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Nose has modified Newtonian dynamics so as to reproduce both the canonical and the 
isothermal-isobaric probability densities in the phase space of an N-body system. He did this by 
scaling time (with s) and distance (with Vl/D in D dimensions) through Lagrangian equations of 
motion. The dynamical equations describe the evolution of these two scaling variables and their two 
conjugate momenta Ps and Pv. Here we develop a slightly different set of equations, free of time 
scaling. We find the dynamical steady-state probability density in an extended phase space with 
variables x, Px, V, Ii, and S, where the x are reduced distances and the two variables Ii and Sact as 
thermodynamic friction coefficients. We find that these friction coefficients have Gaussian distri
butions. From the distributions the extent of small-system non-Newtonian behavior can be estimat
ed. We illustrate the dynamical equations by considering their application to the simplest possible 
case, a one-dimensional classical harmonic oscillator. 

I. 	INTRODUCTION where the p' are the scaled momenta p Is. Thus the Ham
iltonian (1) generates the canonical probability distribution 

Classical "constant-temperature" calculations have been independent of the values chosen for HNose and Q. 
pursued for over a decade. 1,2 In this sense, "temperature" During the canonical-ensemble calculations just 
is a measure of the instantaneous kinetic energy in a sys described, the volume Vand temperature T are held fixed. 
tem. Thus the corresponding dynamical equations include Nose demonstrated the usefulness of these ideas by carry
non-Newtonian accelerations designed to keep the kinetic ing out several dense-fluid simulations using the Hamil
energy ~p212m constant. The non-Newtonian iso tonian HNose' 
thermal accelerations are useful in dissipative systems in By allowing length to vary,1 as well as time, Nose gen
volving viscous flow, or heat flow, far from equilibrium. eralized this work to include the isothermal-isobaric en
Such systems would heat rapidly in the absence of con semble. These methods and ideas forge a remarkable link 
straints. By now, many3-6 distinct sets of differential between the ensembles of statistical theory and atomistic 
equations of motion have been devised to keep the kinetic dynamics. They suggest promising approaches for the in
energy constant. 	 vestigation of nonequilibrium systems. 

A somewhat different kind of constant-temperature cal Here we exhibit steady-state (equilibrium) distributions 
culation strives to reproduce the canonical phase-space for the new variables which play the role of thermo
distribution, so that the kinetic energy can fluctuate, with dynamic friction coefficients. Our equations of motion 

are very much like Nose's, but differ in that scaling of thea distribution proportional to exp( - ~p212mkT). Ob
time is not required. The new results for distributions taining the canonical distribution is desirable, at least in 
make it possible to estimate finite-size effects on dynamiequilibrium work, in order to correlate 	 the results of 
cal averages. In Sec. II we review Nose's canonical equamany-body simulations with Gibbs's and Jaynes's statisti
tions of motion and introduce a version of them free ofcal mechanics. Andersen7 has used occasional discontinu
time scaling. In Sec. III we formulate the phase-space ous "stochastic" collisions to induce the canonical distri
evolution of the many-body probability densitybution in many-body simulations. 
fNVT(q,P,r,;,Q) and exhibit a steady-state solution. We inNose achieved a major advance by showing that the 
dicate the straightforward extension to include the isobarcanonical distribution can be generated 	 with smooth, 
ic case. With some additional effort, it seems likely that adeterministic, and time-reversible trajectories. To do this 
stress-tensor version of this ensemble could be constructed he introduced a time-scale variable s, its conjugate 
along the lines pioneered by Rahman and Parrinello.9 Inmomentum p.. and a parameter Q. Nose's augmented 
the final section we illustrate the equations of motion with Hamiltonian8 ' 
some representative trajectories for a single classical oscil

HNose=<P(q)+ ~p2/2ms2 lator. 

+(X + 1)kTlns +p}12Q , (1) II. CANONICAL DISTRIBUTION FROM 
NON-NEWTONIAN DYNAMICS (REF. 10) 

contains a nonlinear collective potential in which the 
The equations of motion from Nose's Hamiltonian (1)

time-scale variable s oscillates. Thus the system, with X 

degrees of freedom, is coupled to a heat bath (described by are 


the variables sand Ps)' Nose proved that the microcanon q=plms 2, p=F(q), s=PsIQ, 

ical distribution in the augmented set of variables is (2) 


equivalent to a canonical distribution of the variables q,p', ps=~p2Ims3-(X+l)kTls . 
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These coupled first-order equations take a simpler form if 
the time scale is reduced by s, so that dto1d:::=:S All 
of the rates given in (2) can then be expressed as deriva
tives with respect to t new (for which we will estill use the 
superior dot notation) 

q=plms, p 

(3) 

The somewhat inconvenient variable s can then be elim
inated from the equations (3) by rewriting the coordinate
evolution equations in terms of q, q, and ii: 

q=plms (plms)sls=Flm -qpsIQ:::=:F(q)/m -;q . 

(4) 

The thermodynamic friction coefficient IQ which 
appears in the second-order equations (4) evolves in time 
according to a first-order equation 

(5) 

Nose showed that the phase-space distribution resulting 
from the equations (2) is canonical in the variables q,p Is. 
In the next section we show that the distribution resulting 
from equations (4) and (5) can be made canonical too, and 
in such a way as to avoid time scaling. To do this we 
redefine p:::=:mq and replace Nose's X + 1 by X obtain
ing lO 

q=plm, p=F(q) 

Berendsen6 has just suggested a close relative of (6) in 
which ; rather than ¢ is proportional to 
tlEkin:::=: ~p2/2m -XkT12. Notice that Berendsen's 
equations are not reversible in time. The equations (6) are 
much less severely damped than Berendsen's. An extreme 
opposite limiting case, in which tlEkin is identically zero 
and time reversibility is retained, has been achieved by set
ting the friction coefficient equal to (~Fp 1m)1(»21m) 
or, equivalently, by "velocity scaling.,,1-4 

III. PHASE-SPACE EVOLUTION OF fNVT(q,P,t;) 

Because the variables q, p, and; used in (6) are in
dependent, we can easily calculate the components of the 
flow of probability density f( q,p,;) in (2X + 1)
dimensional space. The equations governing the motion 
in this space are not Hamiltonian. Therefore the deriva
tives aq laq and ap lap do not generally sum to zero. 
Thus the analog of Liouville's equation, expressing the 
conservative flow of probability with time, including flow 
in the; direction, is 

aflat+qaflaq aflap+~afla; 

+f[aqlaq+aplap+a¢/a;] O. (7) 

Consider a density function hvVT proportional to the fol
lowing exponential: 

fNVT 0:: exp [ j<I>(q) +~p2/2m +Q;2!211kTI (8) 

The non vanishing terms in (7) obtained from this density 
function are as follows: 

q af laq (jIkT)~Fplm, ~ 

paflap (fIkT)~( -F+;p)plm, 
(9) 

¢ (jlkT) [{- ~p2lm ]/Qj;Q, 

faplap -XkT;) . 

Inspection shows that these terms sum to zero, provided 
that the coefficient of kT in the dynamical equation (6) 

for the fliction coefficient is chosen equal to the number 
of independent degrees of freedom in the set q,p. In the 
usual molecular dynamics simulation, with periodic boun
daries, the center of mass and its velocity are fixed so that 
this number of degrees of freedom is D 1) for a D
dimensional N-body system. Thus the canonical distribu
tion (8) is a steady equilibrium solution of the flow equa
tion (7) and satisfies the equations of motion (6). 

In commenting on an earlier draft of this manuscript, 
Brad Holian pointed out that the phase-space distribution 
(8) can be used to derive the equation of motion for the 
friction coefficient;. To see this, note that the canonical 
distribution (8) satisfies (7) if, and only if, ; follows the re
laxation equation (6) of Nose. Thus Nose's canonical 
equations of motion are unique. Other relaxation equa
Jions, such as Berendsen's, cannot lead to the canonical 
distribution (8). 

To extend these ideas to the isothermal-isobaric case is 
straightforward. Reduced coordinates x:::=:q IVl/D are in
troduced, as is also a fixed "external pressure" Pex! and 
relaxation time T. The equations of motion 

x=plmV1/D,p F (E+;)p,;Q ~p2Im-XkT, 
(10) 

E= V IDV, i:=' (P W/?kT, 

have the steady equilibrium solution f'VPT 
0:: VN -1 exp( - 11'1kT), where 

1I':::=:<I>(x VIID) +~p2/2m +Q;2/2 

2~kTI2+Pext V . (11) 

IV. CANONICAL HARMONIC OSCILLATOR 

To illustrate the changes in viewpoint discovered by 
Nose we consider a one-dimensional harmonic oscillator 
with the mass, force constant, and initial values of and 
p an taken to be unity. We consider equations for which 
the values of and p2 have averaged values of unity. 
The microcanonical equations of motion 

q=p, p -q (12) 

generate closed elliptical trajectories in the two
dimensional qp phase space. See Fig. 1(a). For this same 
oscillator Nose's canonical equations [with X in (2) taken 
to be zero and s initially unity] take the form 

lis . (13)q =p Is 2, P -q, S=PsIQ, Ps 
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(e ) 

FIG. 1. (a) Elliptical orbit for an oscillator described by 
(12). The abscissa is q, the ordinate is p. The major-to-minor 
axis ratio of unity has been increased in plotting to fit the Tek
tronix hard-copy screen area symmetrically. This same illerease 
applies to each figure. All data were obtained on the Digital 
Equipment Corporation VAX 11/780 computer at the Physics 
Department (Lausanne) using a fourth-order Runge-Kutta in
tegration in double precision with time steps in the range 0.01 
down to 0.001. (b) Long-time qp trajectory for Eqs. (13) or (14j 

with initial values q 1, p 1, s = 1, ps =,0, and Q 1. (c) 

Same as (b) with Q =0.1. (d) Long-time qp trajectory for 
(15) with initial values q 1, p = 1, ;=0, and Q 1. (e) Same 
as (d) with Q=0.1. 

For large Q these equations simply reproduce the micro
canonical behavior shown in Fig. Ha). In Figs. l(b) and 
Hc) we show trajectories for Q = 1. 0 and 0.1 using the 
same initial conditions. For the larger Q, the trajectories 
in qp space gradually fill in a region between two limiting 
curves. For the smaller Q the trajectories develop more 
nearly singular turning points and the size of the filled re
gion diminishes. When a new time is introduced, with 
dtold and 
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q=pls, p= -qs, s=sPsIQ, Ps (p 1 , (14) 

exactly the same trajectories are produced, but at different 
rates, This is a good check of the numerical integration, 

Finally, if we abandon time scaling and redefine p =q 
we have 

q=p, p= -q-Sp, ~=(p2_1)IQ . (15) 

Solutions for these equations appear in Figs. l(d) and l(e). 
The small-Q limit of (15) can be inferred from these fig
ures. The oscillator moves between widely-separated turn
ing points at velocity ± 1. 

These examples illustrate that a single oscillator is not 
sufficiently chaotic to reproduce the canonical distribu
tion from a single initial condition. The trajectories are, 
however, stable and cover a relatively large part of the os
cillator phase space for reasonable values of the parameter 
Q. For unreasonable values of Q (either very small or 
very large) it is not at all clear that even large systems will 
behave in a canonical (as opposed to microcanonical) way. 
A study of the number dependence and Q dependence of 
the phase-space density for a series of small systems 
might help to clarify this point. 
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