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We use an Evans-Gillan driving force pd, together with isokinetic and 
isoenergetic constraint forces F', to drive steady heat currents in periodic 
systems of 4 and 32 hard spheres. The additional driving and constraint forces 
produce curved trajectories as well as additional streaming and collisional con
tributions to the momentum and energy fluxes. Here we develop an analytic 
treatment of the collisions so that the simulation becomes approximately ten 
times faster than our previous numerical treatment. At low field strengths }., for 
A.CT less than 0.4, where CT is the hard-sphere diameter, the 32-sphere conductivity 
is consistent with Alder, Gass, and Wainwright's 108-sphere value. At higher 
field strengths the conductivity varies roughly as ).1/2, in parallel with the 
logarithmic dependence found previously for thrce hard disks. 

KEY WORDS: Nonequilibrium molecular dynamics; heat conductivity; hard 
spheres. 

1. INTRODUCTION 

Boltzmann formulated the atomIstIc basis for nonequilibrium flows of 
mass, momentum, and energy, described by the linear laws of Fick, New
ton, and Fourier. (1) A general method for expressing the corresponding 
transport coefficients, the diffusion, viscosity, and heat conductivity, in 
terms of equilibrium current, stress, and heat current autocorrelation time 
integrals was developed by Green and Kubo. Alder and Wainwright 
applied this linear response formalism to the simplest prototypical atomic 
model, hard spheres, during the period from 1955 to 1970.(2,3) 
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A major accomplishment of the computational effort during this 
period was establishing the form of the equilibrium equation of state 

.~ 

characterizing the number dependence of the pressure(2,4) and establishing 
the location of the fluid-solid phase transition. (5) This work led to a fairly 
reliable method for calculating fluid-phase equilibrium properties by 
perturbation theory based on the hard-sphere results. (6) Nonequilibrium 
progress has been more difficult, primarily due to the lack of a useful per
turbation theory. The Green-Kubo method provided a route to the linear 
transport coefficients using equilibrium molecular dynamics. Because 
the calculations were time-consuming, being based on the analysis of 
fluctuations, and showed considerable number dependence, there was 
motivation to develop alternative approachesY,8) 

New methods began to be developed for treating nonlinear transport, 
using driving forces and constraint forces to produce fluxes under steady
state, far-from-equilibrium conditions. By 1982 Evans and Gillan had 
shown that heat flow, the transport property studied here, could be 
induced by using a driving force depending on individual particle con
tributions to the energy and pressure tensor. (9.10) Their idea has been 
applied to both soft(11,12) and hard(l3) spheres. Heat flow requires a system 
of three or more particles and is intrinsically more complex than diffusive 
or viscous flows, for which two particles suffice. (14) Here we apply the 
Evans-Gillan idea to hard spheres. 

The present work is organized as follows. In Section 2 we give a brief 
resume of the Evans Gillan recipe for the determination of the heat con
ductivity. In Section 3 we describe an analytic method which makes the 
collisional calculation more efficient than the purely numerical approach 
followed previously, (13) particularly for dense fluids and for solids. Conduc ,-
tivity results based on this analytic approach are listed in Section 4. 
Section 5 is a discussion. 

2. BASIC EQUATIONS 

In the interest of generality and clarity, we first consider a continuous, 
pairwise-additive, spherically symmetric interaction potential. We consider 
later the hard-sphere limit. The periodic system, which can be fluid or 
solid, with volume V, contains N D-dimensional particles of mass m. The 
total momentum of the system is zero. Particle i, located at fi' has momen
tum Pi' The total energy E is a sum of kinetic and potential contributions 
K and <P; 

E= K + <P = I p;/(2m) +I I ¢ij(rij) 
(1 ) 

fij fi fl' fO= Irijl 
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The single sum runs over all N particles. The double sum includes all pairs 
of particles. Three types of forces act on each particle i: An applied force 
F~ = F j from the potential gradient, an external driving force F1 inducing, 
on the average, a heat flow in the x direction, and a constraint force F~ 
fixing either the total energy E or the kinetic energy K: 

Fj=LF ii = (dtPii/drii)e ii (2) 
j j 

rt. X, y,... 

L1E; indicates the actual instantaneous energy for particle i, E jl minus the 
average energy per particle, E/ N, at the same time: 

(3) 

The sum runs over all particles j interacting with i. Similarly, the 
individual-particle fluctuations in potential pressure-tensor components, 

L1 P~x.i = Pt.i - [P~xIN] (4) 

follow from the definition of the instantaneous pressure tensor: 

Note that only the potential part pP of the pressure tensor contributes to 
the driving forceP'. This force is constructed so as to induce a mean heat 
flux in the x direction with the resulting dissipation matching that from 
irreversible thermodynamics. (9) The instantaneous heat flux Q is given by 

(6) 

In the constraint force Fe, the "friction" coefficient (E or (K is a function of 
time, but has the same value for all particles. ( is chosen so that either the 
total energy E or the kinetic part K is a constant of motion. The two 
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choices will be called "isoenergetic" and "isokinetic," respectively. Explicit 
construction of ( yields (11) 

(7) 

for the isoenergetic and isokinetic cases, respectively. One can see that for 
absent driving force (;t = 0), is also vanishing. This corresponds to the 
usual Newtonian equilibrium molecular dynamics. In (K' however, there is 
an extra term independent of ).. Thus, even for A= 0, the isokinetic 
molecular dynamics is non-Newtonian. (13) 

Measuring the heat flux Q makes it possible to obtain the thermal 
conductivity K from the relation(11) 

(8) 

The bar means time average. T is the absolute temperature defined by the 
relation 

~DNkT (9) 

where k is Boltzmann's constant. 
Equation (8) may be used for any ;t to define formally a non

equilibrium K 1I:(;t). To compare with linear Green-Kubo results, (3) 

however, small Xs have to be used. Equation (8) may be compared with 
Fourier's law: 

Q= -KVT ( 10) 

which likewise defines a constant 11: (linear regime) only for small tem
perature gradients. 

Both (L and K depend on N. For N = 2, the heat flux vanishes, since 
P2 = -PI; compare (6). One might conjecture that K is a monotonically 
increasing function of N up to the thermodynamic limit. The form of this 
number dependence was discussed, qualitatively, in Ref. 3. 

The meaning of temperature for small systems was discussed in Ref. 15. 
We use temperature in the sense of T of that reference, generalized to 
nonequilibrium systems. Furthermore, the thermodynamic pressure in D 
dimensions is given by the usual relation 

(11 ) 



877 Nonequilibrium Molecular Dynamics 

-
 3. CALCULATION METHOD 

3.1. Streaming Motion (<1>=0) 

We consider soft, repulsive, spherical particles of diameter (J, with the 
interaction potential vanishing for r ~ (J. If no pair of particles overlaps, 
then ¢ 0, and the isoenergetic and isokinetic cases coincide. The 
corresponding "streaming motion" is characterized by 

dpa;/dt = J.oaAAKJ - (Pal 
(12)

( = J. L pxiKj(2Km) 

Ki and AKi appear, rather than the AEi of (2) and (3), because the 
potential vanishes between collisions. The ND equations of motion are 
coupled by (. Equations (5) and (6) are simplified: 

P!XpV=LPa.iPpjm (13 ) 

mQV= PiKi= LPiAKi (14) 

for the streaming motion. For hard spheres K= x.str and combining (9), 
(11), and (13) shows that pstrV/NkT= 1 as in the equilibrium case. 

Setting (J = 0 yields the ideal ga,s case. Then only streaming motion 
occurs, which is in general no longer characterized by straight lines if ). ~ O. 
Without loss of generality, we assume J. ~ 0 in the following. What is the 
maximum Qx that can be achieved for given N, D, and kT when the center 
of mass is fixed? A Lagrange-multiplier calculation yields the result that 
one particle (say particle 1) moves in the positive x direction. The rest 
move in the opposite direction: 

Pi -pJ!(N 1), 
(15) 

The corresponding heat flux is 

Thus, the collisionless ideal-gas behavior may be characterized as follows: 
For small A, (t increases proportional to )., as given by (8). If J. becomes 
very large and if the streaming motion persists for a long time, (L tends to 
a saturation value Qrnax given in (16). Accordingly, K becomes proportional 
to 1/A for large ) .. Between collisions, the streaming motion of the soft, 
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repulsive spherical particles is the same as that of an ideal gas and can be 
treated numerically without problems. The streaming motion ends when 
any pair of particles happens to touch. Without loss of generality, we 
assume a collision of particles 1 and 2 in the following. 

3.2. Collisions 

In our preliminary calculations in Ref. 13, the colliding motion was 
treated numerically, assuming potentials proportional to (a - r) for r ~ a 
and vanishing for r ~ a. The equations of motion were solved for a series of 
increasing proportionality constants until the "hard-sphere limit" was 
achieved. Because r/> was continuous, the motion, pressure, and heat flux 
vector could all be calculated without trouble. The pressure and heat flux 
contributions from the collisions are not the same for isoenergetic and 
isokinetic cases. This comes from the different momentum histories during 
the collision. At the end of the collision (defined by r 12 = a), the motions 
coincide in the two cases. This is because the extra net work performed by 
the driving force during each collision is exactly offset by the isoenergetic 
or isokinetic friction coefficient. Thus, the coordinate trajectories are the 
same in the hard-sphere limit. The numerical calculation of collisions was 
relatively slow because the momenta of all the particles varied with time. In 
the present paper, we display a theoretical treatment of collisions that 
substantially reduces this numerical work in the hard-sphere limit. Only 
two-particle collisions 1-2 have to be considered. During each collision, the 
product of force and distance greatly exceeds kT, and the distance vector 
r 12 is essentially given by i 12, the vector at the beginning of collision. 
Retaining the leading terms, Eq. (2) becomes 

(17) 

where e12 = i 12 /a, and F12 = IFd, the magnitude of the force exerted on 
particle 1 by particle 2. We have 

Nl == 1+!Hdl-2N-l) 

(18 ) 

The terms linear in A come from the driving force. The general solution of 
(17) is 

(19) 
I(t) = exp I: (( t') dt', 
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with zero indicating the time at the beginning of collision. This solution, 
however, can only be used if ( is known as a function of t. The friction 
coefficients that couple the ND differential equations are given by (7) as 
follows: 

F 12 [!Hdpl +P2)]/(2Km) (20) 


F I2U·t"dpl + pz) + (PI - pz)]/(2Km) (21) 


It is convenient to use the notation PI2 = PI - P2 and S12 PI + P2 for the 

relative and total momenta of the colliding pair. Then (17) and (18) yield 


P12 2F 12 (p 12 (22) 

S12 lxd1 ~ 2N- 1
) F 12 - (S12 (23) 

Projection onto el2 r12/(1, indicated by a prime, gives 

P~2 2F12 (P~2 (24) 

[Hdl- 2N- 1)] F12 - (S;2 (25) 

where F12 is a steep repulsive force yet to be chosen explicitly. 
The isoenergetic case is characterized by 

(E F 12 [P·X 12 S;2]/(2Km) 
(26) 

O) ..... (K= ~d>=F12p;2Im) 

~ The isokinetic case is given by 

(27)
O) ..... (K const) 

Thus, the isoenergetic case has been reduced to three coupled differential 
equations in the variables P;2, S;2, and K. The isokinetic case has been 
reduced to two coupled equations in the variables P;2 and S;2' Because this 
is simpler, the isokinetic case will be solved first. 

Having the solution for P'12' S112, K means first knowing (. See (26) and 
(27). Then the momenta Pi during the collision can be calculated using 
(19). 

Furthermore, the instantaneous pressure and heat flux follow from (5) 
and (6): 

P~fJ V = F12 (1e a,lZe fJ,12 (28) 

mQ" V = !F12(1e",12S'12 (29) 
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Generally, each collision begins with P~2 < 0 and ends with P~2 > O. The 
turning point is given by P~2 = O. The condition ending the collision is 
JP~2 dt = O. The isokinetic and isoenergetic cases are solved in Appendices 
A and B, respectively. For the most part, the solution is analytical. Only 
one-dimensional numerical integrals occur. 

4. COMPUTER EXPERIMENTAL RESULTS 

In Section 3 and Appendices A and B, the collisions are reduced to 
one-dimensional quadratures. The solutions were built into the existing 
computer program, (13) which can treat one-, two-, three-, and four-dimen
sional systems. A series of test runs showed that the reduction in computer 
time used varies with the number of particles, dimensionality, and density, 
but is typically a factor ten. For very low densities, where streaming 
motion is dominant, the gain is only about a factor of two. 

In this paper, results for hard spheres are presented. The following 
particle numbers and densities were investigated: 

(N = 4, VIVo = 1.25), (N = 32, VIVo = 1.25) typical solid 

(N=4, VIVo = 1.80), (N=32, VIVo = 1.80) dense fluid (30) 

(N = 4, VIVo = 3.00) dilute fluid 

Vo is the close-packed volume NO' 3Ifl. For each of the five series of com- ~. 
puter experiments, (AO' )1/2 was varied between 0.0 and 2.0 in steps of 0.1. 
The starting configuration was always an fcc structure. Test runs showed 
that a steady state was achieved after a few hundred collisions in the worst 
case. For calculating thermodynamic properties, there is the possibility to 
use one long trajectory or several shorter ones with different (random) 
initial particle velocities. The second procedure samples the phase space 
more efficiently. (16) Furthermore, calculation of statistical errors is sim
plified, the mean values due to the simple trajectories being the input data 
for estimating a quantity and its error. Thus, for given N, V, and ), several 
trajectories were used. The first 500 collisions of each were thrown away, 
the consecutive 2500 collisions being utilized for calculation. More details 
are given in Table I. The quantities calculated are shown in Table II. 

Apart from the heat flux data, the results for {SIr, Z E, and 
(ZK-l)/(ZE-1) are also presented. {SIr is the average time between 
collisions and Z is the compressibility factor PVINkT. To simplify the 
presentation of the results, all quantities are displayed in units of m, (1, and 
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Table I. Number of Trajectories and of Collisions for Given N, V. 
and A As a Function of AG 

Number of trajectories Number of collisions 

0.O-D.2 
0.3 
0.4 
0.5 
0.6-2.0 

24 
20 
16 
12 
8 

60,000 
50,000 
40,000 
30,000 
20,000 

a Each trajectory started from an fcc lattice with different random initial velocities. The first 
500 collisions were used for equilibration, the consecutive 2500 for calculation. 

kT. This means that the following symbols (left-hand side) should be read 
as dimensionless quantities (right-hand side): 

fstr --+ fstr(kT/m )1/2 0'-1 

(31 )
Qx,E --+ Qx.AkT) -3/2 m 1/20'D 

(K/k)--+(K/k)(kT/m) 1/20'D 1 

with D = 3 for hard spheres. Z is already dimensionless. 
For ). = 0 (i.e., equilibrium), it is possible to compare fSlr and Z E with 

values given in Ref. 2, where the same particle numbers and densities occur. 
The check of consistency is successful, bearing in mind that in Ref. 2 the 

Table II. Calculated Quantities. in Units of m. cr. and kT" 

Qx.E 
/CE/k 
/CSl</k 
(ZK-I)/(Z£ I) 

a See (31). 

Average time of streaming motion (between collisions); inverse of the 
collision rate r 
Compressibili ty factor PE V!NkT for the isoenergetic case, calculated 
from the pressure tensor 
Average heat nux in the x direction (isoenergetic case) 
Total heat conductivity over k (isoenergetic case) 
Contribution of streaming motion to the heat conductivity 
Ratio of isokinetic to isoenergetic for the collisional part of the 
pressure 
Ratio of isokinetic to isoenergetic for the collisional part of II: 
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number of collisions was low (2000 for N = 4). For equilibrium hard 
spheres, 

ZE 1+ nl/2/(3NlsttaN) 

aN =(1 N~1)(~N)1/2FG[N-IJ)/F(~N 1) (32) 

a4 = 0.8904, a32 0.9869 

F(m) is the usual F-function, (m -1)! for positive integral values of m. In 
Ref. 2, aN (called R there) was determined experimentally. The theoretical 
explanation for this correction was given in Refs. 4 and 17. Thus, there is a 
further check of consistency: One has to compare Z E calculated directly 
from the pressure tensor with Z E calculated indirectly via t str

• For small A, 
the agreement is perfect. For higher )" (starting at about A1/2 = 0.7), the 
deviations become pronounced, indicating nonlinear nonequilibrium 
behavior. 
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Fig, 1. Variation of the hard-sphere collision rate, relative to the zero-field limit, with field 
strength. Results for V/Vo= 1.25, 1.80, and 3.00 are indicated with solid, dashed, and dotted 
lines, respectively. 



883 Nonequilibrium Molecular Dynamics 

The detailed results of the computer experiments are exhibited in 
Appendix C, Tables TTT-VII. To see the main features, it is more convenient 
to look at a different representation, Figs. 1-5. Figure 1 shows r l/t str

, 

Fig. 2 displays Z E' Both quantities do not depend significantly on A up to 
A1/2 = 0.6. Thus, for convenience, r and are divided by their weighted 
mean (0 ~ A1/2 ~ 0.6), r* and Z;, respectively. For higher )"' there are 
systematic deviations that are not easy to explain theoretically. 

The ratio (ZK - 1)/(ZE 1) pC;ll/p~ol1 has been included for the 
following reason. In Appendix D, it is shown that for A= 0 this quantity is 

(33) 
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Fig. 2. Variation of the isoenergetic compressibility factor, relative to the zero-field limit, 
with field strength. Results for VIVo 1.25, 1.80, and 3.00 are indicated with solid, dashed, 
and dotted lines, respectively. 
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for N D-dimensional hard spheres, independent of density. The three
dimensional values for N = 4 and N = 32 are 1.125 and 1.011, respectively. 
Figure 3 confirms this result for small A. Compare Tables III-VIII. 

For D = 1 and N = 2, (ZK - 1)/(ZE - 1) becomes infinite. On the other 
hand, (ZK-l)/(ZE-l) converges to 1 in the thermodynamic limit This is 
one feature of a general observation: For hard spheres, the isoenergetic and 
isokinetic cases both converge to the same thermodynamic limit. This can 
easily be seen by the following argument: the "typical" potential energy <P12 
during the collision (in the case of very steep soft potentials) is essentially 
kT, independent of N. Thus, the relative contribution of <P12 to the total 
energy E becomes smaller as N increases: 

(34) 

K is proportional to N. The restrictions of constant total energy and 
constant kinetic energy become identical if N -'> 00. 

N =4 

1.10 

1.05 J'---"'" 
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/ 

./ 

1.00 

2 

Fig. 3. Variation of the collisional parts of the pressure with field strength. Results for 
VIVo"" 1.25, l.80, and 3.00 are indicated with solid, dashed. and dotted lines, respectively. 
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Now we turn to the heat flux. Because Qx,E becomes proportional to ), 
for small 1, while its fluctuations do not diminish, the statistical accuracy of 
this quantity becomes poor. This is why we chose to examine more 
collisions for small 1, as shown in Table I. For A1/2 = 0.1, however, the heat 
flux data were meaningless, with estimated errors as large as the mean 
value itself. From heat flux, the corresponding heat conductivities can be 
calculated using (8). The values of KE and its streaming part K 

str 

included in Tables Ill-VIII. Compare Fig. 4. These quantities are highly 
correlated. Again, no significant dependence on I. can be detected up to 
;,1/2 0.6. Thus, one can conclude that linear heat transport is 
approximately valid in this region. We have used the weighted mean of the 
results for 0.2 ~ ), 1/2 ~ 0.6 as estimates for the equilibrium linear heat con
ductivity. Table VIII shows these results together with the weighted means 

1.5 Hard-Sphere Conductivity 

32 

...... 1.0 
"" ,... --I

.::.:: 

E 0.5 

,...,...... 
..... 

........... 

Cl 

°1o ........I 4 

-0'5L'~':'~'''' '. ~~~>~.~~,-------
"" '. '. ~""''''''''''''' 

...---~o 1 --------::2:--

Fig. 4. Variation of conductivity with field strength. Both the total conductivity and the 
streaming contribution (indicated by S) are shown. Results for VIVo = 1.25, 1.80, and 3.00 are 
indicated with solid, dashed, and dotted lines, respectively. 

". 
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of {SIr and Z E for 0.0 ~ A1/2 ~ 0.6. As expected, K E for N = 4 is smaller than 
for N 32. A comparison with Ref. 3 is also possible, where K E was 
calculated using the Green-Kubo equilibrium autocorrelation approach: 

VIVo 1.8, N 108: KElk = 6.94 ±0.14 
(35) 

VIVo = 3.0, N = 108: K Elk 1.92 ± 0.02 

One can see that for VIVo 1.8 the result of Ref. 3 and KElk= 6.79 ±0.21 
(Table VIII, N = 32) are eonsistent. Thus, the N dependence is small for N 
greater than 32. For comparison, the Enskog KElk (VIVo 1.8, ther
modynamic limit) is 6.74, (3) which is close to the above values. 

The results of the case VIVo = 1.8, N = 32, are also presented in the 
figure. Compare Table VIII. One can see that the extrapolation to 
equilibrium by averaging the quantities for A1/2 ~ 0.6 makes sense; cf. the 
horizontal bars. As to Z E, at A1/2 = 0.7, there seems to be a sharp transition 
from horizontal behavior to linear dependence on A1/2. The anticorrelation 
of Z E and i str can be understood from Eq. (32), which is approximately 
valid also in the nonequilibrium case. Furthermore, one can see that the 
heat conductivity K E and its streaming part K 

str are highly correlated. The 
numbers in brackets refer to the basis ), 1/2 ~ 0.7 instead of ;,1/2 ~ 0.6. Thus, 
we are on the safe side when considering averages for A1/2 ~ 0.6. More 
complicated fits would be too flexible. 

While [str and Z E are more accurate close to equilibrium, the opposite 
is the case for K E and K

str 
; see Tables III-VII. Is the jumpiness for small ). 

beyond statistical expectation? The error in Tables II 1-VIII denotes stan
dard deviation. Thus, one expects that roughly two-thirds of the error bars r 
of istr, ZE' KElk, and KstTlk (for ~0.6) cross the appropriate weighted 
means (Table VIII). Averaging the results of all cases (30) (Tables III-VII) 
gives the following fractions: 

["tr: 0.83 (0.75), ZE: 0.63 (0.63) 
(36 ) 

KElk: 0.72 (0.67), Kstrlk: 0.84 (0.77) 

Now we consider the ratio of the collisional parts of the heat conductivities 

(37) 

for small ) .. In parallel to the pressure result (see Appendix D), the condue
tivity ratio seems to be nearly independent of density. See Fig. 5 and 
Tables III-VII. We could not find a limiting (A=O) formula like (33). In 
that limit the numerator and denominator of Eq. (37) both vanish. 

Finally, consider the heat conductivity for A1/2 greater than 0.6. After a 
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Fig. 5. Ratio of the isokinetic to isoenergetic collisional parts of the conductivity as a 
function of field strength. Results for VIVo = 1.25, 1.80, and 3.00 are indicated with solid, 

''1110.. dashed, and dotted lines, respectively. 

transient region, I( E and I(str become approximately linearly decreasing 
functions of A1/2. This behavior may be compared with Ref. 13, where a 
system of three hard disks was investigated. There, it turned out that I( E 

and I(str varied linearly with In A. In that case no transient region or "linear 
regime" could be detected. Obviously, the ). values where these transitions 
occur are too small to observe in two dimensions, at least with the 
accuracy obtained in Ref. 13. The three-dimensional case is more favorable. 
It is indeed possible to get heat conductivities for hard spheres using our 
method in a reasonable amount of computer time. 

5. CONCLUSION 

The pressures found, in both the fluid and solid phases, agree nicely 
with those of Alder and Wainwright(2) for field strengths below 0.4. In this 
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region there is negligible coupling, less than 1 %, between the heat flux and 
the pressure tensor. 

For the conductivity we find, as suggested by Alder et al., (3) con
siderable number dependence. There is roughly a factor of three between 
the four-sphere results and the 32-sphere results. The fluid data suggest a 
conductivity lying near, possibly somewhat below, the Green-Kubo value 
found for 108 and 500 particles in a dense fluid. 

This considerable number dependence suggests that simple few-particle 
models based on the dense-fluid, cell-model picture will not be particularly 
useful for thermal conductivity. This is a little surprising in view of the 
great success of an Einstein-like model for conductivity in generating a 
good corresponding-states account of conductivities for a wide range of 
force laws over the entire span of dense-fluid conditions. (18) 

The uncertainty in the old Green-Kubo results was 2 % after 2 million 
collisions per particle (VIVo = 1.80, N 108). Our uncertainty of 
extrapolated KE (based on 200,000 collisions in total) is 3% for N = 32. 
This is only a relatively small improvement over the estimate based on 
statistical fluctuations proportional to the square root of the number of 
collisions studied. The relatively complicated dependence of the results on 
field strength suggests that the external field method is advantageous only 
if it is desired to know the nonlinear conductivity. The linear conductivity 
can as easily be found using the Green-Kubo technique, which has the 
added advantage of providing the other transport coefficients and their 
frequency dependence simultaneously. 

The nonlinear conductivity is interesting. Both the four-sphere and 
32-sphere results are approximately linear in A1/2 for larger fields. This 
dependence can be thought of as arising from a diffusion process or from a 
scattering process. In the former case the diffusion equ~tion suggests a 
falloff in correlation as time 3/ 

2 in three dimensions, leading to a frequency 
dependence or field dependence of order W 

I
/
2 or Ie 1/2. Alternatively, from 

the standpoint of scattering of phonons, the Debye-Waller scattering, 
proportional to the average value of w -2, and combined with a density of 
states proportional to w 2 leads also to a square-root dependence. 

The nonlinear conductivities found here, increasing with field in the 
solid and dense fluid phases, could be extended and made more precise 
were there data available from other simulations for comparison. There 
appear to be no difficulties in extending the nonequilibrium techniques to 
hard spheres. The hard-sphere model is also suited to shock wave 
simulation, the area in which nonlinear effects are most easily generated 
and studied. 
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APPEN DIX A. ISOKINETIC HARD-SPHERE COLLISIONS 

The colliding motion begins at time 0 and ends at time te with r 12 = (J 

::1 both cases. We assume that the force during the penetration of the 
is 

(AI) 

'... :"ere F is an arbitrarily high, but finite, constant. Then, (24), (25), and 
- I ;nay be combined to give a single differential equation for CK: 

(K= F2[(1 + !b)/mK] - C~ 

b !(1-2N- 1p.2X12 ):0 
(A2) 

F or the duration of each collision b is fixed, and gives the influence of the 
jriying force F1 on the collision. It is convenient to replace the time 
'.ariables Cand t by impulse variables X K and t: 

r=Ft (A3) 

During the collision, 0 < r < re' In the hard-sphere limit, as the collision 
time fe tends to zero, the absolute value of (K becomes arbitrarily large, but 
:" and (K remain non vanishing and finite, respectively. We will see that 
similar considerations hold for pressure and heat flux. Using the definitions 
::\3), we find that Eq. (A2) becomes 

dXK/dr= (d(K/dt)/F2 = q2_~ 
(A4) 

q= [(1 + !b)/mK] 1/2 

F rom the definition of q and X K it follows that 

-q~XK<q (AS) 

X K q[l- 2/(1 +.0 exp 2qr)] 
(A6) 

.0= (q+XK)/(q-XK), 0<.0<00 

X K increases monotonically with time. Because we know the friction, 
Eqs. (17) can be solved separately; see (19). The result is 
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)I~) 
plr) = [1(,)] tpi +€ 12Nd: J(,') d,'] 

(A7)J(,) = [.0 exp(q,) + exp( -q, )]/(1 +.0) 

•J: J(,')d,'=[l-.Q+.Qexp(q,) exp(-q,)]/[q(I+.Q)] 

Now it has to be determined when the collision ends. The conditien 
corresponding to r'd'e) r I2('e) = (J is'''~ 

fT, (A8)J. P'12(,)d,=Fm[r~2('e)-(J]=0 
o 

From (A7), this can be written as 

InJ('e) tan- 1 dh(,J (A9) 

d =- [1-.0 +!(1 +.0) qp~2]/.Q1/2a 

dh('e) =- .01/2[exp(q,J 1J/[1 +.0 exp(q'e)] 

As usual, P'12=-P'12(' 0). The trivial solution of (A9) with, 0 

corresponds to the beginning of the collision. There is a second unique 

solution with 0 < 'e < 00 determining the end of the collision. This solution 

has to be found numerically. Then, the pressure (28) and heat flux (29) 


integrals yield 

.I~ )
(AW)P ~/I V dt = serx,12ep,12 te 

J mQa Vdt =!serx,12 r s~2(t)dt
coil Jcoll 

= !s€a,d(l + L)/(qLl/2)] 

x[§'12-!gxd l - 2N- 1)p;2]tan Idb(tJ (All) 

For db('e), see (A9). Combination of (27), (29), and (A8) results in 

(AI2)J (Kdt= d, = [A/(2Km)] mQxYdt 
coli 

Thus, the complete solution for XK> -q has been found. If XK is equal to 

_q, a limiting case of zero probability, 'e diverges. The isokinetic case is 

not well-posed then. 




i( APPENDIX B. ISOENERGETIC HARD-SPHERE COLLISIONS 

The three coupled equations for the isoenergetic case are 

P'IZ = F12 [2 - A.i IZS;Z p;z/(4Km)] (B t) 

F 12 A.X12[(I- 2N- 1
) «s;z)2/(4Km»] (B2) 

Km F12 P;z (B3) 

The corresponding expressions for (E, Pari> and Qa are given by (26), (28), 
and (29), respectively. 

Away from equilibrium (). =I 0) and for N> 2, the case 0 = 0 has 
vanishing probability. Compare (A2). The same is true if K becomes zero 
at the turning point. The solution of both these cases can be found using 
the assumption that F12 is constant. However, we will not give the results 
of these special cases, and turn now to the general case (j > 0, K> O. 

We introduce the new variables u, v, w, 

U $AXI7.S;Z' v = ~bp~z, w=2bKm (B4) 

into (Bl)-(B3) and find 

u= (jF I2 [ I - (u 2/w)] (BS) 

v=bFu[1 (uv/w)] (B6) 

11' bFd:4v/b] (B7) 

i( 
;p 0 is not yet specified. In the above variables, 

= bF'2u/w (B8) 

See (26). 
Assuming that F12 is constant is not useful here, but a more com

plicated assumption does make the syslem tradable: 

F12 Cw sgn(u)/(u<':i) (B9) 

Thus, F12 varies during the collision. C is an arbitrary, large, positive con
stant. Because in the general case of b > () and w> 0, FIl.;P O. Thus, C ~ CIJ 

yields again the hard-sphere limit. If u changes sign during the collision, F12 
would approach CIJ at this point even for finite ('. We will see later that this 
causes no difficulty. The friction coefficient becomes 

(E C sgl\(u) (BIO) 
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Defining r == Ct, (B5HB7) become 

du/dr sgn(u)[w-u2 ]/u (Bll) 

dv/dr = sgn(u) [w-uv]/u (BI2) 

dw/dr sgn(u) [4wv]/(bu) (B13) 

Subtracting (BII) from (B12) yields 

d(v u)/dr = -sgn(u) [v - u] (B14) 

This can be solved, with the result: 

vCr) u(r) (0 u) ex(r) 

ex(r) 

exp( -r), 

exp(r), 

u;?:O 

O;?:u 
(BI5) 

exp(2r* - r), u>O>u 

From the definitions of u and w it follows that w> u2
• Therefore, du/dr > 0 

during the collision; see (Bll). Thus, u> u for r > O. The quantity r* is 
defined by u(r*) 0, i.e., when u changes sign (which need not happen). 
Since ex( r) determines the time behavior of (v - u), we define a function 
g(r) via 

u(r) g(r) ex(r) (B16) 

It follows that 

sgn(g)=sgn(u), du/dr= [dg/dr-sgn(g) g] ex(r) (B17) 

Inserting (B15) yields 

v (g +v- u) ex(r) (B18) 

On the other hand, from (Btl) and (BI7) it follows that 

w sgn(g) g(dg/dr) ex 2(r) (B19) 

Thus, we have expressed u, v, and w in terms of a single unknown function 
g. Here (du/dr) > 0 means (dg/dr) > 0; see (B17). Thus, g is strictly increas
ing with r. The relation g(r*) 0 defines r*. Generally, w is nonnegative, 
due to (B19). Because w is proportional to K> 0, w cannot vanish, even for 
g--.,O. This means that at r--.,r*, jgj (dg/dr) remains finite and nonzero. 
That (dg/dr) --., <X) when r -+ r* we can also see from (Bll). 

Utilizing (B13) yields the desired differential equation for g: 

[g(d2g/dr2) - (dg/drf] (j sgn(g) = 2 (dg/dr )[g(b + 2) g + 2(6 u)] (B20) 
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\. 
Using the transfonnation p == dg/dr, one can solve the resulting first-order 
differential equation in p (as function of g). Reinserting p = dg/dr yields 

g dg/(ag2 + bg+ c) = sgn(g) dr 
(B21) 

a == 1 + 2/fJ, b == (4/fJ)(6 - 11), c==w-ai?-bl1 

The denominator is nonvanishing for any g if 

L1 == 4ac - b2= 4[1 + (2/fJ)] w - 4[11 + (2/b) 6]2> 0 (B22) 

From the definition of u, v, and w it follows that Ll is positive if b > O. 
Equation (B2I) can be solved for r as a function of g: 

ag2 +bg +c]I/
(2a) (b -1 Ll1/2(g_g) ) 

ex(r)= [ ag2 +bg+c exp aL11/2tan 2a(gg)+b(g+g)+2c (B23) 

Combining (B19) and (B21 yields the simple relations 

(B24) 

The end of the collision is given by the condition that the kinetic energy is 
the same as at the same as at the beginning of the collision, i.e., We = tV. 
Thus, 

(B25) 

Inserting this result in (B23) yields an equation for ge: 

This equation has a unique solution for ge > g, which has to be determined 
numerically. This may be compared with the general isokinetic case, where 
a formally similar but simpler equation, (A9), gave reo 

We may evaluate re using (B25) and the solution of (B26). It is 
possible, however, to express all quantities in terms of ge' For u, v, w, see 
Eqs. (B16), (BI8), and (B24), respectively, inserting (B25) for ex(r). 
Bearing in mind that'E = C sgn( u), Eq. (B 10), we obtain for the momenta 
at the end of collision 

(B27) 

[cf. (19)]. Furthermore, the collisional integral of the friction coefficient is 
given by 

'Edt= -lnex(re)=~ln[(ag;+bge+c)jW] (B28) 
.I coli 
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The corresponding pressure and heat flux contributions are evaluated r 
easily numerically: 

(B29) 

(B30) 

which completes the solution of the general case. 

APPENDIX C 

The results of the computer experiments are gathered in 
Tables III-VIII. 

Table III. Results of Nonequilibrium Molecular Dynamics for Hard Spheres: 
N=4, VfVo=1.25" 

Pv 1/2 1021'" z£ (2,.£ Kdk KS"/k (ZK-I)/(ZE-1) KC;:lljKEH 

0.0 1.242(3) 14.36(0) 1.126 
0.1 1.242(2) 14.36(0) 1.124 
0.2 1.243(3 ) 14.36(0) 0.17(6) 4.29(144) 0.24(15) 1.126 1.379 
OJ 1.243(3) 14.36(0) 0.60(7) 6.65(79) 0.56(8 ) 1.125 1.461 
0.4 1.244(2) 14.37(0) 0.77(9) 4.80(58) 0.38(5) 1.125 1.484 
0.5 1.242(4) 14.37(0) 1.25(7) 5.01(28) 0.38(2) 1.126 1.408 
0.6 1.242(4) 14,37( 1) 1.89(8) 5.25(23) 0.38(2) 1.124 1.396 
0.7 1.236(3 ) 14,39(1 ) 2.81(11) 5.73(23) 0.43(1 ) 1.121 1.398 
0.8 1.233(4) 14.40(1 ) 3.28(16) 5.13(25) 0.38(2) 1.122 1.406 
0.9 1.234(6) 14.40(2 ) 4.14(14) 5.12(17) 0.37(1) 1.120 1.392 
1.0 1.228(3) 14.41(2) 5.10(14) 5.10(14) 0.37(1) 1.117 1.375 
1.1 1.229( 4) 14.45(1) 5.71(10) 4.72(12) 0.33( 1) 1.117 1.363 
1.2 1.221(5) 14.43(2} 6.67(21 ) 4.63(14) 0.32(1 ) 1.115 1.356 
1.3 1.217(2) 14.39(2 ) 7.38(7) 4.37( 4) 0.29(1) 1.112 1.344 
1.4 1.231 (5) 14.32(2) 8.32{ 13) 4.25(7) 0.27( 1) 1.112 1.334 
1.5 1.226(5) 14.29(4) 8.73(13) 3.88(6) 0.24( 1) 1.110 1.321 
1.6 1.245(5) 14.18(2) 9.53(7) 3.72(3) 0.22(0) 1.110 1.319 
1.7 1.243(7) 14.13(3) 10.16(14) 3.52(5) 0.20(0) 1.107 1.307 
1.8 1.263(6) 13.88(3) 10.53(8) 3.25(2) 0.18(0) 1.105 1.295 
1.9 1.265(4) 13.81(4) 10.87(9) 3.01(2) 0.15(0) 1.103 1.280 
2.0 1.287(3 ) 13.66(4) 11.30(6) 2.83( 1) 0.14(0) 1.103 1.274 

a The calculated quantities are explained in Table II. Numbers in parentheses denote the 
uncertainty of the last digit(s). 

http:VfVo=1.25


Table IV. As Table III, Except for N = 32, VIVo =1.25 

~ /;, 1/2 102['" ZE i2X.E KE/k Kstr/k (ZK-l)/(ZE-1) K7Pll/K~1l 

0.0 0.137(0) 14.67(1) LOll 

OJ 0.137(0) 14.68(1 ) LOll 

0.2 0.137(0) 14.67(1 ) 0.9( 1) 21.5(32) 1.34(25) LOll 1.033 
0.3 0.137(0) 14.68(1 ) 1.6(1 ) 17.6(15) 1.11(12) LOll 1.034 
0,4 0.138(1) 14.65(1 ) 2.7(1 ) 17.0(7) LlO(5) 1.011 1.035 
0.5 0.137(0) 14.66(1) 4.0(2) 15.9(7) 1.04(5) LOll 1.037 
0.6 0.138(1 ) 14.63(1) 6.1(2) 16.8(6) 1.10(4) 1.011 L039 
0.7 0.139(1) 14.56(2) 8,4(3) 17.2(5) U5(5) L012 L041 
0.8 0.139(1) 14.56(3 ) JO.5(3) 16.5(5) 1.11(4) 1.012 1.040 
0.9 0.141(1) 14.51(3) 14.3(5) 17.6(7) 1.14(15) 1.013 1.048 
1.0 0.142(1) 14.44(5) 18.2(5) 18.2( 5) 1.32(5) 1.014 1.054 
1.1 0.144(1) 14,47(5) 23.3(5) 19.2(4) 1.43(4) 1.015 1.059 
1.2 O.l49( I) 14.31(5) 28.2(6) 19.6(4) 1.51(4) 1.017 L066 
1.3 0.155(1) 14.13(7) 33.3(7) 19.7(4) 1.57(5) 1.019 1.077 
1.4 0.165(1) 13.74(7) 38.7(11) 19.7(6) 1.63(7) 1.022 1.086 
1.5 0.174(1 ) 13.53(4) 43.1(7) 19.2(3) 1.61(3) 1.024 1.091 
1.6 0.182(2) 13.25(10) 46.0(10) 18.0(4) 1.54(3) 1.025 1.091 
1.7 0.204(1) 12.79(8) 53.3(9) 18.4(3) 1.59(2) 1.030 1.103 
1.8 0.212(3 ) 12,41 (10) 54.0(9) 16.7(3 ) 1.47(3) 1.030 1101 
1.9 0.230(3) 12.13(7) 58.7(7) 16.3(2) 1.46(1 ) 1.032 1.105 
2.0 0.256(3) 11.72(6) 62.3(6 ) 15.6(2) 1.42(1) 1.035 1.109 

Table V. As Table III, Except for N=4, V/Vo=1.80 

11/2 102i'" ZE i2x,E KE/k Kstrjk (ZK l)/(Zr 1) K}?II/K1?1! 

0.0 3.12(1 ) 6.30(1) Ll25 
OJ 3.12(1 ) 632(1 ) 1.124 
0.2 3.13(1 ) 6.31 (I) 0.06(2) 1.53(48) 0.32(8) 1.125 1.480 
0.3 3.12(1 ) 631(1) 0.19(2) 2.15(25) 0.34(4) 1.124 1.398 
0,4 3.13(1) 6.32(1 ) 0.36(3 ) 2.26(19) 0.37(3) 1.126 1.432 
0.5 3.13(2) 6.31 (1) 0.62(3 ) 2,48(11 ) 0,41(2) 1.123 1.409 
0.6 3.13(2) 6.31(1 ) 0.80(4) 2.22(10) 0.34(2) 1.126 U88 
0.7 3.11(1) 6.33(1) 1.10(5) 2.24(9) 0.36(1 ) 1.124 1.391 
0.8 3.10(1) 6.34(2) 1.32(4 ) 2.06(6) 0.32( 1) 1.122 1.379 
0.9 3.12(1 ) 6.34(1 ) 1.65(5 ) 2.03(6) 0.32(1 ) 1.123 1.384 
1.0 3.11(1) 6.36(2) 1.92(3) 1.92(3 ) 0.30(1 ) 1.121 1.375 
1.1 3.12(2 ) 6.36(3 ) 2.33(4) 1.93(3) 0.30(1) 1.122 1.379 
1.2 3.13(2) 6.34(2) 2.63(2) 1.83( 1) 0.28(0) Ll2l 1.369 
1.3 3.14(2) 6.35( 1) 2.98(4) 1.76(2) 0.27(0) L122 1.370 
1.4 3.19(1) 6.29(2) 3.22(3 ) 1.64(2) 0.25(0) 1.121 1.358 
1.5 3.16(2) 6.35(3 ) 3.57(5) 1.59(2) 0.23(0) 1.123 1.360 
1.6 121(2) 6.28(5) 3.76(5) 1.47(2) 0.21(0) Ll24 1.355 
1.7 3.27(2) 6.20(4) 3.98(5) 1.38(2) 0.20(0) Ll25 1.354 
1.8 3.32(2 ) 6.18(4) 4.25(4 ) 1.31(1) 0.19(0) 1.129 1.356 
1.9 3.36(2 ) 6.18(4) 4.38(3) 1.21(1 ) 0.17(0) 1.132 1.358 
2.0 3.32(3) 6.31(6) 4.77(7) 1.19(2) 0.16(0) 1.138 1.369 

-


http:V/Vo=1.80


Table VI. As Table III. Except for N=32, V/Vo=1.80 

,:[1/2 102i'" ZE (L,E Ke/k K"'lk (ZK -1)f(Ze-I) Kc;Il/K~OH 

0.0 0,28S( 1) 7.S8(2) 1.011 
0.1 0.284(1) 7.57(3) 1.011 
0.2 0.282(1 ) 7.62(3) 0.3(1) 7.3(13) 0.83(21 ) LOll 1.039 
0.3 0.282(1 ) 7.62(3) 0.6(0) 6.2(3 ) 0.84(6) 1.011 1.038 
0.4 0.28S(1 ) 7.58(3) 1.1(1) 7.0(4) 0.89(7) 1.011 1.038 
O.S 0.283(2) 7.62(5) 1.7(1 ) 6.8(3 ) 0.78(8 ) 1.011 1.037 
0.6 0.285(2) 7.64(3) 2.6(1 ) 7.3(3 ) 0.87(5) 1.012 1.043 
0.7 0.288(3) 7.59(6) 3.6(2) 7.4(4 ) 0.89(3) 1.012 1.042 
0.8 0.294(2) 7.50(5) 5.3(2) 8.3(4 ) 1.10(6) 1.013 1.055 
0.9 0.308(2) 7.29(6) 6.7(3 ) 8.3(4 ) 1.22(7) 1.014 1.062 
1.0 0.332(3 ) 7.13(5) 9.8(3 ) 9.8(3) 1.48(5) 1.019 1.078 
1.1 0.354(2) 7.05(7) 12.9(4) 10.7(3) 1.64(4) 1.022 1.087 
1.2 0.382(6) 6.86(7) 15.1(5) 10.S(3) 1.73(10) 1.027 1.104 
1.3 0.428(4) 6.68(S) 18.5(6) 10.9(4 ) 1.83(5) 1.032 1.118 
1.4 0.458(6) 6.54(7) 20.2(3) 10.3(2) 1.77(5) 1.035 1.121 
1.5 0.520(8) 6.37(8) 23.6(5) 10.5(2) 1.81(3) 1.041 1.136 
1.6 0.565(7) 6.21(8) 24.5(5) 9.6(2) 1.73(4) 1.044 1.135 
1.7 0,611(7) 5.99(6) 25.6(4) 8.9(1) 1.62( I) 1.045 1.134 
1.8 0.677(7) 5.80(8) 26.9(5) 8.3(2) 1.56(2) 1.049 1.141 
1.9 0.71O( 11) 5.70(6) 27.4(5) 7.6( 1) 1.44(2) 1.049 1.137 
2.0 0.734(12) 5.73(9) 29.2(3 ) 7.3( I) 1.37(2) 1.050 1.136 

Table VII. As Table 11/, Except for N=4, V/Vo=3.00 

oA ti2 102i'" Ze Qx.E KE/k Kstt/k (ZK-I)j(Ze- 1) K~iliK~1l 

0.0 5.88(3) 3.82( 1) 1.125 ,....., 
0.1 5.91(3) 3.80(2) 1.124 
0,2 5.86(3) 3.83(1 ) 0.05(1 ) 1.33(28 ) 0.29(7) 1.125 1.378 
0.3 5.87(3) 3.82(2) 0.11(1) 1.26(14) 0.27(4) 1.126 1.355 

OA 5.92(3) 3.81(2) 0.19(1) 1.21(6) 0.29(3) 1.l25 1.398 
0.5 5.88(3 ) 3.83(2) 0.30{ 1) 1.20(5) 0.30(2) 1.124 1.366 

0.6 5,85(6) 3,82(3 ) OA2{1 ) U5(4) 0.28( I) 1.123 1.362 
0.7 5.91(6) 3.82(3 ) 0.56(2) 1.13(4) 0.28( 1) 1.125 1.374 

0.8 6.10(4) 3.73(2) 0.70(3 ) 1.10(4) 0.29( 1) 1.122 1.342 
0.9 6,08(5) 3.76(2) 0.81(2) 1.00(2) 0.26(1 ) 1.125 1.359 

1.0 6.09(3) 3.74(1) 0.91(2) 0.91(2) 0.23(0) 1.124 1.340 
1.1 6.19(6) 3.71 (2) 1.06(2) 0.87(1 ) 0.22(1 ) 1.122 1.327 

1.2 6.24(3 ) 3.69(2) 1.16(l ) 0.80(1 ) 0.22(1 ) 1.123 1.330 

1.3 6.33(4) 3.65(2) 1.28(1) 0.76(1) 0.21(0) !.l24 1.334 

1.4 6.61(4) 3.53(2) 1.33(2 ) 0.68(1 ) 0.20(0) 1.122 1.334 

1.5 6.69(3) 3.52(2) lAO(I) 0.62(1 ) 0.19(0) 1.123 1.330 

1.6 6.94(3) 3.42(2) 1.47(2) 0.58( 1) 0.18(0) 1.121 1.325 
1.7 6.78(22) 3.38(2) 1.55(2) 0.54(1 ) 0.17(0) 1.120 1.311 

1.8 7.27(6) 3.32(2) 1.61(2) 0.50(1) 0.16(0) 1.1 13 1.308 
1.9 7.47(4) 3.23(2) 1.63(2) 0.45(1 ) 0.15(0) 1.115 1.296 
2.0 7.71(11 ) 3.17(4) 1.67(2) OA2(1 ) 0.15(0) 1.116 1.295 

http:V/Vo=3.00
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~ Table VIII. The Results of Tables III-VII Extrapolated to Equilibrium" 


N VIVo 102i"" Z*is K!jk K"r' Ik 

4 1.25 1.243(0) 14.362(2) 5.18(18) 0.39(2) 
32 1.25 0.137(0) 14.666(5) 16.74(36) 1.09(2) 
4 1.80 3.124(2} 6.312(2) 2.30(8) 0.37(2) 

32 L80 0.284(1 ) 7.603(10) 6.79(21) 0.85(2) 
4 3.00 5.885(9) 3.820(5) 1.18(2) 0.28(0) 

a Indicated by an asterisk. Numbers in parentheses denote the uncertainty of the last digit(s). 

APPENDIX D 

In this Appendix, we derive Eq. (33). Since zstr = pstrV/NkT= 1 for 
hard spheres (see Section 3.1) Eq. (33) can be written as 

D(N -l)~ 1 (Dl) 

valid for vanishing driving force, ). = O. In both isoenergetic and isokinetic 
cases, p eoll V may be evaluated as a time average, 

(D2) 

Compare with Eq. (11). The first sum goes over all collisions observed 
during the large time interval s. According to (28), the integrand may be 
written as 

(D3) 

FI2 =F is assumed to be constant. See (AI) for the isokinetic case. The 
same assumption applies in the isoenergetic case if }, = O. This special case 
was not treated in Appendix B. Then it follows that 

f'I,Pa,,(t)Vdt=a'C e (D4) 
coli oc 

for both isoenergetic and isokinetic cases, where 'C e is defined in parallel to 
Eq. (A3). Since A. = 0, 'Ce can be calculated analytically; the result is 

'Ce,E= -P'12 (D5) 

'Ce,K = (mK)li2In{[(4mK)1/2 - p;2]/[(4mK)1/2 + P~2]} (D6) 
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'e,K comes from Eq. (A9), }, = 0 inducing 

(07) 

Combining Eqs. (04H06) yields the integral occurring in (02) for both 
isoenergetic and isokinetic cases. 

For calculating P'jfIlV and P';'uV we use the ensemble average instead 
of the time average. The probability of a collision is proportional to 
( - P~2) > O. Furthermore, the system is isotropic for A O. The momenta 
are restricted by the fixed center of mass and the fixed streaming kinetic 
energy K"tr, 

0( = x, y, ... (08) 

L L P~i 2mK"tr, 1;;:;; i;;:;; N. (09) 
a i 

Inserting (08) into (09) yields 

L L P;i +L(L Pt<i) 2 2mK"t" (010) 
1X l Ci t 

Thus, we have (N -1) D variables Pai in momentum space with one restric
tion forcing the points to lie on an ellipsoid. Transformation to (N - 1) D 
variables Wj is always possible so that the allowed points lie on the surface 
of a unit hypersphere: AIIiO' 

L wJ 1, l;;:;;j;;:;;(N-l)D (011 ) 
j 

(012) 

Thus, the probability of a collision is proportional to WI' The ensemble 
average of a functionf(wd becomes 

_ibf(wd WI dWl J... Jdw 2 ••• dW(N-l)D 
(N-l)D~2 (013)

f- Ibw1dw1J ... Jdwz ... dw(N_I)D ' 

with the restriction (C12). Carrying out the integrals over W2 · .. W(N-1)D 
and replacing WI by W gives 

(014) 
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In order to obtain (D 1), we have to specify f( w): 

P'E.?IIV/P'tll V = <'e,E(W) )/< 'e,K(W» (D15) 

'e,E = 2(mXStr )I/2 W 

'.,K = (mK)I/2In[(1 + w)/(1- w)] (D16) 

xstr, the isoenergetic streaming energy, is equal to the isokinetic K. It 
follows that 

PC;llV Sb dw w2(1- W 2 )[{N-l)D-3]!2 
(D17)

P't ll V - Sb dw w(1 w2 )(N-I)D- 3 In [(1 + w)/(1- w)] 

Evaluation of this ratio yields (D1) for (N-l)D~2. If N=2 and D=1" 
j = 1 and WI = 1 are fixed [see (Dl1), (D12)]. Thus, no average has to be 
taken in (DI5), Due to W = WI = 1, the numerator is finite, the denominator 
infinite, in accordance with (D 1) for the case (n - 1) D = 1. 
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