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Ahstract-Time-reversible modifications of Newton's equations of motion have been used to 
simulate irreversible isothermal shear Hows. The modified equations have stable solutions for 
periodic systems with as few as two or three particles. These small-system solutions exhibit 
thermodynamic Irreversibility, entropy production and realistic nonlinear constitutive behavior. 

l. INTRODUCTION 

IT:S P/·.RADOXICAL that the basis of macroscopic irreversibility lies in reversible microscopic 
equations of motion. The unidirectional dissipation described by the second law of 
thermodynamics is a subtle consequence of instabilities in the reversible equations of 
motion of Newton and Schroedinger. Boltzmann clarified the origin of t1wrmodynamic 
irreversibility in isolated dilute-gas systems obeying reversible Newtonian dynamics [I]. 
He pointed out that a statistical distribution of dynamically reversible Newtonian 

must result in macroscopic irreversibility. This surprising result was challenged 
by Poincare and Zermelo, who pointed out that an isolated system will eventually return 
arbitrarily closely to its initial coordinate-velocity state. Thus there could hardly be long­
time net motion away from even an "unlikely" starting point. To this "recurrence" 
objection Loschmidt added a "reversal" objection. Suppose a Newtonian system did 
develop "irreversibly." Then, because Newton's equations of motion are reversible in the 
time. a reversed version of the irreversible trajectory would run back to the initial spatial 
configuration. The objections of Poincare, Zermelo and Loschmidt were damaging to 
kinetic theory, but not disabling. Boltzmann countered these objections with physical 
arguments. Both objections are unreasonable, but for slightly different reasons: recurrence 
typically requires a time of order exp(N) for N particles, greatly exceeding the age of the 
universe: reversibility over a time span of this length would require a knowledge of the 
trajectories to a precision of one part in exp(N). The information required to implement 
either recurrence or reversibility greatly exceeds the precision with which coordinates and 
velocities can be known or predicted. More recently, Prigogine has devoted a book [1] to 
the understanding of irreversibility's basis. He concludes that "Theoretical reversibility 
arises from the use of idealizations in classical or Quantum mechanics that go beyond the 
Possibilities of measurement performed with any finite precision." 

:..Ievenheless, it is still difficult to "understand" irreversibility, due to the lack of 
S~Slems which are not only simple to analyze but also thermodynamically irreversible. 
Fast computers have enhanced our understanding of the microscopic basis of irreversibility. 
Computer simulations of many-body systems have been carried out for about 40 years. 
The simulations have led to a fairly thorough understanding [2] of the equilibrium 
thermodynamic properties of simple systems. The transport properties for these same 
systems are now undergoing intensive investigation. This transport work has led to special 
equations of motion, designed to simulate shear flows and heat flows. The new transport 
methods luve been applied to a variety of fluid [3] and solid [4] systems. Because these 
systems typically involve hundreds of degrees of freedom there is no prospect for 
understanding their behavior analytically. For this reason we have studied very small, 
two- and three-body, systems using the same many-body techniques. These small systems 
exhibit the same thermodynamic irreversibility as do the larger many-body systems [5]. 
Here we exploit this parallel to shed new light on the microscopic rhechanism for 
macroscopic irreversibility. 
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In Section 2, we review the equations of motion describing steady isothermal shear. 
In Section 3, we discuss the numerical and statistical solutions of these equations, applied 
to the two-body problem. This two-body problem reduces to the study of a periodic 
"Lorentz gas," in which a light particle scatters from a shearing periodic lattice of massive 
scatterers. In Section 4 we consider, from a physical standpoint, the nature of irreversibility 
exhibited by these formally-reversible two-body systems. 

2. EQUATIONS OF MOTION 

Homogeneous periodic shear is the simplest hydrodynamic fluid flow exhibiting 
irreversibility. Here we consider the case in which the horizontal (x) velocity increases 
linearly with the vertical (y) coordinate: 

x = t'y. ( l) 

For values of the strain rate f which are not too large, (1) describes a steady laminar flow. 
This macroscopic description is still incomplete because the source of the work driving 
the flow and the sink for the heat produced have not yet been specified. 

Now consider a microscopic description of the same flow (I). In a microscopic many­
body system, made up of particles obeying atomistic equations of motion, individual 
particles have velocities distributed about the mean hydrodynamic value. fy. From the 
microscopic point of view the temperature of such a system is described by the fluctuations 
of the atomistic velocities about this mean value. By considering these fluctuations 
explicitly, we can base a treatment of hydrodynamic shear on a modification of 
microscopic Hamiltonian mechanics. Let the momentum P = (Px, PI') describe the 
thermal velocity fluctuations around the mean value, so that the velocity of a particle at 
q = (x, y) has x and y components (px/m) + ioy and (py/m), respectively, where m is the 

I 

Fig, l. A two-particle hard·sphere system undergoing periodic homogeneous shear. Figure generated 
using the Nelson Max "ATOMLLL" computer program. 
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Fig. 2. Shear viscosity for two hard disks, as calculated from the corresponding Boltzmann 
equation. Here liT is the collision rate. For the range of strain rates ~ shown, shear stress is an 

increasing function of strain rate, but the increase is less rapid than linear. 

485 

atomic mass. Then the flow field (I) can be obtained from a microscopic Hamiltonian 
which depends explicitly upon the strain rate f: 

(2) 

In (2) ,{) is the potential energy, typically including N(N 1 )/2 pair terms, and the sum 
includes all LV particles in the system. The equilibrium Hamiltonian flo corresponds to 
the hydrodynamic internal energy. To see that the rate-dependent nonequilibrium 
Hamiltonian (2) does properly reproduce the macros<;opic flow field, apply Hamilton's 

p. = pease 
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Fig. 3. Distribution function for the momentum in the nonequilibrium steady state. The 
distribution results from the balance of the circulation in the equations of motion with the 

randomizing effect of collisions. 
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FIg. 4. Three successive views showing the divergence of nc'ighboring conllguration-space traiectories 
for two three-dimensional hard srhercs of diameter cr. mass m. and speed I. The equivalent 
Lorentz-gas problem, in which 3 point particle. with mass 11112 and sneed 2, scatters from an 
inlinltcly-m3ssivc particle with I(;dlll.\ is shown. The reriodic cdl has \'~)iul1lc iO)/'a), The points(T 

shown represent [lS separate numerical solutions of the equations of motion. with slightly dilkrent 
inilial coordin;Jlcs. The second and third \·icws show t:le positions alier SiW;lf strains of 
four and eight. so tl1:1t the periodic lattice elf larger panic':cs a simpk cutllC lattice in each 

\'lew. Figure generated uSing the C\Jdson ivla.\ .... \ TOMLLC" computer program. 

equations of motion, q = ali/ell' and Ii -off/Cil!. For the two-dimensional shear flow 
described by r, I) and (2), the following microscopiL' equations result: 

.\' ail/apr = (fJ·)m); (3) 

[J, -o!l/elx= F,; (4) 

In order [() impil'mel1t these equations boundar~ conditions mLlst be specilied. Periodic 
boundaries \VOl'k best because they eliminate the stratification associated with tht phVSICll 
boumi:Jries. To avoid discolltilluities in the !1C)\\' tield it is necessary to generalize the 
paiodic boundaries to include she~lr, as is illustrated in Fig, l. From the tigure it can be 
seen that the "svstem"-that is. a unit cdl or the fJl'riodic structure-is undergoing shear 
imposed by l1Hwing images abc)\e and below. One might expect. and c.1lcuiation confirms. 
tbat such :I system would tend to heat up, so thal tbe eqns (3) and (4) do not lead to a 
steadv state. A steady state can be obtained adding the further restriction that J 

thermodynamic state variable. such as pressure. energy or temperature, he a constant of 
the motion. Such a restriction can be imp!cmenlL'cl in several ways [6] and it is not 
obvious, on physical grounds, which choice is hest. Gauss suggested that the best way to 

impose constraints on a mechanical system is to use the minimum constraint forces 
possible. We can apply this suggestion to the shear tlow problem. Consider the possibility 
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Ithe liL)w isothermal. with t\1"" (internal pan of the) kinetic energy ~ (p=nm) :1 
-;,·iiere the sum runs oVer alt .v particles in the system. In this case Gauss' 
:[f 
~~.I1c'ads to the addition r()rCl~S of constraint: 

(5) 

C:A l~escribed in more detail in the following sections, show that the system or 
:lJns !.~H5) li,H'S result in a steady. hom,1geneous isothermal shear flow. 

1\ IUjU he no1<.:o that these equatiuns, just like Newton's, are time reversible, We 
::1:iln b\ il11S lhat a nH)\'le or the Illotion. run backwards, would still satisfv the same 

DlcHill;] III the reversed Vl'rsion or the movie the variables x. )', [i" p", F, and 
(- h~l\L' thL' sarl1C nunll?rical valut:s as in the (of\vard version. The variables .\~~ .1< P.\, f]" 

J:,d . Ii11 thl: ,)tiler hand. change sign rdative to their forward-version v~!Iucs. It is easy 

to \lTIi\ lhill c:qns (3)-(5) are satislled equally well in either direction. This establishes 
lh~l the shC::lI'~lhl\v equalions alT formally reversible. As we will sec in the ()!Iowing 

, this :tpparent rc\'crsibility is illusory. Just :IS it is lor Newton's equations. In fact 
:lle Sd ,)1' eqns Ll)-(5) exhihits thefl111Khnamie irrcversibiltty. 

; 'lOU TlUNS 01 TIll "iONEQI.'ILlBRILM EQUATIONS OF MOTIO,"" 

\ otl'aigillll)mard solution of the equ:.ltIOns of motion (3)-(5) can be obtained USll1g 

anYone nj' se\cral numerical schenws. Sueh methods replace the ditlCrential equations 
by dill'crcnce equations gi\'ing particle coordinates and momenta at discrete times 0, dt, 

2 dl, 3 dl, ' ... Typic.!!!\', the errors in such a method vary as (dl)4 or (dt)6 and can 
therefore be madc small by an appropriate choice of dl. The simplest force law, an elastic 
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Fig. 4 (Cua t il/lled). Third view. 

hard-disk repulsion, which prevents two panicles from interpenetrating. requires special 
methods [7] because the impulsi\'e hard-disk forces are singular at collision. An adequate 
approximation is to smooth out this interaction b\ using a truncated Hooke's Law 
repulsive force, with the force constant chosen large enough that a well-defined collision 
diameter results. Calculations of this kind have been carried out for small two- and three­
disk systems. They are stable and provide values of the viscosity coemcient (stress/strain 
rate) close to Senger's prediction for hard disks The two-body problem is formally 
equivalent to the scattering of a reduced-mass disk from a shearing periodic lattice. This 
is a "Lorentz gas" problem. 

The problem can also be solved in the spirit of the BoltLmann equation. finding the 
probability density j(p) for the momentum by taking two-bmh collisions into account 
statistical!y In this case a pal1ial ditTercntial equation for the time development oUlp, I) 
replaces the coupled ordinary differential equations ~)r molton for discrete partides. But 
the numerical approach is similar. The dillcrclllia! equation describing the problem can 
be represented as a difference equation and iterated to find a steady state solution. Both 
:lpproaches le~ld to similar results [9]. A steady \ aluL' of the shear stress is found. The 
shear stress increases less rapidly than linearly wilh strain rate so that viscosity (stress/ 
strain rate) is a decreasing function of strain rate. Figure 2 indicates this dependence. 

4. I R REV E R SIB III T Y r ROM R E \E R S 113 L [ E Q U r\ T ION S 

The irreversibility found from the reversible equations of motion (3)-(5) can be 

understood very directly. If we define a polar angle II to describe the momenta, with 
p, p cos IJ and P" p sin 0, then, in the absence of collisions, the equations of motion 
reduce to 
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dB/dl = -€ co52 O. (6) 

The kinetic part of the shear stress -(pxpv/(mV» would be zero for the (equilibrium) 
distribution/() 1/(21f). But the equation of motion (6) introduces a clockwise drift, into 
the second and fourth quadrants of momentum space. In these quadrants PxPy is negative 
SO tilat the corresponding shear stress is positive. The free-streaming equation of motion 
(6) can he integrated analytically, establishing that a particle with an initial velocity 
corresponding to iJo (in the first or third quadrants of momentum space) enters the second 
or fourth quadrants at a time tan (Oo)(f:. Thus, after one mean collision time T, the 
particles with positive shear stress contributions exceed those making negative contributions 
by a term of order El. The shear viscosity which results is of order PT, where P is the 
equilibrium pressure. 

The presence of collisions complicates the calculation. Superimposed on the clockwise 
drift is a redistribution of /(p, l) over the circle, weighted strongly toward head-on 
collisions. For hard disks, as opposed to hard spheres, the probability of glancing collisions 
is rewtively small. Taking collisions into account, the momentum distribution which 
results-see Fig. 3-is relatively complicated. For small strain rates the perturbation is 
proportional to sin B cos B. For greater strain rates the distribution approaches delta 
funcii0l1s at e = ±1f/2. At any strain rate the probability peaks lie in the second and 
founD quadrants of momentum space. The implication of these Boltzmann-equation 
resulrs. rhat away from equilibrium there is a preponderance of positive shear stress states, 
is borne out by the numerical two-body calculations. 

What about the arguments of Poincare and Zermelo? Recurrence is no longer a 
problem. because here we are describing a nonequilibrium steady state. But the reversal 
properties of the equations of motion are still paradoxical. The virial-theorem expression 
for the shear stress is, according to the equations of motion, unchanged by reversing the 
panicle trajectories. In the reversed motion the strain rate changes sign. Thus, formal 
reversibility implies that the viscosity (stress/strain rate) must change sign in a reversed 
solution of the equations of motion. The Boltzmann equation, on the other hand. 
correctly predicts a positive viscosity. In order for the viscosity actually to change sign (as 
required for a reversed trajectory) it would be necessary for the collisions to he computed 
II.lth sutftcient accuracy so they occur in precisely the reverse order. This can be done for 
one. two. three .... collisions with increasing difficulty, More precision is required in the 
trajectory to reverse it accurately after a longer time. The error grows exponentially in 
the time so that the number of digits kept must be proportional to the time over which 
reversal is desired. In practice finite computer precision would limit the reversibility. A 
caricature of the exponential error growth is shown in Fig. 4. In that figure the points· 
reached by particles originally arranged in a small 5 X 5 X 5 cube in physical space and 
with identical velocities are shown after shear strains of four and eight. The same rapid 
growth of phase-space separation persists at all scales, and will eventually dominate any 
finite-precision calculation. 

There is still another source of irreversihility, beyond the randomizing effects of 
collisions and the finite precision of calculations. That is the interaction of any system 
With its surroundings. Very weak interactions would be sufficient to destroy the reversibility 
of a system. For instance, consider the time reversal of a terrestrial shear-now experiment. 
If the motion were reversed, but without taking the earth's rotation into account, the 
exact reversibility of trajectories would be destroyed. The Coriolis acceleration, applied 
O\er a mean free time of I nanosecond, would change the angle at which two molecules 
COllide by about a nanoradian. This small error would completely destroy the reversed 
sequence of collisions after about nine collisions per particle. 

Thus we conclude that Boltzmann's description of irreversibility in terms of a drift in 
phase space is essentially correct, and, that if this drift is somehow prevented by choosing 
special initial conditions, that irreversibility will still prevail at a time determined either 
b~ the precision of the initial conditions or by the presence of irreversible interactions 
With the system's surroundings. 
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