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We show that Nose mechanics provides a link between computer simulations of nonequilibrium pro­
cesses and real-world experiments. Reversible Nose equations of motion, when used to constrain non­
equilibrium boundary regions, generate stable dissipative behavior within an adjoining bulk sample 
governed by Newton's equations of motion. Thus, irreversible behavior consistent with the second law of 
thermodynamics arises from completely reversible microscopic motion. Loschmidt's reversibility para­
dox is surmounted by this Nose-Newton system, because the steady-state nonequilibrium probability 
density in the many-body phase space is confined to a zero-volume attractor. 
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The resolution of Loschmidt's paradox, namely that 
particles obeying ret'ersible equations of motion can Gn 
accordance with the second law of thermodynamics) ex­
hibit irret'ersible nonequilibrium behavior, is presented 
here in a novel application of Nose mechanics. I,2 This 
approach provides the formal structure needed to link 
nonequilibrium molecular-dynamics (NEMD) simula­
tions of irreversible processes to real experiments. The 
picture we have in mind is a bulk sample composed of 
atoms governed by Newton's equations of motion; non­
equilibrium boundary conditions and thermostatting are 
imposed in regions surrounding the bulk. In the bound­
ary regions, the atoms are governed by reversible Nose 
equations of motion, which, for example, might constrain 
the first and second moments of the velocity distribution 
so as to generate Couette shear flow at constant tempera­
ture. Another application would be heat flow, with the 
two boundary regions thermostatted at different temper­
atures. Figure I is a schematic of such a composite 
boundary-bulk-boundary system, with completely re­
versible dynamics achieved by Nose-Newton-Nose equa­
tions of motion, respectively. In this paper, we will show 
the relationship of this Nose-Newton nonequilibrium 
system to the analogous boundary-driven NEMD intro­
duced by Ashurst and Hoover 3 some fifteen years ago, as 
well as to the homogeneous NEMD equations of motion, 
which are non-Hamiltonian but nevertheless time reversi­
ble. 4 Finally, we point out the connection linking Nose­-

generalization to cyclic processes involving overall dissi­
pation is straightforward. 

Nose's recent modification of Hamiltonian mechan­
ics 1,2,4-7 makes it possible to simulate the equilibrium 
dynamics of many-body systems with given values of the 
averaged temperature T or pressure P. The average can 
be carried out over time for a single system, or 
equivalently, for mixing systems, over an ensemble. 
Nose showed that the long-time steady-state {equilibri-
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FIG. I. Schematic of a boundary-bulk-boundary (Nose­
Newton) nonequilibrium system. Here, atoms in the left-most 
boundary region are Nose thermostatted at a high tempera­
ture; atoms in the middle (bulk) region are governed by 
Newton's equations; atoms in the right-most boundary region 
are Nose thermostatted at a low temperature. Heat flows 

Newton reversible mechanics with the (irreversible) through the bulk region from left to right. {Vertical walls 
second law of thermodynamics. We will emphasize separate particles in the three regions via elastic, specular col­
nonequilibrium steady states in our presentation, but the lisions.} 
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urn) distribution in phase space corresponds to the Gibb­
sian canonical or isothermal-isobaric ensemble in the 
constant-V and -T or constant-P and -T case, respective­
ly. The distinguishing feature of Nose's isothermal 
mechanics is that it allows us to maintain the tempera­
ture of particles in a boundary region at a value T 
through a ret'ersible "friction" coefficient (. For these 
boundary particles, Nose's deterministic reversible equa­
tions of motion relate the accelerations q to the forces F, 
which depend on the coordinates q (p are the momenta): 

p=mij=F(q)-(p. ([) 

The friction coefficient for a given boundary region 
satisfies the integral feedback equation 

(()=((O)+ .(ds(s), (2a) 

(()=IK(()!Ko-I]/r2. (2b) 

K 0 is the long-time steady-state average of the kinetic 
energy (kT!2 for each degree of freedom) in the given 
boundary region thermostatted at temperature T. r is 
the response time of the thermostat, a parameter (in the 
limit that r goes to infinity, Newton's equations of 
motion are recovered). The thermostatting, or friction 
coefficient (, fluctuates about zero at equilibrium, with 
fluctuations which vanish in the thermodynamic limit. 

There is a close link between Nose thermostatting and 
Gauss's principle of least constraint, a standard classical 
mechanics textbook method for implementing both holo­
nomic and nonholonomic constraints. 4 If Gauss's princi­
ple is used to constrain the kinetic energy of a many­
body system to a constant value K0, exactly the same 
motion equations result [Eq. (I)]. But in this limiting 
case, with r approaching zero, the reversible friction 
coefficient (G is given explicitly: 

where <1> is the potential energy. Thus, the Gauss isoki­
netic equations of motion are an example of differential 
feedback. 

As pointed out in the introduction, the Nose-Newton 
nonequilibrium system we have proposed provides the 
formal structure needed to link these computer simula­
tions of irreversible processes to real experiments. 
Ashurst-Hoover boundary-driven NEMD is very closely 
related except that they used velocity scaling to thermos­
tat the boundary regions. 3 (Velocity scaling approaches 
identically the reversible Gauss isokinetic equations of 
motion as the finite-difference time step is made smaller 
and smaller,) For situations close to equilibrium, Nose­
Newton mechanics reproduces the Green-Kubo results of 
linear-response theory. 

Farther from equilibrium, Nose thermostatting as well 
as external (non-Hamiltonian) forces can be used homo­
geneously throughout a system, so as to approximate hy­
drodynamic flows of mass,8,9 momentum,10 and ener­

gy, 11,12 in a way which is insensitive to system size. In 
these homogeneous systems we consider the boundary re­
gion to be our entire sample, with a single thermostatting 
coefficient applied to all degrees of freedom. (In the case 
of the relaxation of intramolecular vibrational modes, 12 
the translational and rotational degrees of freedom are 
thermostatted at one temperature, while the vibrational 
modes are thermostatted at another; hence, two friction 
coefficients are required, one for each thermal reservoir.) 
Provided the flows are not too far from equilibrium, 10 
these artificially constrained states are fairly accurate 
approximations to nonequilibrium steady states found in 
the absence of homogeneous constraints. Consequently, 
all these NEMD methods are related through the Nose­
Newton nonequilibrium system, demonstrating that ir­
reversible dissipative behavior, consistent with the second 
law of thermodynamics, results from microscopic equa­
tions of motion which are completely time reversible in 
both bulk and boundary regions. 

Exactly what is meant by "time reversibility?" This 
question has caused considerable confusion, not just in 
numerous informal discussions, but even in published 
works. 13 The fundamental test for, and definition of, 
time-reversible equations (which generate time-reversi­
ble motions) is that a mode of such a motion (that is, a 
record of the time dependence of the particle coordi­
nates), run backwards through a movie projector, would 
still satisfy exactly the same equations of motion. The 
Nose-Newton equations of motion are time reversible in 
this sense. Because in Nose's original Hamiltonian 
derivation the friction coefficients ( arise as momenta, all 
these friction coefficients, as well as all the particle mo­
menta, change sign in the time-reversed motion. It is 
clear, in the typical equations of motion [Eqs. (j) and 
(2)], that changing the signs of the time t, the momenta 
p, and the thermostatting coefficients (, while leaving the 
coordinates q on which the forces F depend unchanged, 
generates the reverse trajectory. 

This behavior is qualitatively different from that typi­
cal of chaotic dissipative maps, such as the Henon 
map,14 or from that characterizing the dissipative equa­
tions of continuum mechanics, such as the diffusion 
equation. In both these irreversible cases the equation of 
motion is clearly im'ertible (meaning that the past can 
be calculated from the present) but the form of the 
equation which describes the forward evolution is differ­
ent from the form of the equation describing the back­
ward evolution. The Henon map, for instance, contracts 
phase-space area when iterated forward in time. The in­
verted map obtained from the Henon map expands areas 
and so has a qualitatively different analytic form. Like­
wise. the solutions of the diffusion equation 

can be inverted (extrapolated backward in timd, but 
only by changing the transport coefficient D (which is in­
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trinsically positive) to a negative value. 
The mathematical structures of dissipative maps and 

the hydrodynamic equations are inherently irreversible. 
The Nose-Newton equations are different: They are 
time reversible. That is, the inverted equations which 
trace motion backward along any trajectory are identical 
to the equations describing the forward motion. The 
amazing thing about the Nose-Newton equations applied 
to steady-state nonequilibrium systems is that they are 
found (numerically) to produce dissipative behavior, just 
as the invertible but time-irreversible dissipative maps of 
chaos theory and the irreversible partial differential 
equations of fluid dynamics do. This thermodynamically 
irreversible behavior occurs in both small and large sys­
tems. For any such system with any initial condition, 
Nose-Newton mechanics leads to heat flow from high 
temperature to low temperature, II corresponding to a 
positive heat conductivity. Likewise, positive diffusion 

9coefficients 8. and viscosity coefficients 10 result, even for 
systems involving only a few degrees of freedom. 

The thermodynamic interpretation of this dissipative 
property is of general validity: The analog of Liouville's 
theorem, with use of N ose-Newton mechanics,7 becomes 
an equation for the time evolution of the phase-space 
density f(q,p,r;,t): 

j=fzJ, 
where the sum is over all boundary degrees of freedom. 
(In the example shown in Fig. 1, the sum contains many 
terms from many particles, but only two different classes 
of terms, and only two different friction coefficients, 
namely one for the hot boundary and one for the cold 
boundaryJ The sum over friction coefficients (r;) can 
then be related to 

E=TS= kT(, (6) 

the rate at which energy E is being exchanged between a 
given degree of freedom, thermostatted at temperature 
T, and its corresponding Nose reservoir. If a reservoir 
extracts heat, the corresponding S is negative, increasing 
f; if a reservoir furnishes heat, the corresponding S is 
positive, decreasing f. 

Thus if energy is dissipated in the steady-state system, 
then the sum of S over all reservoirs is negative, and the 
distribution function must eventually diverge to infinity 
at the steady state, indicating a collapse of the phase­
space probability onto a subspace with zero volume. In 
the cases which have so far been analyzed numerically, 
the collapse does occur; the resulting subspace is indeed 
a fractal 15 attractor. The simplest such example9 is 
shown in Fig. 2. (To date, the number of degrees of 
freedom, or dimensionality of phase space, has necessari­
ly been restricted to few-body problems. Lyapunov spec­
tra for eight particles in a three-dimensional fluid, driven 
by an external field, confirm the one-body and two-body 

12 

FIG. 2. Left: A Poincare attractor section, corresponding to 
the relative probability of the momentum p and Nose friction 
coefficient (, at a fixed value of q. There is a periodic 
sinusoidal potential and an external driving field. For details, 
see Ref. 9. Right: The corresponding repellor (with the 
momentum p and friction coefficient (changed in sign relative 
to the attractor) which, although violating the second law of 
thermodynamics, has such a small probability of being ob­
served (precisely zero) as to be unobservable. The dimen­
sionality of the Poincare section is 1.50 ± 0.02. The 
prevalence of positive-p points implies that the conductivity is 
positive. The prevalence of positive-( points implies that the 
thermodynamic dissipation of work into heat is likewise posi­
tive. 

results 8.16 of phase-space contraction to a fractal strange 
attractor. 17) 

How is this collapse of probability onto a zero-volume 
attractor related to the second law of thermodynamics? 
The phase-space states which can violate the second law 
by steadily converting heat back into work are precisely 
those of the corresponding unstable repellor (an object 
just like the stable attractor, but with the signs of the 
momenta, friction coefficients, and Lyapunov coefficients 
all changed). For the sinusoidal diffusion example, the 
attractor and repellor are illustrated on the left- and 
right-hand sides of Fig. 2. It is clear from Fig. 2 that the 
repellor states correspond both to an unphysical negative 
conductivity and to a negative dissipation, through which 
heat is continuously converted into work. 

Thus steady states which could violate the second law, 
If they were observable, span a volume of exactly the 
same size as does the zero-volume attractor. By the 
choice of any state near the attractor which has been 
propagated forward in time for a time t forward, then a 
change of the signs of the momenta and thermostatting 
coefficients, and propagation backward, the second law 
can be violated for a time t forward. But the only way that 
a permanent (steady-state) violation of the second law 
could occur would require an inversion of a state precise­
lyon the zero-volume attractor. These states occupy 
precisely zero volume and require an infinitely long 
simulation in the forward time direction for their charac­
terization. 

The conclusion of this novel analysis of Nose-Newton 
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mechanics is most interesting, and follows along the line 
of Prigogine's attempts to understand the irreversibility 
of the second law of thermodynamics through the struc­
ture of microscopic reversible equations. 18 (He views the 
problem of irreversibility from a different, but comple­
mentary, perspective, namely, the relaxation of a non­
equilibrium initial condition toward equilibrium. The 
Nose-Newton formalism applies here, too: We can 
imagine a nonequilibrium steady state having been 
achieved, and then turning off the driving force. The 
Newtonian bulk, whose distribution function is initially a 
zero-volume strange attractor, then relaxes toward equi­
librium with its phase space expanding and the entro­
py increasing- irreversibility') The reversibility para­
dox 6

•
19 disappears when Nose-Newton mechanics is used 

to describe steady-state nonequiIibrium systems, despite 
their mathematical reversibility. Any initial conditions 
which could violate the second law of thermodynamics 
have precisely zero probability, even for small systems 
with only a few degrees of freedom. Thus, the present 
combination of (1) the fractal concepts popularized by 
Mandelbrot, (2) the reversible dynamics introduced by 
Nose (and related to Gauss's principle), and () comput­
ers powerful enough to study the consequences of these 
ideas, has resolved the old reversibility paradox for non­
equilibrium steady states. That is, unstable states going 
backward in time are never observed, not because they 
violate the equations of motion, but rather because the 
probability of observing them is precisely zero. 
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