g . Engng St Vol 13, No. 4, pp. 483490, 1983 0020-7225/85  $3.00 + .00
poated in Great Brinin % 1985 Pergamon Press Lid.
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Abstract—Time-reversible modifications of Newton’s equations of motion have been used to
simulate irreversible isothermal shear flows. The modified equations have stable solutions for
periodic systems with as few as two or three particles. These small-system solutions exhibit
ihermodynamic irreversibility, entropy production and realistic nonlinear constitutive behavior.

. INTRODUCTION

IT15 PARADOXICAL that the basis of macroscopic irreversibility lies in reversible microscopic
equations of motion. The umdirectional dissipation described by the second law of
thermodvnamics is a subtle consequence of instabilities in the reversible equations of
monon of Newton and Schroedinger. Boltzmann clanified the origin of thermodynamic
wreversibility in isolated dilute-gas systems obeying reversible Newtonian dynamics [1].
He pointed out that a statistical distribution of dynamically reversible Newtonian
collisions must result in macroscopic irreversibility. This surprising result was challenged
by Poincare and Zermelo, who pointed out that an isolated system will eventually return
arbitrarily closely to its initial coordinate-velocity state. Thus there could hardly be long-
time net motion away from even an “unlikely” starting point. To this “recurrence”
objection Loschmidt added a “reversal” objection. Suppose a Newtonian system did
develop “irreversibly.” Then, because Newton’s equations of motion are reversible in the
time, a reversed version of the irreversible trajectory would run back to the initial spatial
configuration. The objections of Poincare, Zermelo and Loschmidt were damaging to
Kinetic theory, but not disabling. Boltzmann countered these objections with physical
arguments. Both objections are unreasonable, but for slightly different reasons: recurrence
typically requires a time of order exp(N) for N particles, greatly exceeding the age of the
universe: reversibility over a time span of this length would require a knowledge of the
trajectorics to a precision of one part in exp(V). The information required to implement
either recurrence or reversibility greatly exceeds the precision with which coordinates and
velocities can be known or predicted. More recently, Prigogine has devoted a book [1] to
he understanding of irreversibility’s basis. He concludes that “Theoretical reversibility
arises from the use of idealizations in classical or quantum mechanics that go beyond the
possibilitics of measurement performed with any finite precision.”

Nevertheless, it is still difficult to “understand” irreversibility, due to the lack of
Systemns which are not only simple to analyze but also thermodynamically irreversible.
Fast computers have enhanced our understanding of the microscopic basis of irreversibility.
Computer simulations of many-body systems have been carried out for about 40 years.
The simulations have led to a fairly thorough understanding [2] of the equilibrium
thermodynamic properties of simple systems. The transport properties for these same
S¥siems are now undergoing intensive investigation. This transport work has led to special
fquations of motion, designed to simulate shear flows and heat flows. The new transport
Methods have been applied to a variety of fluid [3] and solid [4] systems. Because these
S¥stems typically involve hundreds of degrees of freedom there is no prospect for
Understanding their behavior analytically. For this reason we have studied very small,
two- and three-body, systems using the same many-body technigues. These small systems
exhibit the same thermodynamic irreversibility-as do the larger many-body systems [5].
Here we exploit this parallel to shed new light on the microscopic thechanism for
Mmacroscopic irreversibility.
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In Section 2, we review the equations of motion describing steady isothermal shear.
In Section 3, we discuss the numerical and statistical solutions of these equations, applied
to the two-body problem. This two-body problem reduces to the study of a periodic
“[orentz gas,” in which a light particle scatters from a shearing periodic lattice of massive
scatterers. In Section 4 we consider, from a physical standpoint, the nature of irreversibility
exhibited by these formally-reversible two-body systems.

2. EQUATIONS OF MOTION

Homogeneous periodic shear is the simplest hydrodynamic fluid flow exhibiting
irreversibility. Here we consider the case in which the horizontal (x) velocity increases
linearly with the vertical (v) coordinate:

X = éy. m

For values of the strain rate ¢ which are not too large, (1) describes a steady laminar flow.
This macroscopic description is still incomplete because the source of the work driving
the flow and the sink for the heat produced have not yet been specified.

Now consider a microscopic description of the same flow (1). In a microscopic many-
body system, made up of particles obeying atomistic equations of motion, individual
particles have velocities distributed about the mean hydrodynamic value, ¢y. From the
microscopic point of view the temperature of such a system is described by the fluctuations
of the atomistic velocities about this mean value. By considering these fluctuations
explicitly, we can base a treatment of hydrodynamic shear on a modification of
microscopic Hamiltonian mechanics. Let the momentum p = (p,, p,) describe the
thermal velocity fluctuations around the mean vaiue, so that the velocity of a particle at
g = (x, ) has x and y components (p./m) + ¢y and (p,/m), respectively, where m is the

Fig. 1. A two-particle hard-sphere system undergoing periodic homogeneous shear. Figure generated
using the Nelson Max “ATOMLLL" computer program.
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Fig. 2. Shear viscosity for two hard disks, as calculated from the corresponding Boltzmann
esquation. Here 1/7 1s the collision rate. For the range of strain rates ¢ shown, shear stress is an
increasing function of strain rate, but the increase is less rapid than linear.

atomic mass. Then the flow held (1) can be obtained from a microscopic Hamiltonian
which depends explicitly upon the strain rate e

H=Hy+eXws  Hy=®+ X (p°/2m). (2)

[n {2} & is the potential energy, typically including M ~ 1)/2 pair terms, and the sum
tncludes all & particles in the system. The equilibrium Hamiltonian Hj corresponds to
the hydrodynamic internal energy. To see that the rate-dependent nonequilibrium
Hamiltontan (2) does properly reproduce the macroscopic flow field, apply Hamilton's

P = peosd
P, = psind
§ -écos?p
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Fig. 3. Dustribution function for the momentum in the nonequilibrium steady state. The
distribution results from the balance of the circulation in the equations of motion with the
randomizing effect of collisions.
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F1g. 4. Three successive views showing the divergence of neighboring configuration-space trajectories
for two three-dimensional hard spheres of diameter «. mass 2, and speed /. The equivalent
Lorentz-gas problem, in which a point particle, with mass #1/2 and speed 2, scatters {rom an
infinitely-massive particle with radiuy o is shown. The periodic cell has volume 1Y%, The points
shown represent {25 separate numerical solutions of the cquations of motion, with slightly different
initial coordinates. The seccond and third views show the trajeclory positions after shear strains of
four and cight. so that the periodic lattice of larger particies is again a simple cubie lattice in each
view, Figure generated using the Nelson Max "ATOMLLLT computer program.

equations of motion, g = /{/dp and p = —dH/3y. For the two-dimensional shear flow
described by (1) and (2), the following microscopic equations result:

x=0ll/8p, = (p./m) + &~ vo= glldp, = (p./m). (3)

pe= =oljox = Iy pe= IOy = F— .. (4)

In order to implement these cquations boundary condiions must be specilied. Periodic
boundarics work best because they elinunate the stratification associated with flat physical
boundaries. To avoid discontinuities in the flow field it is necessary to generalize the
pertodic boundaries to mclude shear, as s dlustrated in Fig. | From the figure it can be
scen that the “syvstem™—that is. a unit cell of the periodic structure—is undergoing shear
imposed by moving imuages above and below. One might expect. and calculation confirms.
that such a svstem would tend to heat up, so thuat the cgns (3) and (4) do not Icad to a
steadv state. A steady state can be obtained by adding the further restriction that a
thermodynamic state variable. such as pressure. energy or temperature, be a constant of
the motion. Such a restriction can be implemented in several ways [6] and it is not
obvious, on physical grounds, which choice 1s best. Gauss suggested that the best way (o
impose constraints on a mechanical svstem 18 o use the minimum constraint forces
possible. We can apply this suggestion to the shear flow probiem. Consider the possibility
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Fig. 4 (Consinued). Second view.
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] [fow isothermal. with the (internal part of the) kinetic energy S (p*/2n1)
Losuere again the sum runs over ali NV particles in the system. In this case Gauss

wstion feads to the addition forces of constraint;

)
e

Ap = = §= 2 UWEpim) = dpapu /i)l 2 (7). (

Cilvulaions, deseribed in more detail (n the following sections, show that the system of
YURS E3)~(33 does result in a steady. homogencous isothermal shear flow,

Ushauld be noted that these equations, just like Newton's, are time reversible, We
Tn by this that a movie ol the motion, run backwards, would still satisty the same
vuon equations. In the reversed version of the movie the variables x. y. p.. p.. I'. and
£ohave the sume numerical values as in the forward version. The variables v, J 2y
204 on the other hand. change sign relative to their forward-version values. It is easy
WO enty that eqns (3)=(5) are satisfied equally well in either direction. This establishes
it the shear-low equations are formally reversible. As we will see in the following
ﬁ‘cméuns. this apparent reversibility s illusory, just as it is for Newton's equations. In fact
set ol eyns (3)-(5) exhibits thermodynamic irreversibility.

UOSOLUTIONS OF THE NONEQUILIBRIUM EQUATIONS OF MOTION
A straighttorward solution of the equations of motion {3)~(5) can be obtained using
any one of several numerical schemes. Such methods replace the differendal equations
i;}' dlli}‘rcncc equations giving particte coordinates and momenta at discrete umes 0, di,
< d, Sde oo Typically, the errors in such a method vary as (dey* or (d0® and can
therefyre pe made small by an appropriate chotce of dr. The simplest force law, an elastic
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Fig. 4 (Continwed). Third view.

hard-disk repulsion, which prevents two particles from interpenetrating, requires special
methods [7] because the impulsive hard-disk forces are singular at collision. An adequate
approximation is to smooth out this interaction by using a truncated Hooke's Law
repulsive force, with the force constant chosen large enough that a well-defined collision
diameter results, Calculations of this kind have been carried out for small two- and three-
disk systems. They are stable and provide values of the viscosity cocetlicient (stress/strain
rate) close to Senger’s prediction for hard disks [8] The two-body problem is formally
equivalent to the scattering of a reduced-mass disk from a shearing periodic lattice, This
is a “Loreniz gas” problem. _

The problem can also be solved n the spint of the Boltzmann equation, finding the
probability density f(p) for the momentum by taking two-body collisions into account
statistically, In this case a partial difierential cquation for the time development of f{p. )
replaces the coupled ordinary dilferential equations of mouon for discrete particles. But
the numencal approach is similar, The diflerential equation describing the problem can
be represented as a difference equation and iterated 1o find a steady state solution. Both
approaches fead to similar results [9]. A steady value of the shear stress is found. The
shear stress increases less rapidly than lincarly with strain rate so that viscosity (stress/
strain rate) 1s a decreasing function of strain rate. Figure 2 indicates this dependence.

4. IRREVERSIBILITY IFROM REVERSIBLE EQUATIONS
The irreversibility found from the reversible equations of motion (3)-(5) can be
understood very directly. If we define a polar angle # to describe the momenta, with
p. = pcos and p, = psin 6, then, in the absence of collisions, the equations of motion
reduce 10
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df/de = ~e cos® 6. (6)

The kinetic part of the shear stress —(p.p,/(mV)) would be zero for the (equilibrium)
- distribution fy = 1/(27). But the equation of motion (6) introduces a clockwise drift, into
- the second and fourth quadrants of momentum space. In these quadrants p,p, is negative
so that the corresponding shear stress is positive. The free-streaming equation of motion
-(6) can b integrated analytically, establishing that a particle with an initial velocity
. corresponding to g (in the first or third quadrants of momentum space) enters the second
. or fourth quadrants at a time tan (fy)/e. Thus, after one mean collision time 7, the
- particles with positive shear stress contributions exceed those making negative contributions
by a termm of order er. The shear viscosity which results is of order Pr, where P is the
equilibrium pressure,

The presence of collisions complicates the calculation. Superimposed on the clockwise
drft is a redistribution of f{p, ) over the circle, weighted strongly toward head-on
collisions. For hard disks, as opposed to hard spheres, the probability of glancing collisions
is reiatively small. Taking collisions into account, the momentum distribution which
results——see Fig. 3—is relatively complicated. For small strain rates the perturbation is
proportional to sin # cos f. For greater strain rates the distribution approaches delta
funciions at § = ®w/2. At any strain rate the probability peaks lie in the second and
fourth guadrants of momentum space. The implication of these Boltzmann-equation
results. that away from equilibrium there is a preponderance of positive shear stress states,
Is borne out by the numerical two-body calculations.

What about the arguments of Poincare and Zermelo? Recurrence is no longer a
problem. because here we are describing a nonequilibrium steady state. But the reversal
properties of the equations of motion are still paradoxical. The vinal-theorem expression
for the shear stress is, according to the equations of motion, unchanged by reversing the
particle trajectories. In the reversed motion the strain rate changes sign. Thus, formal
reversibility implies that the viscosity (stress/strain rate) must change sign in a reversed
solution of the equations of motion. The Boltzmann equation, on the other hand,
correctly predicts a positive viscosity. In order for the viscosity actually to change sign (as
required ftor a reversed trajectory) it would be necessary for the collisions to be computed
with sufficient accuracy so they occur in precisely the reverse order. This can be done for
one. two. three. . .. collisions with increasing difficulty. More precision is required in the
trajectory to reverse it accurately after a longer time. The error grows exponentially in
the time so that the number of digits kept must be proportional to the time over which
feversal is desired. In practice finite computer precision would limit the reversibility. A
caricature of the exponential error growth is shown in Fig. 4. In that figure the points’
feached by particles originally arranged in a small 5 X 5 X 5 cube in physical space and
with identical velocities are shown after shear strains of four and eight. The same rapid
growth of phase-space separation persists at all scales, and will eventually dominate any
finite-precision calculation.

There is still another source of irreversibility, beyond the randomizing effects of
collisions and the finite precision of calculations. That is the interaction of any system
with its surroundings. Very weak interactions would be sufhcient to destroy the reversibility
of a sysiem. For instance, consider the time reversal of a terrestrial shear-flow experiment.
I the motion were reversed, but without taking the earth’s rotation into account, the
€xact reversibility of trajectories would be destroyed. The Coriolis acceleration, applied
Over a mean free time of | nanosecond, would change the angle at which two molecules
collide by about a nanoradian. This small error would completely destrov the reversed
Stquence of collisions after about nine collisions per particle.

Thus we conclude that Boltzmann’s description of irreversibility in terms of a drift in
Phase space is essentially correct, and, that if this drift is somehow prevented by choosing
Special initial conditions, that irreversibility will still prevail at a time determined either
b”f the precision of the initial conditions or by the presence of irreversible interactions
With the system’s surroundings.
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