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Nose has developed many-body equations of motion designed to reproduce Gibbs's canonical 
phase-space distribution. These equations of motion have a Hamiltonian basis and are accordingly 
time reversible and deterministic. They include thermodynamic temperature control through a sin­
gle deterministic friction coefficient, which can be thought of as a control variable or as a memory 
function. We apply Nose's ideas to a single classical one-dimensional harmonic oscillator. This rel­
atively simple system exhibits both regular and chaotic dynamical trajectories, depending on the ini­
tial conditions. We explore here the nature of these solutions by estimating their fractal dimen­
sionality and Lyapunov instability. The Nose oscillator is a borderline case, not sufficiently chaotic 
for a fully statistical description. We suggest that the behavior of only slightly more complicated 
systems is considerably simpler and in accord with statistical mechanics. 

L INTRODUCTION AND MOTIVATION 

During the past ten years an intensive effort has been 
made to. use computers in the simulation of many-body 
systems in nonequilibrium states. l A major difficulty in 
achieving this goal had been the lack of useful controls 
over the thermodynamic independent variables. It is 
necessary to control temperature or pressure or energy in 
order to simulate nonequilibrium steady states far from 
equilibrium. The techniques of control theory can be ap­
plied to this problem, adding arbitrary "control forces" or 
"constraint forces" designed to maintain thermodynamic 
variables fixed. Some of these same constraint forces are 
suggested by classical mechanics. Gauss, for instance, 
made the reasonable suggestion that constraint forces 
should be made as small as is possible, in a least-squares 
sense. The resulting principle of least constraint2 is the 
most general formulation of classical mechanics. This 
principle leads to frictional forces, linear in the momen­
tum, of the same form familiar from control theory.3 
Much more recently, Nose has suggested a frictional force 
designed to reproduce the canonical (constant thermo­
dynamic temperature) and isobaric (constant thermo­
dynamic pressure) phase-space distributions in equilibri­
um systems.4

•
5 Nose's equations of motion incorporate 

"integral control" in which the friction coefficient, or 
"control variable," depends linearly on the integrated his­
tory of the system's kinetic energy. 

Unlike hydrodynamic frictional forces, Gauss's and 
Nose's forces are time reversible. In fact, even far from 
equilibrium, the new equations, like Newton's, are purely 
deterministic and reversible. 

Canonical ensemble equilibrium properties are not at all 
mysterious or hard to compute. There already exist many 
practical schemes for determining the thermodynamic and 
structural properties of ma.ny-body systems with good ac­
curacy.6 Thus the new schemes have little to offer in the 
way of improving equilibrium simulations. Instead, 
Gauss's and Nose's ideas are particularly promising be­
cause they suggest approaches to classes of problems in 

nonequilibrium and quantum-mechanical simulation for 
which no useful theories exist. They also suggest ways of 
simplifying and unifying deterministic and stochastic 
dynamics through the use of deterministic driving forces. 

These ideas have already proved their usefulness in the 
study of nonequilibrium systems. The new equations 
make it possible to simulate, and to analyze theoretically, 
systems connected to thermal or mechanical reservoirs 
without the need for stochastic or irreversible forces. It is 
remarkable that this has been achieved with time­
reversible equations. Thus a movie of a physically irrever­
sible process described with a Gaussian or Nose thermo­
stat represents accurately the mathematical formal solu­
tion of the equations of motion only in the forward direc­
tion. Because the backward direction corresponds to an 
entropy decrease, it cannot be observed in any finite­
precision computation and the reversed movie represents a 
fictional trajectory. 

Gauss's and Nose's equations of motion have been ap­
plied to the study of fluid and solid diffusion,2·7 viscosi­
ty,8.9 and heat conduction 10, II with computer simulation 
and to the nonlinear generalization of linear response 
theory12, 13 required to describe systems far from equilibri­
um. 

In order to characterize these new dynamical ap­
proaches and to assist the development of the theory, it is 
essential to study their application to the simplest possible 
prototypical systems. In this way the advantages of the 
new methods can be exploited and the disadvantages sur­
mounted. Thus two-bod/-9 and three-bodylO nonequi­
librium systems have been simulated using Gaussian and 
Nose dynamics. 

To help assess these new developments in nonequilibri­
um molecular dynamics we study here the one­
dimensional harmonic oscillator using Nose's canonical 
equations of motion. 14 This is a problem with three 
time-dependent variables, the coordinate q, the momen­
tum p, and the friction coefficient b' Each of these obeys 
a first-order differential equation of motion. The oscilla­
tor exhibits many of the familiar features found earlier in 
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the studies of the Lorenz,15 Henon-Heiles,16 and double­
pendulum17 systems. The last two of these problems are 
mathematically reversible, like the Nose oscillator, and re­
stricted to a three-dimensional subspace of a four­
dimensional phase space by an energy integral of the 
equations of motion. 

In the limiting cases of very weak and very strong ther­
mostats, the motion of the Nose oscillator can be under­
stood analytically. In the intermediate, chaotic region, 
Poincare maps cutting the three-dimensional phase space 
(q,p,~J are useful tools. The accessible part of this phase 
space is unbounded in extent as a consequence of the loga­
rithmic form of the thermostat potential. For experimen­
tally accessible times, however, the trajectory is always 
confined to a rather small phase-space volume around the 
origin regardless of the initial conditions. The solution of 
the Nose oscillator problem thus behaves like a strange at­
tractor familiar from the study of dissipative systems. 
We have characterized the chaotic regime in terms of the 
Lyapunov exponent and fractal dimensionality of this 
"strange attractor." The motion of the phase point in 
lq,p,~J space provides many attractive pictures. 

The oscillator calculations suggest the need for some 
caution in applying Nose's dynamics to the simulation of 
statistical-mechanical systems. Just as in the case of 
Newtonian mechanics, it appears that Nose and Gaussian 
mechanical systems, if they are simple enough, are incon­
sistent with the usual statistical description. On the other 
hand, it is possible, and may be even likely, that the com­
plexity associated with fractals and strange attractors is 
not generally important. Very simple systems with addi­
tional topological complexity produce behavior we have 
been unable to distinguish from truly (quasi-Jergodic tra­
jectories. This includes a problem which requires only a 
three-variable phase space for its description, namely a 
particle moving in a two-dimensional potential at constant 
kinetic energy. Of course, a foolproof test for ergodicity 
is still lacking. Perhaps such a test will emerge from the 
computational analysis of simple systems like the Nose 
oscillator. 

In Sec. II we describe three equivalent forms of Noses 
equations of motion. We apply them there to the only 
case for which an exact solution is known, a classical ideal 
gas. 

In Sec. III we consider a classical one-dimensional har­
monic oscillator, as described by Nose's equations of 
motion. We concentrate there on analyzing simple limit­
ing cases, the recurrent and nearly recurrent orbits which 
occur in the weak- and strong-coupling limits. 

In Sec. IV we present a numerical study of the chaotic 
regime which lies between the limiting cases discussed in 
Sec. III. The behavior found is discussed using standard 
techniques-Lyapunov exponents and Poincare phase­
space sections. Many of the phas.e portraits of the simple 
oscillator are surprisingly pretty. 

In Sec. V we consider two slightly more complicated 
systems, using the same equations of motion, a two-body 
problem with Nose dynamics and a two-body problem us­
ing Gaussian dynamics. These problems involve, respec­
tively, five and three phase-space variables. In both cases 
it appears that the behavior is different from that of the 

Nose oscillator, so that statistical mechanics can probably 
be applied to most systems of interest. 

Section VI is a short summary of the work presented 
here together with speCUlations on extensions of Nose's 
work to treat more complicated kinds of physical prob­
lems. 

II. ISOTHERMAL EQUATIONS OF MOTION: 

NOSE'S DYNAMICS 


Nose succeeded in reproducing Gibbs's canonical distri­
bution from isoenergetic dynamics. To do this, he con­
sidered an augmented system with an explicit one­
parameter heat bath. The equivalence of the dynamical 
phase-space distribution with Gibbs's amonical distribu­
tion has been established in two somewhat different ways: 
by integrating the microcanonical distribution over the 
heat-bath variable and its conjugate momentum4,5 or by 
direct calculation of the extended phase-space flow gen­
erated by the dynamics. 14 For either proof it is necessary 
to assume that the augmented system behaves in a 
quasiergodic way, approaching closely all accessible points 
in phase space during the course of a long-time trajectory. 

Nose's approach can be generalized in many ways. For 
instance, equations of motion which control moments of 
the velocity distribution beyond the second can be con­
sidered. These can be applied to the study of energy­
sensitive processes, such as shock-wave-induced chemical 
reactions, but we will not consider them here. Likewise, 
by developing equations of motion designed to reproduce 
known quantum expectation values, classical mechanics 
could be generalized to estimate unknown quantum prop­
erties. We developed neither of these straightforward gen­
eralizations of Nose's ideas here. 

Nose's many-body Hamiltonian, 

(1) 

can be made the basis for many different forms of iso­
thermal canonical equations of motion. In (1), D is the 
dimensionality of the N-particle system. The momentum 
P" with an effective mass l/a, is conjugate to the dimen­
sionless "time-scale" variable s. We discuss the meaning 
of scaled time below. The thermodynamic temperature T 
is coupled to the time development of the trajectories 
through the kinetic energy. The potential energy <1>, 
which depends upon coordinates Qt, represents the in­
teractions of all particles making up the system. The 
time-scale or "effective-mass" variable s, and its conjugate 
momentum P., interact collectively with all of the degrees 
of freedom! Qi,P j I of the particles. To make the present 
work self-contained, we will first describe the series of 
transformations linking tlJ:e three forms of Nose's equa­
tions of motion together. We include the solution for the 
ideal-gas case. The reader wanting more details should 
consult Nose's original work as well as Ref. 14. 

The equations of motion from the Hamiltonian (1) are 
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(2) 

For any solution of these equations the Hamiltonian (1) is 
the corresponding constant of the motion. Other forms of 
the equations of motion can be obtained from (2) by time 
scaling. Nose suggested scaling the time in such a way 
that all the time derivatives in (2), expressed in terms of 
"scaled-time" derivatives, are made larger by a factor of s. 
The time scale varies such that (dldt)new=s(dldt)old or, 
equivalently, so that dtnew = dtold Is. Expressed in terms 
of derivatives with respect to the scaled time and still 
using the dot notation for these new time derivatives, the 
equations (2) become 

(3) 

where Fi = - Vi<I> is the force acting on particle i. It 
needs to be emphasized that the trajectories in QPsPs 
space from (2) and (3) are identical, but they are traced 
out at different rates. The time-scale variable s (which 
could also be thought of as an effective mass m S2) just 
plays the role of a clock. Any other clock could be used 
with any dependence whatsoever on QI, PI, s, and Ps or 
even on variables outside that set. Still the trajectories 
would trace out the same curve in QPsPs space. Both sets 
of equations (2) and (3) clearly have the same constant of 
the motion, H N . 

An even simpler description of the motion is obtained 
by transforming to new variables ql, PI, and Saccording 
to 

(4) 

In this representation the equations of motion assume the 
form 

ql=Pllmi' 

Pi=Fj-SPi, (5) 
;. 2
S=a ~ (Pilmi-DkB 

which simplifies the dynamical description by reducing 
the phase-space dimensionality by one. The friction coef­
ficient S couples the N-particle system to a heat bath 
maintaining a constant temperature T. Equation (l) is 
still a constant of the motion and may be expressed in 
terms of our new variables according to 

H= ~Pf/2mi+<I>+NDkBT J's(t')dt'+S2/2a. (6)o

Using the equations of motion (5), only qi' Pi' and S (or 
Ps=sla) are given by the solution, where PI in (5) is the 
original Nose Pi divided by s. This solution is indepen­
dent of H. But, from the initial value of the Hamiltonian 
(1), in which the integral over time does not occur, s may 
be obtained, 

s oxp [ [JIN -<I>-S'/2a- ~piI2m; ]/NDkBT I ' 
(7) 

from which the momenta in the Nose description can be 
calculated. 

The dynamical equations are relatively complicated for 
most systems, yielding a chaotic motion even for the pro­
totypical stable system, a harmonic oscillator. The D­
dimensional N-particle ideal gas can be worked out in de­
tail, as Nose emphasized. In that case all of the forces Fi 
are zero and it is convenient to introduce the variable 
X =In[ ~ (p;1m; l/DNkB T]. Equations (5) reduce to a 
simple second-order differential equation for X: 

X= -2aDNkB T[exp(X) 1]. 	 (8) 

Thus the kinetic energy behaves like a particle oscillating 
in a nonlinear Toda potential 

<l>eff= 2aDNkB T[ exp(X) - I 	 (9) 

with a definite frequency and amplitude. For small a the 
variable X oscillates with a frequency of order Va. The 
momentum of each particle oscillates in magnitude but 
remains fixed in direction. Thus the Nose thermostat is 
not sufficiently powerful to force a gas into the canonical 
distribution in velocity space. The lack of a closed-form 
integral for motion in the ideal-gas case (8) suggests that 
only perturbation or numerical approaches will be useful 
for more complicated (Le., nonzero) potentials. 

III. 	HARMONIC-OSCILLATOR NOSE MECHANICS: 
REGULAR TRAJECTORIES 

The one-dimensional classical harmonic oscillator is 
qualitatively a much more complex problem than is the 
ideal gas. The interaction between the fundamental oscil­
lator frequency and the frequency associated with the 
heat-bath variable s leads to a wide variety of regular and 
not-so-regular trajectories. For simplicity we introduce 
reduced variables by choosing m, vim Ik, and 
as units for the mass, time, and length scales, respectively, 
where m is the mass and k the spring constant of the os­
cillator. If the same symbols are used for the original and 
reduced quantities, the Hamiltonian (1) for the one­
dimensional Nose oscillator can be written as 

p2 aP; 
(10)2 +2s 2 + lns +-2-' 

After time scaling by the scale variable s, the equations of 
motion follow from (3): 

Q=PIs, P -Qs, 
(11) 

s=saPs , fts =p2IS2_1 

Transformation to new variables as in (4), 

q Q, p=PIs, 
dIns 

S=-;]t=aPs • (12) 

leads to the alternative q,p,s representation of the Nose 

i 
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oscillator, for which the Hamiltonian (6) may be tran­
scribed: 

H 2 + 2 + 2a + Jot {;(t')dt' . (13) 

The equations of motion (5) assume the particularly sim­
ple form 

• . r;' (2 1q=p, p=-q-."p, ~=ap -). (14) 

The oscillator coordinate and momentum are q and p. 
The friction coefficient maintaining the reduced tempera­
ture equal to I is {;. It is obvious from (13) and (14) that 
the physics of the Nose oscillator depends on a single pa­
rameter, the coupling parameter a. 

There is an extensive literature recommending methods 
for finding the solution of such equations as asymptotic 
series in Va, valid for times small with respect to 
liE. IS, 19 But it is actually considerably simpler, given the 
simple structure of the equations, to guess the form of the 
solution from numerical solutions. In the analysis it is 
convenient to use an energy E'=(q2+p 2+{;2/a )/2 so 
that E' {;. As an example we consider the case H = I 
with the initial conditions qo=O, Po=v'2, (;0=0. The 
Fourier-series solution has the form 

sint)2++[E sin( Et /2)]2E' 

sin(2t)+O(E4 ) (15) 

for times less than 21T/E. The error includes terms of or­
der E6t 2. For solving the equations of motion (14) we used 
Hamming's predictor-corrector method of order 4.20 

With a time step of 0.001 and double-precision arithmetic 
on an HP-A600 + computer, we had no difficulty in gen­
erating solutions with the constant of the motion (13) 
fixed to eight figures up to 2 106 time steps (a= 1). 

A Newtonian oscillator traces out an ellipse with two 
turning points for q and for p at which p and q vanish. 

FIG. L Regular trajectory of the Nose oscillator for a= 1. 
The q,p,t; axes are only drawn outside the cube with the origin 
at the center. Initial condition: qo =0, t;0=0. The range 
of scales is indicated by the of the cube: -1 ~ q ~ 1, 
-3~p~3, -8~t;~8. 

p p 

Q 

q Q 

(e) 

(c) (f) 
FIG. 2. Periodic orbit of the Nose oscillator for a= 1 and 

n = 1, where n is the number of maxima of p. (al shows a per­
spective view of the trajectory in the phase space of the modi­
fied q,p,t; representation, whereas (dl depicts the same trajectory 
in the original Nose variables Q,P,s,Ps ' The coordinate axes are 
only drawn outside the cubc with the origin at its center. Initial 
condition: (a)-(c), qo=O, Po 1.55, (d)-tn, Qo=O, 
Po = 1. 55, So = 1, Pso=O. The indicated range of scales corre­
sponds to the edges of the cube for (a) and (d) and to the lengths 
of the axes for the projections: (a)-(c), - 2::;. q ~ 2, 2::;.p ::;. 2, 
-2::;.t;~2; (d)-tn, 2~Q::;.2, -2::;.P 2, -2::;.aPs::;.2. 

This Newtonian ellipse is transformed into a KAM 
(Kolmogorov-Arnold-Moser) torus for small values of the 
perturbation a. As the trajectory spirals around this 
torus, {; oscillates at twice the fundamental oscillator fre­
quency. This follows from the quadratic driving terms in 
the equation of motion for {;, which changes sign four 
times per cycle as p passes through the values 1 and 1. 

For larger values of the perturbation parameter a both 
regular and chaotic solutions can be generated. The latter 
will be discussed in the following section. The regular 
solutions are generally quasiperiodic and trace out KAM 
tori in phase space. An example is shown in Fig. 1 for 
a = 1. For particular sets of initial conditions the tori de­
generate into periodic orbits. In the following a classifica­
tion of the possible reentrant orbits is given. Without loss 
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p p 

(a) 

q Q 

(b) (e) 
p P...---T"__ 

.~, (f)"-----+----' 
FIG. 3. As in Fig. 2 for 0:= 10 and n = 1. Initial condition: 

(a)-(c), qo=O, (d)-(f), Qo=O, Po=2.25, 
so=1, Pso=O. Scales: (a)-(cl, -0.8:::;q:::;0.8, -2.5:::;p:::;2.5, 
-6:::;~ :::;6; (d)-(f), -0.8:::;Q 0.8, -2.5:::;P :::;2.5, -6;; 
aPs:::;6. 

of generality we restrict ourselves to the symmetrical ini­
tial conditions qo Po=l=O, So=O. 

In Fig. 2 a perspective view of the simplest possible 
reentrant orbit for a 1 is shown both in the modified 
variables q,p,S of (14) and in the original Nose variables 
Q,P,p. of (11). Projections onto the q-p 
coordinate-momentum plane and the S-p friction 
variable-momentum plane are also drawn. The full qp(; 
trajectory is a simple twisted loop characterized by a sin­
gle maximum of p. A moderate variation of the initial 
conditions results in a torns such as that depicted in Fig. 
1. 

If the perturbation a is increased to a = 10, the simplest 
possible reentrant mode again shows one maximum in p 
as is reproduced in Fig. 3. By decreasing Po, however, it 
is possible to generate modes with up to n = 6 maxima of 
p. The case n = 5 is plotted in Fig. 4. 

If a is increased further, the situation does not change 
qualitatively except that orbits with a much larger n be-

p 

q Q 

(b) (e) 

p p 

(c) (f) 

FIG. 4. As in Fig. 2 for a= 10 and n =5. Initial condition: 
(a)-(c), Po=1.036, ~o=O; (d)-(f), Qo=O, Po 1.036, 
so=l, Pso=O. Scales: (a)-(c), -5:::;q:::;5, 3'!;p:::;3, 
-6 :::;6; (d)-(f), -5:::;Q:::;5, -2.5:::;P:::;2.5, -6:::;aPs 6. 

come possible. This is demonstrated in Figs. 5-7 for 
a= 100 and n = 1, 9, and 19, respectively. The different 
appearance of the trajectories in the q,p and Q,P,s,Ps rep­
resentations is striking. The initial conditions for reen­
trant orbits and the times 1'0 required by the oscillator to 
complete a full cycle using (14) are listed in Table 1. 

Our results show that reentrant trajectories with wind­
ing ratio zero may be classified in terms of the number of 
turning points of p and q or, alternatively, by the number 
n of maxima of p. These orbits are stable in the sense 
that the numbers of oscillations or of turning points are 
not changed by small variations in the starting conditions 
or in the friction strength a. 

In the limit of large perturbation a the periodic orbits 
have a particularly simple appearance and are partially 
amenable to an analytic solution. We consider two limit­
ing cases. 

Case 1. a »1, p close to 1. These conditions are met 
by the high-frequency limit illustrated in Fig. 7. Putting 
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p p 

pI 

I 

q Q 

(b) (e) 
p p 

(c) (f~-+---==--

FIG. 5. As in Fig. 2 for a= 100 and n = 1. Initial condition: 
(a)-(e), qo=O, 16, bO=O; (d)-,-(f), Po=3.16, 
so=l, PsQ=O. Scales: (a)-(e), ~0.5:o;q::;0.5, 3.5:o;p::;3.5, 
~'30::;b::;30; (d)~(f), -0.5.:o;Q:o;O.5, -3.5::;P:o;3.5, 
- 30::; aPs ::; 30. 

p = 1+8, 8« 1 , (16) 

and using the initial conditions qo=O, Po 1+80, so=O, 
the equations of motion (14) yield 

t=2a8, q =t +s/2a . (17) 

Furthermore, 

8+2a8+ 1=0. (18) 

The solution to these equations to order 8 and 1/2a is 
given by 

80 
q t + . .r;:;- sin( v2at) , 

v 2a 

p=1+80cos(v2at) , (19) 

-t +8ov2asin(v2at) , 

This represents an orbit spiralling around the axis 

p 

(d) 
p 

q 

(e)(b) 
p 

p 

FIG. 6. As in Fig. 2 for a= toO and n =9. Initial condition: 
(a)-(el, Po=L43, bO=O; (d)-(f), Qo=O, Pc, = 1.43, 
So 1, Scales: (a)-(e), -4.5::;q :0;4.5, -3.5:o;p :0;3.5, 
-20:O;b:o;20; (d)-(f), -4.5::;Q -1.5::;P:O;1.5, 
-20 :0;20. 

p 1, -q, as is easily verified also from Figs. 
7(a)-7(c). As we change to the original Nose variables ac­
cording to (12), we find (to the same order of l/2a and 8) 

-80
Q=t+ . .r;:;- sin(v2at) , 

v 2a 

P 1+(0 )exp(-t2/2) , 
(20) 

s =exp( _t2 /2)[ 1+80[ l-cos(v2at )]J , 

aP -t+8ov2asin(vlat).s 

Except for modulations of order 80, a plot of P versus Q 
reveals a Gaussian exp( Q2/2) which is verified also by 
the numerical solution of (11) as shown in Fig. 7(e). 

Case 2. a »1 and p2 This case is met by S. 
Neglecting 1 as compared to p2 in (14), the energy 
E'=q 2/2+p2/2+t;2/2a is a constant of the motion. 
The trajectory moves on the surface of an ellipsoid with 
the main axes of lengths V2if',v2E', v2aE' the 
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p 	 P 

(""'. 

Q 

(d)(a) 
P 

(b) 

P 

Q 

(e) 
P 	 P 

(c) 	 (f) 
FIG. 7. As in Fig. 2 for a= 100 and n = 19. Initial condi­

tion: (a)-(c), qo=O, Po=1.0085, So=O; (d)-(f), Qo=O, 
Po=1.0085, so=l, Pso=O. Scales: (a)-(c), -4.5~q~4.5, 

-3.5 ~P ~3.5, -20~S~20; (d)-(f), -4.5 ~Q ~4.5, 

-1.5 ~P ~ 1.5, -20~aPs ~20. 

q,p,S frame of reference, respectively. For this case, (14) 
can be simplified, and the resulting equations 

(21) 

have the solution 

p/po=sech(YJt) , 

S/YJ=tanh(YJt) , 	 (22) 

tan(Vaq)=sinh(YJt) , 

where the relaxation rate YJ is Vapo, and Po is the initial 
momentum. These equations describe the motion in parts 
(b) and (c) of Fig. 5, replacing the figure-eight in part (c) 
by its limiting large a form, an ellipse. These "large a" 
relations describe only the "large p" portion of parts (c) 
and (f) of Fig. 5. . 

TABLE I. Initial condition for reentrant Nose harmonic-
oscillator orbits, qo =0, Po, so=O, for three perturbations a. 
The integer n measures the number of P maxima, and TO is the 
time required for the oscillator to complete a full cycle using 
(14). 

a n Po 	 TO 

1.55 5.58 

10 I 2.25 3.25 
3 
5 

1.44 
1.036 

8.66 
14.10 

6 0.925 17.92 
4 0.72 11.31 
2 0.27 6.06 

100 3.16 1.36 
3 2.51 3.58 
5 2.04 5.38 
7 1.69 7.02 
9 1.43 8.62 

II 1.25 10.25 
13 1.135 11.92 
15 1.068 13.63 
17 1.028 15.36 
19 1.0085 17.11 

IV. 	 HARMONIC-OSCILLATOR NOSE MECHANICS: 
CHAOTIC TRAJECTORIES 

For sufficiently large a the regions of phase space in 
which regular orbits are possible are surrounded by re­
gions in which the oscillator generates chaotic trajectories. 
In Fig. 8(a) a perspective view of such a trajectory in the 
first octant is shown. The complexity of this structure 
changes as a is increased. It can be studied by construc­
ting Poincare maps of sections for the plane q = O. In 
such a map, regular trajectories produce either a finite 
string of dots along the surface of a KAM torus, if the 
winding ratio is a rational number, or a closed loop for ir­
rational winding ratios. Chaotic trajectories generate in­
stead a filled or at least fractal region with dimensionality 
greater than two and dimensionality greater than one in 
the Poincare map. 

In Fig. 9 a series of such Poincare sections for increas­
ing a in the qpS representation of (14) is shown. It should 
be stressed that these maps are independent of the value of 
the Hamiltonian and, consequently, of the initial condi­
tions as long as the latter are in the big stochastic domain 
of the phase space. In principle, the Poincare sections of 
Fig. 9 cover an infinite range rather than finite range of 
the PS plane. This can be traced to the presence of the 
logarithmic term in the Nose Hamiltonian (10). In this 
respect there is a difference between the Nose oscillator 
and the Henon-Heiles and the double-pendulum cases 
mentioned before. In practice, however, the oscillator's 
qpS trajectory remains in the vicinity of the origin for 
times accessible to numerical simulations. This is demon­
strated in Fig. 8(b), where a chaotic trajectory with wild 
initial conditions is followed for a long time and on a 
large scale. It behaves like a strange attractor familiar 
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FIG. 8. (a) Perspective view of a chaotic trajectory of the 

Nose oscillator in the first octant of phase space for 1. 5. In­
itial condition: qo=O, So=O. The range of scales 
marked by the cube is O::s; q ::s; 3, O::S;P ::s; 5, O::s; s ::s; 5. (b) Perspec­
tive view of a chaotic trajectory in phase space for a= 10. Ini­
tial condition: qo 150, Po =200, -200. ,The range of 
scales marked by the cube is - 200::s; q ::s; 200, - 200::s;p ::s; 200, 
- 500::s; s ::s; 500. The trajectory is followed for times 
t ::s; 3000( = 3X 107 time steps). The constant of the motion (6), 
H 33250, varies along the trajectory by less than 0.02. 

from the study of dissipative systems. Since the Nose­
oscillator problem basically derives from the Hamiltonian 
(10) we use the term "strange attractor" merely to charac­
terize our experimental findings. If any of the variables 
involved can be practically infinite on the energy shell the 
system cannot possibly be ergodic within finite time. 

In Fig. 9 there are large enclosed islands of stability ac­
cessed by regular orbits (periodic and quasiperiodic). 
Each big island is possibly subdivided further by thin 
chaotic sheets21 which separate different regular KAM 
solutions. Since these chaotic sheets-if they exist-are 
disconnected from the big chaotic sea, they would not 
show up in the Poincare maps of Fig. 9. In this paper we 
restrict ourselves to the study of the chaotic sea. Particu­
larly for small values of a, the big islands of stability are 
separated by rather thin walls of the chaotic domain. 
This can also be visualized from the plot of Fig. 8(a). 

FIG. 9. Poincare map of sections P vs Sat q =0 for the Nose 
oscillator. The pictures are obtained for the same constant of 
the motion, but for different values of the perturbation a. Ini­
tial condition: qo =0, Po 5, so=O. Parameters and range of 
scales: (a) a=O.66; -5::S;s::s;5, -4::s;p 4; (b) a=l; 
-5::S;s::s;5, -5::s;p::s;5; (c) a=1.5; -5::S;s::s;5, 5::s;p::s;5; (d) 
a=3; -5::S;s::s;5, -5::s;p::s;5; (e) a=lO; -lO::s;s::S;lO, 
-5::s;p::s;5;(f)a=100; -30::S;s::s;30, -4::s;p 

These walls move with changing a, which may lead to 
rather dramatic changes in the appearance of the Poincare 
map. With increasing a the number of stability islands 
increases. Each such island may be indexed by the num­
ber n of maxiina of p of the corresponding regular orbits. 

Let us turn briefly to the question of how chaotic 
motion is generated. In Fig. lOra) a projection of a sto­
chastic trajectory (a= 10) onto the pq plane is shown. 
For short-time intervals the trajectory follows the "dog­
bone" pattern similar to that of regular trajectories fami­
liar from Figs. 2(b)-7{b). For large enough a, switching 
between different patterns may occur. In this case the 
chaotic motion may be viewed as a bifurcation 
phenomenon mixing almost reentrant modes. The same 
situation in terms of the original Nose variables is shown 
in Fig. lO(b). 

We may construct Poincare maps of sections (Q =0) 
also in the QPsPs representation of (11). For Q equal to 
zero, the condition for the Poincare section, and Ps fixed, 
the maximum value of P can be achieved by maximizing 
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FIG. 10. Projection of a short part of a chaotic trajectory of 
the Nose oscillator onto the (a) q,p plane (scale: - 3. 5 q s 3. 5, 
-SsP 5) and (b) Q,P plane (scale: 3.5 s Qs 3.5,.:-­
-3 sP 3) for a= 10 and the initial condition qo=O, 
Po 1. 75, 

the Hamiltonian (10). From aHs las 0 at constant Q 
and Ps we obtain 

P=s=exp(HN -aP;/2-T). 	 (23) 

Thus a Poincare map for Q =0 in the original Nose repre­
sentation is bounded in the P direction by a Gaussian in 
contrast to the unbounded qpt; case of Fig. 9. In Fig. 
11(a) a Poincare section ( Q= 0) for a = lOis reproduced, 
where we have plotted sgn( • P I -s) P I instead of P. 
This helps to distinguish between the cases I Pis 
(dots in the upper half of the Poincare plane) and IP I <s 
(lower half). In order to establish a correspondence be­
tween these different representations, it is convenient to 
modify Fig. 9 by plotting sgn( Ip I 1 ) 
X mint IPI, 1I IP I )exp( - t;212a )-instead of p-versus 
t; for q =0. A comparison of such a plot in Fig. 11(b) 
with Fig. 11 (a) shows a close correspondence between 
these two different representations. 

It is useful to notice that, for fixed t;, the equations of 
motion (14) are those of a damped oscillator (t; > 0) or an 
exponentially unstable oscillator (t; <0). Motion in the t; 

."."" 	 direction produces trajectories with (t;) equal to zero 
composed of expanding parts and contracting parts. t; is a 
direct measure of the (comoving, or "Lagrangian") rate of 
contraction of the phase-space volume, the Lie derivative: 

at d InV 
aq + ap + at; =--;tt . 	 (24) 

This measure of the changing phase-space volume seems 
not to be related to the Lyapunov instability or fractal 
dimensionality. Fundamentally, our system is described 
by Hamiltonian mechanics. Thus the expansion and con­
traction of the phase volume, described in terms of scaled 
variables, is only a result of the changed time scale and 
has no fundamental physical significance. 

The stochasticity present in a strange attractor can be 
described22 in terms of its Hausdorff dimension and the 
Lyapunov exponents. In the following we outline the es­
timation of these or related quantities for the Nose oscilla­
tor. 

A. The fractal dimension 

A quantity closely related to the fractal dimension is 
the correlation exponent introduced by Grassberger and 
Procaccia.22,23 It is defined by the power-law dependence 
of the correlation integral 

FIG. 11. Poincare map of sections for the Nose oscillator for 
a= 10. (a) In the original Nose variables: Any cut of the trajec­
tory through the Q =0 plane generates a point (aP., IPI), if 
I PI 2S, and a point (aP., -I P ), if IPiss. Scales: 
- 6 saPs s 6, - 2 X 105 S ordinate 105• (b) In the modified 
qp?; variables: Any cut through the q =0 plane generates a 
point <?;, Ip I -lexp( _?;2 /2a», if Ip ! 2 I (upper half of the 
plane) and a point (?;, - Ip Iexp( _;;2 /2a», if Ip I <1 (lower 
half). Scales: - 6 s?; s 6, - 1s ordinate s 1. 
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(25) 

where the pair-distribution function g (X) is the probabili­
ty density of finding two randomly chosen points on an 
attractor with a phase-space separation X. It may be ap­
proximately calculated from 

g(X) (26) 

where the Xi denote a series of N phase-space points on 
the trajectory separated in time by equal time intervals 1'. 

Using the algorithm of Ref. 22 we have evaluated C (R) 

for the Nose oscillator in the qps representation for 
selected values of a. The results are given in Fig. 12. The 
scaling relation (25) is well obeyed over a large range of 
distances R for intermediate a values around 3. This con­
dition corresponds also to large values of the Lyapunov 
exponent I,. If the phase space accessible to the chaotic 
trajectory has a sheetlike structure such as for a = 1 [Fig. 
9(b)], this distance range R, for which the scaling relation 
(25) holds, is drastically reduced. The straight lines in 

Or-r-------.--------r~~----_, 

cx= 0.1 

./. . ..... . 
.' cx- 1 

........ 

.. .. . . 
• 'cx 10 

... 
• cx~30 

8 4 4 

FIG. 12. Dependence of the correlation integral C(R) on the 
upper integration limit R of Eq. (23) for various perturbations a 
of chaotic Nose-oscillator trajectories with initial condition 
qo=O, Po=5, ;0=0. Parameters of the simulations: a=0.6; 
N =20000,1'= l000.:1t =5; a= 1.0; N =25000, lOOO.:1t =5; 
a=3.0; N=200oo, 1'=1Ooo.:1t 5; a=4.0; N 15000, 
1'= 1000.:1t =5; a= 10.0; N =20000, 1'=20oo.:1t a=30.0; 
N =20000,1'= 1000.:1t=2. 

Fig. 12 for a larger than 0.1 fit the experimental data well 
in the distance range in which scaling is expected to hold. 
Their slopes are consistent with a fractal dimension d 
equal to 3 in view of the fact that v is a lower bound of d. 
This indicates that the trajectories of the Nose oscillator 
are phase-space filling and-at least from the standpoint 
of fractal dimensionality-could be canonical. 

The curve for a =0.1 in Fig. 12 corresponds to a regu­
lar trajectory. It scales according to a dimensionality 
v=2 for small values of R (dashed line in 12) and 
V= 1 for large R reflecting the properties of a torus. 

B. The Lyapunov instability 

The exponential divergence of two nearby trajectories in 
three-dimensional phase space can be described by the 
three Lyapunov exponents. We have evaluated the largest 
exponent, henceforth denoted by A, for a whole range of a 
values (see Fig. 13). In the original method by Benettin 
et al. of calculating,24,21 two trajectories separated by do 
at t =0 are followed in phase space. The second trajecto­
ry is kept close to the "reference trajectory" by periodical­
ly rescaling its phase-space coordinates to reduce the 
offset length to do (method A). Another procedure by 
Contopoulos et al.25 avoids rescaling by solving simul­
taneously the equations of motion and. the corresponding 
variational system for a single trajectory (method B). 
However, for large time t the variables of the variational 
system assume extremely large values which again neces­
sitates periodic rescaling. We have used still another 
method described in more detail in Ref. 26, which solves 
the equations of motion for two neighboring trajectories, 
where the phase-space offset of trajectory 2 is kept con­
stant in absolute value by adding a constraint force to its 
equation of motion (method C). If X 2 (Q2,P2,S2) 
denotes a phase point on trajectory 2, this gives 

(27) 

where 

(X2 -X 1),[:X2(X2 ) -Xd 
(28)

(X2 -X1HX2 -X 1) 
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FIG. 13. Lyapunov exponents A as a function of the pertur­
bation parameter a for given constant of the motion (H 12.5; 

po=5, ;0=0) of the Nose oscillator. The time step.:1t 
used for the simulation varied from 0.05 for a < 10 to 0.001 for 
a= 100. At least 107 time steps are calculated for each point. 
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The unconstrained equations of motion follow from 
(14): 

P2 

X 2(X2 )= -Q2-t;2P2 (29) 

a(p~-l) . 

If the trajectories are followed for a time T, the Lyapunov 
exponent may be calculated from the average 

(30) 

This average is most conveniently evaluated by augment­
ing the equations of motion for the two trajectories with 
an additional equation integrating {3 with respect to time. 
Using a fourth-order Runge-Kutta algorithm,2o the con­
vergence of this method is demonstrated in 14. The 
integration steps may be chosen much larger for this 
method than for the original algorithm employing period­
ic rescaling. In all simulations an offset distance 
do s:;0.001 is used. The estimated accuracy is 2% for 
large values of Ie and 6% otherwise. If the Lyapunov ex­
ponents are plotted as a function of the coupling strength 
a (Fig. 13), a rather complicated picture emerges. The 
magnitude of A is related to the width of the chaotic re­
gime in the Poincare maps of Fig. 9, a voluminoussto­
chastic sea corresponding to a large Lyapunov instability. 
The deep minima in Fig. 13 are possibly due to tiny is­
lands of stability which make themselves felt by a lower­
ing of A for trajectories passing near the boundary be­
tween chaotic and regular regimes. Probably many more 
minima exist than are discovered and depicted in Fig. 13. 
How the breakdown of the scaling relation (25) for large 
values of R is affected by the appearance of these islands 
of stability remains to be examined. 

I 
0.08 

0.04 ­

0.02~________________~1________________~ 


103 104 T 


FIG. 14. Convergence of time averages of the Lyapunov ex­
ponents of the Nose oscillator for a=3 (qo=O, Po=5, ;0=0). 
Open squares: method employing periodic rescaling of the tra­
jectory offset d of trajectory 2 to do=O.003 every 50th time 
step t:.t =0.001. Closed circles: constraint force method Eqs. 
(25)-(28) for do=0.003 and a time step t:.t =0.01. 

V. TWO-DIMENSIONAL CHAOTIC PROBLEMS 

WITH FIVE- AND THREE-DIMENSIONAL 


PHASE SPACES 


The lack of chaotic behavior in some regions of the 
single-oscillator phase space shows that Noses equations 
of motion need not produce a canonical phase-space dis­
tribution. Various few-particle modifications of the 
single-oscillator calculation using nonlinear forces failed 
to pass simple moment tests for Gaussian distributions in 
the friction variable or the kinetic energy K. Thus several 
distinct kinds of one-dimensional systems are not suffi­
ciently chaotic to distribute a typical initial state over the 
entire phase space. 

On the other hand, the oscillation of the ideal-gas kinet­
ic energy according to Eqs. (8) and (9) suggests that an in­
teraction with a mechanism for shifting the phase and 
amplitUde of the kinetic-energy oscillation could link to­
gether all energy shells, resulting in a canonical distribu­
tion. We therefore studied in some detail a system with 
two particles in a plane with periodic boundary condi­
tions. The dynamics of such a system in relative coordi­
nates f=q2-qj is the same as the dynamics of the cell 
model,27 in which a particle with a reduced mass 
f.1..=mlm2/(ml +m2) interacts with a fixed lattice of 
neighbors. The particle diameter is denoted by CT. 

It is convenient to introduce reduced units with f.1.., CT, 
and DkBT acting as units of mass, length, and energy, 
respectively. The specific model studied is a square cell of 
area 4 with one particle fixed at the cell comers and the 
other being free to move throughout the cell. The poten­
tial energy is taken as 

3(1-d, r s:; 1 
<1>- (31)

- !0, r> 1. 

The equations of motion, with a = 1, follow from (5): 

. . F ,. ;. 2 2 (32)f=P, P= -!,p, !:>=P - , 

with the provision that the force F is periodic in both the 
x and y directions with periodicity equal to two, the cell 
length. The numerical integration was carried out with an 
accuracy such that the constant of the motion [as derived 
from (6)] 

II =<1>+p212+s2/2+2 fat t;(t')dt' (33) 

drifted by about one part in 107 per complete collision 
(free streaming followed by interparticle interaction). Fig­
ure 15 shows the geometry of the problem and a short 
stretch of a trajectory. If this system had a canonical dis­
tribution proportional to exp( <1>_p2 /2_t;2 /z) then the 
moments of the kinetic energy K (p;+p;)/2 and of the 
friction t; would be <K) 1, <K 2 )=2, <t;2)=1, and 
<~) = 3. The numerical results for these quantities after 
104 collisions were 1.00, 2.01, 1.01, and 3.18, respectively. 
The relatively large fluctuations found in these two­
particle calculations suggest that these values are con­
sistent with the canonical distribution. In Fig. 16 the nor­
malized distribution of t; is shown. It is in good agree­
ment with the Gaussian distribution. 

We conclude that in a system with a mechanism for 
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FIG. 15. Geometry-in relative coordinates 
r=Q2-Qj=(x,y)-of the "two-particle" Nose dynamics in a 
square cell of side length 2 with periodic boundary conditions. 
The quarter circles of radius 1 centered at the corners indicate 
the boundaries for interparticle interaction, particle 1 being 
fixed to the corners. A short portion of a trajectory beginning at 
point A and ending at point B is also shown (a= 1, Xo =0.1, 
yo=0.2, Pxo= 1, Pyo= 1, So=O). 

enhancing instability by velocity scattering off a convex 
surface and with a phase-shifting free-flight region (the 
region outside the quarter-circle sections of Fig. 15 in the 
one-particle case moving in a periodic lattice) the canoni­
cal distribution will be achieved. Thus almost any in­
teresting system should follow the canonical distribution. 

It is difficult to make extremely long runs of high accu­
racy in two or three dimensions, but we take the near con­
stancy of the constant of the motion H as an indication 
that our results are typical of the actual behavior of Nose 
dynamics. Our failure to detect any noncanonical 
behavior of the Nose two-dimensional problem led to the 
study of an even simpler system with a three-dimensional 
phase space, the Gaussian-dynamics limit of the Nose 
problem. Gauss's principle of least constraint leads to the 
same equations of motion for rand p as Nose's, 

r=p, P=P-S-P. (34al 

But S-, according to Gauss, is an explicit function of the 
coordinates and momenta,2,28 

S-=(P'P)/(p'p) . (34b) 

With this choice the kinetic energy is a constant of the 
motion, and the velocity space in two dimensions is con" 
tracted to the perimeter of a circle. We may ask whether 
or not the distribution in configuration subspace is canon­
ical, i.e., whether it has the form ~exp( _¢/p2). With 
the potential of Eq. (31) the various moments of the po­
tential energy ¢ and of the friction S- should then be 
(¢)=0.14, (¢2)=0.11, (¢4) =0.22, (s-2)=0.78, and 
(r-) 10.0. A long simulation of the isokinetic motion 
involving 9000 collisions yielded the respective values 
0.16, 0.12, 0.24, 0.88, and 10.9. Keeping the statistical 
uncertainties in mind, we have to conclude that the 
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FIG. 16. Distribution of S in the two-particle Nose system. 
Solid line, simulation result; dashed line, theoretical (Gaussian) 
distribution. 

Gaussian system is probably consistent with a canonical 
distribution in configuration space. 

VI. SUMMARY AND CONCLUSIONS 

The Nose oscillator falls in a broad category of prob­
lems which are not sufficiently chaotic to fill their avail­
able phase spaces. It has relatively many interesting limit­
ing cases and relatively complicated Poincare sections, but 
otherwise mostly reinforces the idea that small systems do 
not follow a statistical-mechanical average over accessible 
states. 

On the other hand, the two-dimensional calculations in­
dicate that only slightly more complicated systems prob­
ably do fill their phase spaces in a quasiergodic way. A 
careful study of the two-soft-disk system, using Nose 
dynamics in a phase space with five variables, led to no 
evidence for the failure of statistical mechanics. This sug­
gested an even simpler system, in principle not more com· 
plicated than the Nose oscillator. This two-soft-disk sys­
tem, using Gaussian dynamics in a three-dimensional 
phase space, still revealed no evidence whatsoever for the 
strange-attractor behavior associated with the oscillator. 

Based on this evidence we would expect that even very 
simple nonequilibrium systems, or quantum systems, with 
even more capability for mixing phase space, do indeed 
fill their phase spaces in an ergodic way. 
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