. Now it is possible to study the microscopic time devel
opment of such non equilibrium systems in steady states, 
where the spreading and condensation are stationary pro
cesses. In these nonequilibrium steady-state systems there is 
a continuous con version of work into heat. The details have 
been elaborated for two relatively simple scattering prob
lems: the two-dimensional Galton-Board 1 and the one-di
mensional Frenkel-Kontorova conductor.2 In both cases a 
single moving particle is accelerated by an external field, 
scattered by a fixed potential, and simultaneously main
~ :lined at constant (time averaged) temperature by thermos

catting forces. 
Here we address the simpler equilibrium trajectory 

spreading by analyzing the motion of Newtonian many
body systems. To simplify the analysis we omit nonequilibri
um driving and constraint forces3 as well as long-range 
forces. In the equilibrium case there is no condensation onto 
a strange attractor because phase-space volume is conserved. 
This Liouville theorem conservation corresponds to the 
symmetric distribution ofLyapunov exponents around zero. 
We follow the usual practice in equilibrium simulations of 
dense fluids by using periodic boundary conditions. These 
simplifications with respect to ( 1 ) the form of the equations 
of motion, (2) the range of the forces, and (3) the type of 
boundaries can all be avoided at the expense of some addi
tional notational and computational complexity. 

Consider the neighborhood of a phase-space trajectory 
where that trajectory is generated by autonomous time-inde
pendent deterministic equations of motion. We analyze the 
co-moving Lagrangian spreading of nearby phase-space tra
jectories by measuring the Lagrange-multiplier constraint 
forces required to keep these nearby trajectories in a fixed 
orthonormal relation to one another as time goes on. We 
describe the calculation first for the simplest possible case, 
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two two-dimensional particles, and then for the general case, 
illustrating the general case with results for fluid-density 4-, 
8-, and 32-particle systems in three space dimensions. 

The same method can be applied to more complicated 
situations. The results suggest an interesting parallel 
between the equilibrium spectrum ofLyapunov exponents of 
fluids and the spectrum of lattice-dynamical vibrations for 
solids. Both the dynamics of phase transformations and the 
mechanism of phase-space mixing in nonequilibrium flows 
induced by the contraint and driving forces can be investi
gated in this way. In the next two sections we illustrate the 
method with several example problems. 

II. SIMPLEST CASE: TWO PARTICLES IN TWO 
DIMENSIONS 

Consider two particles interacting with the repulsive 
pair potential 

ifJ = 100(1 - r)4; r< 1; 

truncated at the cutotfradius, r = 1, at which the first three 
derivatives vanish. The short-range anharmonicity of this 
potential was chosen to resemble the rare-gas-model Len
nard-Jones potentiaL One-dimensional nonlinear oscillation 
calculations using this potential, with energies and mean free 
paths typical of two- and three-dimensional dense fluids in
dicated that this truncated, but specially smooth, potential 
minimizes the errors associated with numerical integration 
using the classic fourth-order Runge-Kutta method.4 The 
sidelength of the periodic box, shown in Fig. 1, was chosen 
equal to 2 in order to maximize the collision rate. The total 
energy, a constant of the motion, was also arbitrarily taken 
equal to 2, the number of particles, corresponding to choos
ing the product of Boltzmann's constant and the tempera
ture equal to L 

The dynamics of this two-body system could be most 
economically described by giving the time history of the 
three independent variables, Xl' Yl' and 0, with egiving the 
direction of relative velocity. Conservation of momentum 
and energy then provide sufficient information for a com
plete description. But it is far more convenient to ignore this 
illusory "simplification" and to use instead the full phase
space description: (Xl' X2, YI' Yz, Pxl ,Px2' Pyl' Pv2) In this 
full eight-dimensional phase space, Liouville's theorem is 
valid. But most molecular dynamics simulations, including 
those described here, use periodic boundaries, so that center-
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FIG. 1. Initial condition for the two-body problem discussed in the text. 
Periodic boundaries are used with a box length equal to twice the range of 
the interparticle forces. 

of-mass motion is excluded. Such a motion would undergo 
no acceleration and is therefore irrelevant. Accordingly, for 
two particles we consider the phase-space subspace in which 
the center-of-mass velocity is exactly zero. This space is 
spanned by four orthonormal basis vectors, 8» 82 , 83, and 84 , 

It would be possible to consider instead the energy surface 
spanned by three such vectors, but Liouville's theorem holds 
only in a time-averaged sense on that hypersurface. This 
slightly more complicated energy-surface treatment has no 
obvious advantages. 

Consider now the detailed motion of the basis vectors 
{8J. We follow the natural convention that these are col
umn vectors. The transposed row vectors are denoted {8:}. 
Provided that the {8 i } are infinitesimal in length their mo
tion can be calculated by linearizing the equations ofmotion 
about the reference trajectory, as in Ref. 5: 

8, D·8,. 

The square matrix D gives the coupling between the coordi
nate offsets 8q and the momentum offsets 8p: 

8q 8p 
m 

Thus the upper right quadrant ofDis I 1m, whereIis the 
identity matrix, and the lower left quadrant couples together 
all ofthe coordinates ofall pairs ofinteracting particles. This 
lower left matrix is exactly the same matrix ofpotential-func
tion second derivatives used in classical solid-state lattice 
dynamics. But the expansion is carried out about the time
varying dynamical state ofafluid system rather than about a 
solid's potential minimum. Thus the eigenvalues are not nec
essarily positive. The symmetry of the matrix does make it 
possible to show that the eigenvalues occur in pairs. The 
matrix elements outside the lower left and upper right quad
rants all vanish. In nonequilibrium systems, with momen
tum-dependent forces and friction coefficients3 there are ad
ditional nonvanishing elements. 

It has been abundantly demonstrated, and is by now 
well known, that in chaotic nonlinear systems unconstrained 
vectors 8 will soon rotate into the direction of maximum 
phase-space spreading and will then diverge to infinite (that 

is, no longer infinitesimal) length. To prevent this relative 

motion we constrain6 the first basis vector to remain at a 

fixed distance to the reference trajectory, using a Lagrange 

multiplier A11: 


81 = D·81 -..1 1181, 

Next, the second basis vector is forced also to lie at a 
fixed infinitesimal displacement from the reference trajec
tory and simultaneously to remain orthogonal to 8 1, These 
two constraints require two more Lagrange multipliers, ..122 

and ..121 : 

82 = D'82 - ..12282 - ..1218 1, 

In the general case, the ith basis vector is constrained by i 
Lagrange mUltipliers to remain orthonormal with respect to 
each of its predecessors j < i: 

where the sum is over allj<i. 
The initial choice of the orthonormal phase-space basis 

vectors is largely arbitrary, but they must be chosen to match 
the center-of-mass velocity, which is conserved by the equa
tions of motion, not just for the reference trajectory r, but 
also for the trajectory displacements 8. A convenient choice, 
for two particles in two dimensions is the following (the 
transposed row vectors are denoted 8f ): 

8~ = ( + y, - y,O,O,O,O,O,O); 

8; = (0,0, + y, - y,O,O,O,O); 

8~ = (0,0,0,0, + y, - y,O,O); 

8~ = (0,0,0,0,0,0, + y, - y), 

where y = 0.51/2 = 0.7071. 
In the general case, the vectors can be chosen as the 

N - 1 real one-dimensional sine or cosine normal coordi
nates ofa periodic N-body chain (see Sec. III for a four-body 
example) giving 6(N - 1) vectors 8, the components of 
which are 3 (N - 1) linear combinations of the x, y, or z 
space coordinates and a further 3(N - 1) vectors 8, the 
components of which are 3 (N - 1) linear combinations of 
thepx' PY' or pz momenta of the particles. 

It is convenient to reorthonormalize the vectors occa
sionally, as is described in Ref. 5. The computation time 
associated with this step is negligible relative to that involved 
in calculating the Lagrange multipliers. The values of the 
Lagrange multipliers can be obtained by calculating the dot 
products of the equation ofmotion for each 8 i with the com
plete set ofbasis vectors. The constraint m2intaining orthon
ormality can be written 

8;A +8;'8; =0; 

Ali = 8; 'D'8;; 

Ai>j =8;'D'8j +8J·D·8,. 

We emphasize that the entire system of differential 
equations, not just those describing the Newtonian reference 
trajectory, is time reversible. This means that any trajectory, 
including those described by the orthonormal co-moving ba-~ 
sis vectors, can be run backward in time while still satisfying . 
the same equations. In the time-reversed motion, the mo-
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mentum variables p and the Lagrange multipliers {Ai) 
change sign. The time-averaged values of the diagonal La
grange multipliers, the Lyapunov exponents, are thus dis
tributed in pair symmetrically about zero, with positive and 

- negative members of each pair. 
An outline of the numerical calculation appears in the 

Appendix. A typical FORTRAN program, emphasizing clar
ity at the expense ofefficiency, is about 500 to 1000 lines long 
and requires a few days to write and debug. We document 
the computation in more detail in the new journal, Molecu
lar Simulation.:2 

The calculations carried out in the present work show 
that the characterization of the Lyapunov exponents within 
about 1 % requires a time on the order of hundreds of thou
sands of time steps. In the two-particle, two-dimensional 
case, with ten Lagrange multipliers Aij' the Lyapunov expo
nents are the time-averaged values of All' A22, A33 , and A44 · 

Table I indicates the range of values observed in three sepa
rate calculations with different time steps. Varying the initial 
conditions confirmed our expectation that the Lyapunov 
spectrum for this mixing system is independent of these con
ditions. 

The reversibility of the equations of motion was tested 
for this same two-body problem by running forward in time 
for 1, 2, 4,8, 16,... time steps, then reversing the momenta 
and proceeding backward in time for the same number of 
steps again. If the numerical algorithm were perfect, the ini
tial condition should be recovered and the Lyapunov expo
nents for the reversed run should be the negatives of the 

,-corresponding exponents in the forward direction. The ener
gy of the system still was constant to eight significant figures 
when, at a time near 1.0, the Lyapunov exponents showed 
deviations of order 1 %, emphasizing the sensitivity of Lya
punov instability. Thus strict numerical reversibility of the 
system of equations required for the Lyapunov spectrum 
holds for a considerably shorter time than the reversibility 
time for a single many-body system. 

Ill. FOUR THREE-DIMENSIONAL PARTICLES. 18 
LYAPUNOVEXPONENTS 

The number of Lagrange multipliers grows as the 
square of the number of particles so that the problem of 

TABLE 1. Lyapunov exponents for two two-dimensional particles with to
tal energy E = 2.00. The potential part of the energy <I> is 0.223, 0.228, and 
0.230 in calculations with a fourth-order Runge-Kutta time step ofO.001, 
0.002, and 0.004, respectively. The cumulative time·averaged I"yapunov ex
ponents are given at six different times during each run for the same three 
time steps: (I) dt 0.001, (2) dt=0.002, (3) dt 0.004. The initial con
ditions, shown in Fig. 1, were X, 0.7, YI = 0.598, Xl 0.7, and 
Y2 = 0.598. The initial velocities were p" = 0; Pyl ..j2; Px2 0; Py 2 

Time All An )·44 

determining these is one in which fast parallel computers 
should eventually prove to be useful. The procedure follows 
the lead of our two-dimensional example. The transposed 
phase-space basis vectors, three each in thex,y, Z,Px ,PY' and 
pz subspace follow the normal vibrational modes for a peri
odic four-body chain: 

( + 0.50, - 0.50, + 0.50, - 0.50), 

( + 0.7071,0, 0.7071,0), 

( + 0.50, + 0.50, - 0.50, 0.50). 

Four particles, with 24 phase-space coordinates and mo
menta, together with 18 orthonormal basis vectors {8 j }, cor
respond to a total of 19X24 ordinary differential equations. 
In addition to these it is convenient to add the Lagrange 
multipliers {A ii} and the kinetic and potential energy to the 
list of functions being integrated. 

Initial trials, with a total four-body energy of 3.0, 
showed that with the same time steps used in the two-body 
problem, dt = 0.001, 0.002, and 0.004,.the simulation failed 
after a time oforder 1000 steps, with the precise failure time 
varying roughly as the square root of 1ldt. The Lagrange 
multipliers associated with the last, most-restricted basis 
vector, with the most-negative Lyapunov exponent, di
verged (nearly 10300 on the CDC 7600). There was no indi
cation of difficulty prior to divergence. Thc mean values of 
the positive and negative exponents matched nicely-see Ta
ble II. Changing the frequency with which the orthonorma
lizations was carried out had no effect on the time to failure. 
The divergence could be delayed, but not eliminated, by 
leaving out more negative exponents, with the calculation 
finally becoming stable at long times when only positive Lya
punov exponents were retained. See Table II for details. The 
early results in the table satisfy the requirement that the coef
ficients add to zero, in accord with Liouville's theorem. 

An eight-body, three-dimensional system was studied 
next, starting with a face-centered-cubic structure with a ki
netic energy of 6.0. The 3N 3 21 largest Lyapunov ex
ponents are shown in Table III. This calculation took about 
20 h on a Cray computer. . 

The same program, augmented to deal with a three-di
mensional32-body system, requires on the order of 1 min per 
time step on a C:t:ay computer. The most time consuming 
part of the calculation involves calculating the matrix prod
ucts 8;'D·oj • The number of multiplications involved varies 
as the fourth power of the number ofparticles. By restricting 
the set of basis vectors to a subset of the full 6N - 6, it is 
possible to obtain a few Lyapunov exponents even for large 
systems. To demonstrate this, the largestthree exponents for 
32 particles are tabulated, for a run of 20000 time steps, in 
Table IV. 

IV. THE LYAPUNOV SPECTRUM 

10 + (3.6,3.4,3.6) (0.5,0.5,0.5 ) 
20 + (3.8,3.5,3.3) + (0.3,0.3,0.5) 

(3.8,3.6,3.5) + (0.2,0.1,0.2) 
100 + (3.7,3.7,3.7) + (0.1,0.1,0.1) 
200 + q.6,3.7,3.7) + (0.0,0.0,0.1) 
400 + (3.6,3.7,3.7) + (0.0,0.0,0.0) 

--. 40 

(0.2,0.2,0.2) 
(0.1,0.1,0.3 ) 
(0.1,0.1,0.2) 
(0.0,0.0,0.1 ) 

- (0.0,0.0,0.1) 
- (0.0,0.0,0.1) 

- (4.0,3.7,4.0) 
- (4.0,3.7,3.5) 

(3.9,3.7,3.7) 
(3.7,3.7,3.8) 
(3.6,3.7,3.8) 
(3.6,3.7,3.8) 

These investigations of the Lyapunov spectrum are the 
first to be carried out for realistic three-dimensional, many-
body systems. It seems safe to follow Uhlenbeck in stating 
that "nothing is known for sure" about this subject. Accord
ingly it is necessary to begin with intuitive reasoning in an 
effect to "understand" the results of the computations. 
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TABLE II. Lyapunov exponents for four three-dimensional particles with total energies E = 3.0,6.0, and 12.0 
in a periodic cubic box with sidelength 2. At time 150.0, the average potential and kinetic energies were 0.28 and 
2.72 for the lowest-energy case. Preliminary calculations at E = 3.0 failed at times of0.9 for dt = 0.004, 1.4 for 
dt = 0.002, and 1.7 for dt = 0.001. The symmetry of the coefficients about zero follows from the Hamiltonian 
nature of the equations of motion. The more negative coefficients, indicated in the table by (*) could not be 
determined for long times. For times greater than 2 only the positive half of the Lyapunov spectrum was 
determined. Time steps of 0.004, 0.002, and 0.001 were used for energies of 3,6, and 12 to determine the long
time data. The detailed time development of the spectrum is described for the lowest-energy case, followed by 
the final values of the Lyapunov exponents in the higher-energy cases. 

Four-body Lyapunov spectra for energy E = 3.00 = <P + K = 0.28 + 2.72 

Time= I: ( + 3.2, + 3.1, + 3.0, + 2.3, + 2.3, + 1.9, + 1.4, + 1.0, + 0.3; 
- 4.3, - 3.0, - 2.9, - 2.3, - 1.8, - 1.4, - 1.3, - 1.0, - 0.6) 

2: 	 ( + 3.0, + 2.6, + 2.5, + 2.3, + 2.2, + 1.8, + 1.0, + 0.7, - 0.1; 
- (0), - (*), - (0), - 2.4, - 2.2, - 1.4, - 1.4, - 0.7, - 0.6) 

4: ( + 2.71,2.64,2.62,2.17,1.83,1.78,1.19,0.66,0.16) 

10: ( + 2.73,2.64,2.57,2.37,2.17,1.99,1.61,1.30,0.17) 

50: ( + 2.63,2.56,2.52,2.26,2.09,1.98,1.61,1.35,0.02) 

150: ( + 2.63,2.48,2.33,2.16,2.01,1.87,1.58,1.32,0.04) 

Four-body Lyapunov spectra with energies E = <P + K of 6.00 and 12.00 

E = 0.61 + 5.39; time = 150: ( + 3.44,3.27,3.12,2.92,2.64,2.33,2.12,1.51,0.02) 
E = 1.28 + 10.72; time = 150: ( + 4.46,4.15,3.94,3.69,3.38,2.94,2.48,1.83,0.00) 

To an excellent approximation, the fluid-phase Lya
punov exponents, with strongly anharmonic forces, have the 
three-dimensional Debye distribution familiar from solid
state physics. This Debye model for solid vibrations predicts 
that the number of frequencies g ( v) dv lying between v and 
v + dv is proportional to V. The nth frequency is thus pro
portional to n 1/3

. This relationship provides an excellent de
scription of the Lyapunov exponents determined here. See 
Fig. 2. In retrospect, this is consistent with the presence of 
the lattice dynamical matrix in the fluid equations of motion 

TABLE III. Three-dimensional, eight-body Lyapunov spectrum with ener
gy = 3.00 = <P + K = 0.59 + 2.41 for a time 100.00, discarding the initial 
20.00. 

{2.36,2.27,2.25,2.23,2.17,2.1O,2.04, 
1.99,1.94,1.91, 1.81, 1.78,1.73,1.67, 

1.53,1.37,1.32,1.15,0.94,0.54, - 0.01} 

Three-dimensional, eight-body Lyapunov spectrum with ener
gy = 6.00 = <P + K = 1.27 + 4.73. 

{+ 3.02,2.92,2.85,2.81,2.72,2.65,2.60, 
2.48,2.38,2.32,2.29,2.19,2.05,1.99, 

1.89,1.75,1.52,1.33,0.96,0.58, - 0.03} 

The data are averages ofa Cray and a 7600 calculation. The Cray-I is three 
times faster. The two runs were of lengths 87 and 80 and the Lyapunov 
spectra agreed within about 2%. The initial 20.00 were discarded from both 
runs. 

Three-dimensional, eight-body Lyapunov spectrum with ener
gy = 12.00 = <P + K = 2.72 + 9.28 for a time 100.00, discarding the initial 
10.00. 

{3.85,3.80,3.67,3.53,3.33,3.28,3.27 
3.07,2.93,2.85,2.73,2.54,2.50,2.23, 

2.13,1.97,1.71,1.49,1.01,0.68, - om} 

for the Lagrange multipliers. If the second derivative of the 
pair potential at an energy kTis used to estimate the Debye 
frequency, the result is very close to the maximum Lya
punov exponent found in the 4-, 8-, and 32-particle data: 

.~ 

The success of the Debye model in accounting quite well fm 
the details of Lyapunov instability suggests that the simpler 
one-particle Einstein model might be useful in estimating an 
average Lyapunov exponent. Accordingly, we again consid
ered the 32-particle three-dimensional system, but allowing 
only one of the particles to move, with a total energy of 2.0. 
See Fig. 3. In this case, six Lyapunov exponents result. Four 
are statistically indistinguishable from zero. The nonzero 
pair has a magnitude about one-third that of the maximum 
shown in Table IV. 

3 

! 
" 
 8 

-3 

FIG. 2. Sample Lyapunov spectrum (3N:--- 3 = 9 exponents indicated b:~ 
points) for a four-particle fluid compared with the Debye spectrum (ful! 
curve). Data taken from Table II at time 10. The negative exponents match 
the positive exponents in absolute value for Hamiltonian systems, such as 
those studied here. 
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z 

FIG. 3. Two sample one-particle, Einstein-model, coordinate-space trajec
toriesfor a single moving particle in a 32-particle face-centered-cubic lattice 
with nearest-neigh~or spacing of I .00. Both trajectories have the same ener
gy, 3.00, but slightly different initial conditions. The less regular trajectory 
has two clearly nonzero Lyapunov exponents. The more regular trajectory 
has all of its exponents statistically indistinguishable from zero. 

In nonequilibrium systems, even in the presence of 
Gauss or Nose constraint and driving forces, the equations 
of motion still are time reversible. But experience has shown 
(a microscopic form of the second law of thermodynamics 7 ) 

that the actual motion develops in such a way as to condense 
the phase-space distribution onto a stable dissipative strange 
attractor, with Lyapunov exponents whose sum is negative. 

At a phase transition the pace of change slows so that a 
movement of Lyapunov exponents toward zero can be an-

TABLE IV. The three largest Lyapunov exponents for a 32-particle fluid in 
~	three dimensions. Initial configuration was a face-centered-cubic lattice 

with nearest-neighbor spacing equal to 1.0 and total energy 48.0. 

Time = 1Q: 3.1,3.1,3.0; ~Q: 3.2,3.2,3.2; 4Q: 3.3,3.3,3.2. 

ticipated. It should be possible to see this effect even in the 
simplest possible system which undergoes a first-order phase 
transition, two particles with a first-order melting transi
tion. 8 

V. CONCLUSIONS 

We have developed a practical scheme for determining 
Lyapunov spectra for dense atomistic Newtonian systems. 
The scheme can be applied to the Newtonian equations of 
motion treated here, or extended to the Gauss-Nose or No
se-Hoover equations of motion, either at or away from equi
librium. 7 The method is complementary to that developed 
earlier by Shimada and Nagashima.5 
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APPENDIX 

American and Austrian versions of the WOO-line FOR

TRAN codes used to carry out the simulations, written inde
pendently, can be obtained from the authors. Here we out
line the calculation as a series of six steps. We then append 
comments pertinent to each step. The steps are as follows: 

( 1) Choose initial values of coordinates and momenta r, 
and the offset vectors {oJ. 

(2) Compute the pair potential and its first two deriva
tives, providing values for r and the dynamical matrix D. 

(3) Compute the current Lagrange multipliers {Aij} 
(instantaneous Lyapunov exponents) from the products of 
the basis vectors {Ol} with the dynamical matrix D. 

(4) Compute the time derivatives of the offset vectors. 
(5) Use an integrator, such as the classic fourth-order 

Runge-Kutta method used here, to advance r and the {Ol} in 
time using the derivatives found in steps (3) and (4). 

(6) Orthonormalize the offset vectors, if desired, before 
returning to step (2) for the next time step. 

Any configuration of particles can be used initially. For 
debugging, it is convenient to start out with two particles just 
beginning a collision. If initially no particles are interacting 
then the total energy is the initial kinetic energy. In choosing 
the momenta, the total momentum should be zero. The in
sensitivity of the results to the timestep suggests that less 
smooth potentials would cause no particular difficulties. We 
have verified this supposition using a truncated Lennard
Jones potential. 

In calculating the Lagrange multipliers {Ai} a potential
ly time-consuming sum varying as N 4 occurs. Pairs of basis 
vectors (3N X 3N) are multiplied by the square (6N X 6N) 
matrix D. But the matrix D is sparse. The upper right quad
rant, the identity matrix, is treated first. Then only the non-
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zeto elements of the lower left quadrant (36 for a single 
interacting pair ofpart\cles) need be summed over. Most of 
the 9N 2 elements ofthe dynamical matrix vanish ifthe forces 
are short range. 

Any convenient intergrating scheme can be used, but if 
frequent Gram-Schmidt orthogonalization is used,' a se1f
starting scheme, like Runge-Kutta, is best. The orthonor
malization (subtracting the dot product of each vector /). 
with the preceding vectors {oj and then rescaling) is di:" 
cussed in detail in Ref. 5, in which the Lyapunov spectrum is 
estimated by an alternative, but related, method. For large 
systems, this Shimada-Nagashima approach is faster. We 
have used that method to obtain full equilibrium and non
equilibrium Lyapunov spectra for 32 three-dimensional par
ticles (186 exponents).9 
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