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We fol!ow R~se~feld in comparing fluid-phase thermal conductivities for several simple pair 
potentials .. Wlt.hm ab.out ten per~~nt. these (nonelectronic) conductivities satisfy a corresponding 
s~ates relatlOn mvolvmg the eqUlhbnum entropy. This corresponding states relation, deduced 
dIrectly from the resul~s ofcoo:puter simulations, is also suggested by hard-sphere perturbation 
theory and by t~e qu.aslharmomc cell-model approach. The conductivity-entropy relation should 
be useful for esttmatmg transport coefficients from the equation ofstate ofmonatomic fluids with 
arbitrary pair potentials. 

I. INTRODUCTION 

About ten years ago several groups 1 suggested that 
hard-sphere perturbation theory could be used to calculate 
accurate thermodynamic properties for dense fluids. This 
approach has been refined. Now energies and pressures can 
be reliably estimated with uncertainties of order 0.05 in E / 
NKT and PV / NKT. 2 

An accurate, theoretically based, approach to dense
fluid transport coefficients is still lacking. No convergent 
perturbation theory of transport has been found. The alter
native to analytic work, brute-force computer methods can 
be used to estimate transport coefficients. But the computer 

~ methods are considerably more time consuming, for the 
same accuracy, than are those designed to measure equilibri
um properties. 

Shock wave experiments have been an invaluable 
source of high-pressure thermodynamic information. Un
fortunately equally-precise experiments measuring trans
port properties have not been developed. 

On the theoretical side, Enskog's ideas, more than half a 
century old, are still as good as any for estimating the diffu
sion, viscosity, and thermal conductivity coefficients. As an 
alternative, approximate transport coefficients can be esti
mated from cell or "Einstein" models. Either method, Ens
kog's or Einstein's, can be used to suggest corresponding
states treatments of transport coefficients. Here, in 
considering thermal conductivity, we closely follow the ap
proach Rosenfeld3 used in analyzing diffusion and viscosity 
coefficients. 

In computer simulation, molecular dynamics methods 
are used to get reliable estimates of transport coefficients. 
The molecular dynamics simulations, either "equilibrium" 
ones using the Green-Kubo formulas, or "nonequilibrium" 
ones generating steady fluxes, make it possible to estimate 
viscosity and heat conductivity with uncertainties on the or
der ofa few percent.4 The nonequilibrium methods pioneer
ed by Ashurst5 are more promising than is the equilibrium 
Green-Kubo approach.6 Any computational technique is 

~ 
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complicated by unavoidable fluctuations and number de
pendence. These difficulties are gradually eroding in signifi
cance with the increase in computer speeds and the gaining 
of experience in extrapolating small-system results with 
large fluxes to macroscopic zero-flux values. 

The first direct use of molecular dynamics results to 
estimate transport coefficients for fluids was provided by the 
hard-sphere system for the high-temperature gas and liquid 
transport properties of molecular fluids. It was found, for 
. b 7mstance y Dymond, that experimental transport proper
ties along an isotherm could be represented by molecular 
dynamics results with a fixed hard-sphere diameter over a 
wide density range. Such hard-sphere models, however, are 
not suited to estimating fluid properties in the "dense fluid 
region," where any such parameters must be both density 
and temperature dependent. This region can be defined as 
the relatively "low temperature" fluid region where the tem
perature is below about twenty times the melting tempera
ture. This corresponds generally to regions of higher than 
normal density and pressure. 

In the dense fluid region the molecular dynamic study 
of the inverse-power potentials has been rewarding. 8 In addi
tion to the usual corresponding-states relations for poten
tials which are linear in an energy parameter and in a func
tion of distance, the inverse powers also exhibit the simplifi
cation that a single isochor, isotherm, or isobar is sufficient 
to generate equation-of-state and transport properties over 
the whole phase diagram. 

A similar simplification holds for nonequilibrium sys
tems ofinverse-power particles arbitrarily far from equilibri
um. It is only necessary that all four kinds of forces entering 
into nonequilibrium dynamical simulations-interparticle 
forces, boundary forces, constraint forces, and driving 
forces-simultaneously satisfy the same scaling relations. 

Corresponding states relationships linking dissimilar, 
nonscaling f()rce laws can only be approximate, not exact. 
But these approximate relationships can be useful both in 
making estimates of unknown constitutive properties and 
for suggesting theoretical analyses of regularities found em
pirically. Rosenfeld3 correlated shear viscosity and diffusion 
with the excess eIitropyin the dense liquid region. This ap
proach was motivated by the success of the fluid-phase hard-
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sphere perturbation theory in which the hard-sphere diame
ter--or equivalently, the entropy-was used to parametrize 
the structure of equilibrium fluids. As a justification for ex
pecting transport coefficients to have similar correlations 
away from equilibrium, one can site Maxwell's relaxation
time approach. In fact, Rosenfeld's empirical correlations 
suggest that diffusion and viscosity can be estimated within 
about 30% by using corresponding states values based on the 
excess entropy. This approach is as useful as Enskog's origi
nal recipe relating transport coefficients to the thermal pres
sure. 

Here we extend Rosenfeld's ideas to heat conductivity, 
correlating old data and adding a few new points calculated 
using the new Evans-Gillan9 nonequilibrium molecular dy
namics method. We compare our entropy correlation with 
several alternatives based on Enskog's model. We find that 
the correlation ofthe conductivity data, over a range offorce 
laws, is even better than that found by Rosenfeld for diffu
sion and viscosity. We report three additional viscosity cal
culations for the inverse sixth-power potential. Together 
with previous results these improve somewhat the 
applicability of the corresponding states law to real fluid vis
cosities. 

In Sec. II we discuss the available data and display it in 
corresponding-states form. In Sec. III we discuss the proper
ties ofentropy correlations in terms of hard-sphere and sim
ple cell models. Finally the applicability to real fluids of the 
corresponding-states relations derived from molecular dy
namic calculations is discussed. 

II. THERMAL CONDUCTIVITIES 

Thermal conductivities have been generated using 
three different kinds of computer simulations. The Green
Kubo fluctuation-dissipation approach is least direct, and 
has been applied sparingly. There is some Green-Kubo data 
for the inverse first-power potential ll (one-component plas
ma) and for hard spheres.7 The direct simulation of the flow 
ofheat between a hot reservoir and a cold one was described 
by Ashurst in his thesis.s He studied the whole range offluid 
thermodynamic states, from low-density gas to the melting 
line, for both the Lennard-Jones 12-6 potential and for its 
purely repulsive 12th-power component, the "soft-sphere" 
potential. 

These data from the Green-Kubo method and the di
rect-simulation method have been augmented, in the past 
two years, by using external driving forces. 9,lD These exter
nal forces generate a homogeneous heat flow without any 
accompanying temperature gradient (so that periodic boun
daries can be used in all three directions, including the flow ~ 
direction). To generate a heat flow consistent with the 
Green-Kubo formula and with irreversible thermodynam
ics, the driving force must have the form 

Fd A (LiE +LiP~x V, LiP~y V, LiP~zv) (1) 

for a heat current flowing in the x direction. LiE is the energy 
ofa particle, less the instantaneous mean value of that quan
tity' where the pairwise interaction energy is divided equally 
between the two interacting particles. Similarly, 
LiP~x' LiP~y, and LiP !z represent the pressure-tensor contri
butions of each particle's intractions, again less the instan
taneous mean values of these quantities. The rate at which 
these external driving forces do work is exactly equal to the 
product of the heat flux vector, the volume V, and the driv
ing force coefficientA.9 This external work would cause sub
stantial irreversible heating in the absence of stabilizing 
steady-state constraints. A steady state is imposed through 
constraint forces. - mv;;, applied to each particle, with ;; 
chosen to keep either the temperature or total energy con
stant. The one-component plasma, hard-sphere, soft-sphere, 
and Lennard-JonesS

,12 conductivities mentioned above have 
been augmented in the present work by the inverse sixth
power calculations listed in Table I. The latter calculations 
were carried out in order to test the number dependence of 
the results and the sensitivity of inverse-power conductiv- . 
ities to the replusive exponent. The additional sixth-power ~ 
viscosity calculations reported in Table I provide analogous 
data for viscosity. 

All of the data are plotted in Figs. I and 2, correspond
ing-states style, as suggested by Rosenfeld's study of diffu
sion and viscosity. We plot the logarithm ofa dimensionless 
heat conductivity Kd 21k (kTIm)1/2 and a dimensionless vis
cosity T}d 2/(mkT)l/2, whered 3 is the volume per particle and 
k is Boltzmann's constant, as a function ofthe excess entropy 
S e = S Sideal' The excess is measured relative to that ofan 
ideal gas at the same density and temperature. This form of 

TABLE I. Transport coefficients for the inverse-sixth-power potential ¢ E(alr).6 The reduced density p for n 6 is (NeT'1\/2 V)(ElkT)'12. se is the excess 
entropy. The thermal conductivity K and shear viscosity "I are expressed in units with a,m,E, and k set equal to unity. The time t, and viscous strain rate 
w = dux I dy, and conducting driving force A are also given in these same units. Most viscosity and conductivity calculations were done on 64 and 108 particle 
systems, respectively. 

- s" 
nk 

p K A K, r( TJr 

0.5 
1.0 
1.4 
I.Sb 

1.32 
2.60 
3.47 
3.69 

2.2±0.2 
8.5 ±2 

16.7 ± 2 

0.05 
0.03 
0.03 

500 
1600d 

310 

2.8 ± 0.3 
6.8 ± 1.5 

10.6 ± 1.3 

0.37 ± 0.02 
1.6 ± 1 

5.8 ± 0.2 

600 
240 

300 

0.47 0.03 
1.3 ± 0.1 

3.6 ± 0.15 

• See Fig. 1. 
b Liquid phase could not be stablized at this density for conductivity calculations. 
c w = 0.2 for al1 cases. 
dThis is a total time for 32, 108, and 256 particle eonduetivities, which were consistent with a weak number dependence. 

-
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FIG. l. Summary plot of fluid con
ductivities for dense fluids with var
ious pair potentials. Lennard-Jones 
values have small uncertainties of 
about 2%.5,12 Excess entropies are 
from standard sources as follows: 
n 1: W. L. Slattery et al., Phys. 
Rev. A21, 2087 (1980). n 6: D. A. 
Young and F. J. Rogers, J. Chern. 
Phys. 81, 2789 (1984). n 12: W. G. 
Hoover et al., J. Chern. Phys. 52, 
4931 (1970). n 00: Carnahan-Star
ling representation. Lennard-Jones: 
Y. Rosenfeld, Phys. Rev. A 26, 3633 
(1982). 

______~______~____~ 

2 

Excess entropy - seInk 

the reduced transport coefficients is suggested by elementary 
kinetic theory to be appropriate to a dense medium in which 
the carriers are atoms, with scattering occurring after a mo
tion of order the average interparticle distance. The residual 
variation of the reduced transport coefficients with the ex
cess entropy is relatively weak. 

It is apparent that a single, straight, corresponding
states line would describe all the conductivity data shown in 
Fig. I with an accuracy of order 10%. (The straight line 
approach is qualitatively wrong at very low density, where 
the excess entropy vanishes. In this limit our reduced con
ductivity diverges.) The slope of the approximating line 
would be about 0.45. This number lies relatively close to the 
value, 1/3, derived from the Einstein model, as discussed in 
the next section. In Fig. 2 similar straight line fits are seen to 
be consistent with viscosity data for each power law. More
over, the slopes for all potentials except the hard-sphere sys
tem are about the same, 0.66 ± 10%. However, for the softer 
potentials computer viscosities are systematically lower. A 
single corresponding states representation of viscosities is 
therefore less accurate than for conductivities. 

3 4 

III. APPROXIMATE MODELS FOR CONDUCTIVITY AND 
VISCOSITY 

Enskog used the "thermal pressure" T (ap / aT lv to esti
mate a hard-sphere diameter. He then approximated the ra
tio of each of the transport coefficient to its low-density 
limiting value through a universal function of a reduced, 
dimensionless density based on this hard-sphere diameter. 
An alternative approach to Enskog's is to use the difference 
between the pressure and the zero-temperature pressure as a 
"thermal pressure." This approach fails for densities lying 
outside the stabilty range of the solid phase. Variational, 
hard-sphere perturbation theory supplies perhaps the best 
definition of an effective hard-sphere diameter. In this the
ory the excess entropy is precisely that of the hard-sphere 
fluid. Because the hard-sphere entropy, relative to an ideal 
gas, is a function of the reduced density, entropy can replace 
density as a corresponding-states variable. Entropy is also 
experimentally accessible and is for that reasona more ap
pealing choice than a variable depending explicitly on a 
hard-sphere diameter. 
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Some features ofthe dependence ofthe conductivity on 
entropy (shown in Fig. 1) can also be understood in terms ofa 
quasiharmonic Einstein model. Completely analogous argu
ments hold for viscosity. In the Einstein model the excess 
entropy has the form 

- selNk = 3In(v) + 31n(d) - (3/2)ln(kT) + cs ' (2) 

where the additive constant Cs is material independent and v 
is the "Einstein frequency," the frequency at which a single 
particle vibrates in the fixed field of its neighbors. This fre
quency varies as the (n + 2)/6 power of the density for in
verse-power potential interactions. 

The Einstein frequency can also be related to the ther
mal conductivity, as was suggested by Horrocks and 
McLaughlin.5.14 The analog for viscosity is due to Andrade.5 

Suppose that a vibrating particle transports energy from its 
hotter to its cooler neighbors, through an area of order d:2. 
The transport occurs at the Einstein frequency. The loga

rithm of the resulting conductivity has the form 


In(K*) = In[Kd 2/k(kT Im)l!2] 


= In(v) + In(d) - (!)In(kT) + Ck' (3) 

FIG. 2. Summary plot of fluid vis
cosities from molecular dynamics. 
The Lennard-Jones isotherm calcu
lations5 have errors of 5%-10%. 
The present results for the inverse
sixth power repulsive potential were 
calculated at a moderate strain rate 
(see Table I). The highest-density 
(right-most) point, near melting, is 
probably several percent lower than 
the zero-strain-rate limit. 

proportionality for all materials with a slope of 113. 
Because a more rigorous justification cannot at present 

be given by theory for these approximate corresponding 
states relationships, the evidence for their generality must 
depend mainly on the computer data. While the inverse pow
ers do represent fluids with a wide variety ofGriineisen "lat
tice" gammas <a lnvI aInp>, these gammas do not vary with 
density. Realistic potentials (Lennard-Jones, exponential
six) lead to gammas which decrease rapidly with density. 
The existing Lennard-Jones conductivity calculi,ltions 
shown in Fig. 1 provide a thorough test of corresponding 
state behavior for fluids with high gammas. For viscosity, 
however, the high temperature isotherms for the Lennard
Jones potential in the excess entropy range of Fig. 2 lie at 
high densities where the potential is effectively repulsive, 
close to the n 12 soft-sphere potential. The agreement 
with the 12th-power results on these isotherms is thus not 
surprising. Viscosity calculations at the lower reduced tem
peratures used in the conductivity work is desirable to see 
the effect of the inverse-sixth part of the potential. 

The Lennard-Jones potential is in one sense, however, a 
relatively poor example of a typical pair potential. Its repul -' 


where the constant Ck too is material independent. Compar sions are too strong and its lattice gammas (greater than 7/3) 
ing relations (2) and (3) for S'lnk and In K reveals the same too large at high compression. It would be desirable to test 
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further the generality of the corresponding states relation
ship by carryng out calculations using a more realistic poten
tiallike the exponential-six potential with its weaker repul
sions at close distances. 

1 

In spite of its large scatter, the available viscosity data 

also support the usefulness ofa corresponding states law for 

monatomic fluids. This can been seen in Fig. 2 where the 

viscosities appear to have a maximum near n:::::::: 12. This cor

responds to the range of gammas in typical solids and li

quids, 1.5 <r < 2.5. The possibility of lower, hard-sphere

like, reduced viscosities due to large gammas would occur 

mainly at high temperature expanded states where, how

ever, available Lennard-Jones results show no anomalies. 


f The main deviations from corresponding states behavior in 

fluid viscosity should thus occur at very high densities and 

pressures when pair potentials will soften and gamma is ex

pected to decrease to its plasma value of 0.5. 
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