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Some of the differences among several alternative formulations of constant-pressure molecular 
dynamics are described. The formulations all agree in the large-system limit, but differ for small 
systems. 

Several times during the past year I have been asked to 
explain the difference between the :Sose-Anderseni~4 
"isobaric-isothermal" equations of motion which pres
sure and kinetic energy fluctuate) and the closely related 
equations I described in my later work on the Nose oscil
iator.s This Brief Report answers that question. 

In both cases the motivating idea was the same~to use 
equations of motion which can generate the phase-space 
density typical of the Gibbsian isobaric-isothermal parti
tion function. Such a goal is different from that pursued, 
at about the same time, by Evans and Morriss6 and Abra
ham,' who independently developed a third set of equa
tions which instead make the instantaneous pressure P a 
constant of the motion: 

In (1) the pressure P is held constant by calculating 
an instantaneous infinite-frequency bulk modulus and ad
justing the volume V to satisfy the condition F=O. In 
Eq. (l) the N-particle volume, usually periodic, is D di
mensional. The first sum runs over all N particles, each 
of mass m, The double sum includes each pair of parti
cles once. The nearest-image convention is used in calcu
lating the scalar dot product of the pair's separation rand 
the force F. 

In Gibbsian statistical mechanics the usual "isobaric" 
ensembles aHow the instantaneous pressure P defined by 

to fluctuate around a specified mean value Po. The 
prObability density in the isobaric-isothermal N - Po - T 
ensemble is proportional to the exponential of a reduced 
instantaneous enthalpy, (E ";"PoVilkBT, where ks is 
Boltzmann's constant and T is a specified temperature, 
around which the instantaneous temperature
! (p2 ImNDkB) fluctuates. The volume V and the kinet
ic energy K both vary with time, as do also the coordi
nates q and momenta p appearing in the internal energy 
E(q,p). 

In carrying out any isobaric-ensemble simulation it is 
Convenient to use D-dimensional vector coordinates x, the 
components of which range from 0 to 1 in each of the D 
sPace directions. These coordinates are independent of 
tht volume V, which changes as a function of time. In 
Refs. 1-5 volume is used as an independent variable; 
strain, proportional to the logarithm of the volume, could 

f eqUally well have been used. Likewise, to describe the 
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change of the volume with time, either ~r or the strain 
rate E= VIV can be used. Andersen and Nose chose V. I 
chose E. Any of the combinations V - V, V -E, E-i, and 
E - V is satisfactory but each of the four sets of variables 
leads naturally to a unique set of motion equations. Of 
course it is true that any of the four resulting sets of 
motion equations could be expressed in terms of any of 
the four sets of variables. Thus the chosen independent 
variables influence, but do not determine uniquely, the 
equations of motion. 

One satisfactory complete set of variables for isobaric
isothermal simulations is x -p V -E. Nose 
discovered that by using a new friction coefficient variable 
~ the isobaric-isothermal ensemble could be generated 
with molecular dynamics. In Nose's formulation the mo
menta change not only through their adiabatic coupling to 
the strain rate but also through their coupling to a heat 
bath described by ~ and a parameter Q with units of ac
tion times time. I showeds that a corresponding isobaric
isothermal phase-space density j(x,p,t;, V,i) is propor
tional to 

V''' -lexp! f -<P-K -Po V -(Qr;" 12)]lkB T -D (h)2 

I pointed out in Ref. 5 that the equations of motion 

x=plmVl/D, 

p=F- f)p, 
(2) 

t=2(K -Ko)IQ , 

V=DVi, 

when supplemented by an evolution equation for the 
strain rate f 

)VlkTr2 , (3) 

satisfy Liouville's probability-conservation equation: 

O=oj lOT 

(ox lax";" op lop + a; lat; + aV/a V+oE'Ioi) 

+x(}jlox +pojlop+tajla;+ fTaf IOV + (::'aj laE. 
(4) 

On the other hand, the original Andersen-Nose e.quations 
of motion use f'rather than € as an independent variable. 
The equation of motion for Vis 
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V=(P -Pol!M . (5) 

In Eq. (5) lV is a parameter with units mass 
X (lengthl2 - 2D• This equation also leads to a probability 
-lensity satisfying an analog of the Liouville equation (4). 

It the extended phase-space density is slightly different. 
For the Andersen-Nose equations the equilibrium phase
space density I( x,P,';. V, V) turns out to be proportional 
to 

VNexp[{ -<I>-K -Po v)!kBT] 

xexp[ -(Q,;2+MDV 2)/2kBT] . 

It is clear that after integrating over the strain rate Ii the 
two probability densities differ hy one power of the 
volume V, but otherwise give exactly the same phase 
space density in the variables, x -p V. Both Eqs. 
(3) and (5), as well as the alternatives using the pairs e- V 
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and e-li, are equally valid representations of the 
isobaric-isothermal ensemble. It is possible that one of 
these five formulations might be "best" for systems with 
only a few degrees of freedom, but the differences between 
the formulations are relatively small, of order (lIN!. If, 
as is usual in molecular dynamics simulations, the center 
of mass is kept fixed, then the number of independent x-p 
pairs is reduced by 1 and the ]V in both probability densi
ties is reduced to ]V - 1. 
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